Skip to main content

Advertisement

Log in

Spatiotemporal variations in eruption style, magnitude and vent morphology at Yasur volcano, Vanuatu: insights into the conduit system

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Using visual, seismic, SO2-gas and thermal infrared data collected over 3 months, we observed systematic variations in the steady-state Strombolian-style activity of Yasur volcano. Observations reveal insights into the relationship between explosion magnitude and style with shallow conduit and magmatic conditions. Powerful eruptive phases are dominated by lava-rich activity, suggesting a high magma and volatile flux from depth that fills hot conduit pathways with mobile magma. Weak eruptive phases produced low-frequency ash-dominated explosions, indicative of cooling and stagnant magma near the top of the conduit and/or a debris layer covering the vent. Statistical forecast modelling was applied to explore if information on the previous days’ activity could forecast the next day and provide insights into multi-vent eruption patterns. Results suggest that North and South crater conduits are separated at significant depths and changes to either crater represent the variable proportions of magma and volatile flux directed into one pathway or the other. Zones A and B within the South crater have an alternating relationship, swapping between periods of active-inactive, or high-low magnitude. This appears to reflect the shallow diversion of magma and volatile flux between each vent, likely due to temporary conduit blockage and clearance cycles. Multiple timescales of eruptive behaviour change were revealed. Approximately 5-day cycles show changes in explosion parameters at individual vent zones, reflecting magma-level fluctuations and convection within the higher levels of each conduit. Cycles 10 to 20 days long occur in overall eruptive activity, and may reflect magma chamber processes that distribute magma and volatile flux differentially between the North and South conduits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aiuppa A, Federico C, Giudice G, Giuffrida G, Guida R, Gurrieri S, Liuzzo M, Moretti R, Papale P (2009) The 2007 eruption of Stromboli volcano: insights from real-time measurements of the volcanic gas plume CO2/SO2 ratio. J Volcanol Geotherm Res 182:221–230. https://doi.org/10.1016/j.jvolgeores.2008.09.013

    Article  Google Scholar 

  • Albarede F (1985) Regime and trace-element evolution of open magma chambers. Nature 318:356–358

    Article  Google Scholar 

  • Allibone R, Cronin SJ, Charley DT, Neall VE, Stewart RB, Oppenheimer C (2012) Dental fluorosis linked to degassing of Ambrym volcano, Vanuatu: a novel exposure pathway. Environmental Geochemistry and Health 34:155–170. https://doi.org/10.1007/s10653-010-9338-2.

    Article  Google Scholar 

  • Andronico D, Cristaldi A, Del Carlo P, Taddeucci J (2009) Shifting styles of basaltic explosive activity during the 2002–03 eruption of Mt. Etna, Italy. J. Volcanol. Geotherm. Res. 180:110–122. https://doi.org/10.1016/j.jvolgeores.2008.07.026

    Article  Google Scholar 

  • Azzopardi B, Smith PA (1992) Two-phase flow split at T junctions: effect of side arm orientation and downstream geometry. International Journal of Multiphase Flow 18:861–875. https://doi.org/10.1016/0301-9322(92)90064-N

    Article  Google Scholar 

  • Bani P, Lardy M (2007) Sulphur dioxide emission rates from Yasur volcano, Vanuatu archipelago. Geophys Res Lett 34. https://doi.org/10.1029/2007GL030411

  • Bani P, Oppenheimer C, Allard P, Shinohara S, Tsanev V, Carn S, Lardy M, Garaebiti E (2012) First estimate of volcanic SO2 budget for Vanuatu island arc. J Volcanol Geotherm Res 211–212, 36–46, 211–212

  • Bani P, Harris AJL, Shinohara H, Donnadieu F (2013) Magma dynamics feeding Yasur’s explosive activity observed using thermal infrared remote sensing. Geophys Res Lett 40:3830–3835

    Article  Google Scholar 

  • Barberi F, Rosi M, Sodi A (1993) Volcanic hazard assessment at Stromboli based on review of historical data. Acta Vulcanol 3:173–187

    Google Scholar 

  • Bebbington MS (2007) Identifying volcanic regimes using hidden Markov models. Geophys J Int 171:921–942

    Article  Google Scholar 

  • Bebbington MS (2013) Assessing probabilistic forecasts of volcanic eruption onsets. Bull Volcanol 75:783

    Article  Google Scholar 

  • Beckett F, Burton M, Mader H, Phillips J, Polacci M, Rust A, Witham F (2014) Conduit convection driving persistent degassing at basaltic volcanoes. J Volcanol Geotherm Res 283:19–35. https://doi.org/10.1016/j.jvolgeores.2014.06.006

  • Belien IB, Cashman KV, Rempel AW (2010) Gas accumulation in particle-rich suspensions and implications for bubble populations in crystal-rich magma. Earth Planet SC Lett 297(1–2):133–140

  • Burton M, Allard P, Muré F, La Spina A (2007) Magmatic gas composition reveals the source depth of slug-driven Strombolian explosive activity. Science 317(5835):227–230

  • Cannata A, Montalto P, Aliotta M, Cassisi C, Pulvirenti A, Privitera E, Patanè D (2011) Clustering and classification of infrasonic events at Mount Etna using pattern recognition techniques. Geophys J Int 185(1):253–264. https://doi.org/10.1111/j.1365-246X.2011.04951.x

  • Capponi A, Taddeucci J, Scarlato P, Palladino DM (2016a) Recycled ejecta modulating Strombolian explosions. Bull Volcanol 78(2):1–13. https://doi.org/10.1007/s00445-016-1001-z

    Article  Google Scholar 

  • Capponi A, James MR, Lane SJ (2016b) Gas slug ascent in a stratified magma: implications of flow organisation and instability for Strombolian eruption dynamics, earth planet. Sci Lett 435:159–170. https://doi.org/10.1016/j.epsl.2015.12.028

    Article  Google Scholar 

  • Casadevall T, Johnston D, Harris D, Rose W, Malinconico L, Stoiber R, Bornhorst T, Williams S, Woodruff L., Thompson J (1980) SO2 emission rates at Mount St. Helens from March 29 through December, 1980. The 1980 Eruptions of Mount St. Helens. US Geological Survey Professional Paper,1981, U.S. Government Printing Office, 1982.

  • Carney JN, McFarlane A (1979) Geology of Tanna, Aneityum, Futuna and Aniwa. New Hebrides Government Geological Survey, pp 5–29

  • Casadevall TJ, Doukas MP, Neal CA, McGimsey RG, Gardner CA (1994) Emission rates of sulfur dioxide and carbon dioxide from Redoubt volcano, Alaska during the 1989-1990 eruptions. Journal of Volcanology and Geothermal Research, v 62(1–4):519–530

    Article  Google Scholar 

  • Cohen AC, Whitten BJ (1980) Estimation in the three-parameter lognormal distribution. J Am Stat Assoc 75:399–404

    Article  Google Scholar 

  • Cronin SJ, Sharp DS (2002) Environmental impacts on health from continuous volcanic activity at Yasur (Tanna) and Ambrym, Vanuatu. Int J Environ Health Res 12:109–123

    Article  Google Scholar 

  • Cronin S, Bebbington M, Lai CD (2001) A probabilistic assessment of eruption recurrence on Taveuni volcano, Fiji. Bull Volcanol 63:274–288

    Article  Google Scholar 

  • Del Bello E, Llewellin EW, Taddeucci J, Scarlato P, Lane SJ (2012) An analytical model for gas overpressure in slug-driven explosions: insights into Strombolian volcanic eruptions. J Geophys Res 117:B02206. https://doi.org/10.1029/2011JB008747

    Article  Google Scholar 

  • Del Bello E, Lane SJ, James MR, Llewellin EW, Taddeucci J, Scarlato P, Capponi A (2015) Viscous plugging can enhance and modulate explosivity of Strombolian eruptions, earth planet. Sci Lett 423:210–218. https://doi.org/10.1016/j.epsl.2015.04.034

    Article  Google Scholar 

  • Firth CW 2016) Elucidating magmatic drivers and eruptive behaviours of persistently active volcanoes. Available at: http://hdl.handle.net/1959.14/1107003

  • Firth CW, Handley HK, Cronin SJ, Turner SP (2014) The eruptive history and chemical stratigraphy of a steady-state volcano: Yasur, Vanuatu. Bull Volcanol 76:837. https://doi.org/10.1007/s00445-014-0837-3

    Article  Google Scholar 

  • Francis P, Oppenheimer C, Stevenson D (1993) Endogenous growth of persistently active volcanoes. Nature 366:554–557

    Article  Google Scholar 

  • Gaudin D, Taddeucci J, Scarlato P, Moroni M, Freda C, Gaeta M, Palladino DM (2014) Pyroclast tracking velocimetry illuminates bomb ejection and explosion dynamics at Stromboli (Italy) and Yasur (Vanuatu) volcanoes, J. Geophys. Res. Solid Earth 119:5384–5397. https://doi.org/10.1002/2014JB011096

    Article  Google Scholar 

  • Gaudin D, Taddeucci J, Scarlato P, Harris AJL, Bombrun M, Del Bello E, Ricci T (2017) Characteristics of puffing activity revealed by ground-based, thermal infrared imaging: the example of Stromboli volcano (Italy). Bull Volcanol 79:24. https://doi.org/10.1007/s00445-017-1108-x

    Article  Google Scholar 

  • Global Volcanism Program, (1999), Report on Yasur (Vanuatu). In: Wunderman, R. (ed.), Bulletin of the global volcanism network, 24:4. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN199904-257100, 24

  • Global Volcanism Program (2003) Report on Yasur (Vanuatu). In: Venzke E (ed) Bulletin of the global volcanism network, 28:1. Smithsonian Institution, vol 28. https://doi.org/10.5479/si.GVP.BGVN200301-257100

    Chapter  Google Scholar 

  • Gomez C, Kennedy B (2018) Capturing volcanic plumes in 3D with UAV-based photogrammetry at Yasur volcano – Vanuatu. Journal of Volcanology and Geothermal Research 350(2018):84–88

    Article  Google Scholar 

  • Goto A, Ripepe M, Lacanna G (2014) Wideband acoustic records of explosive volcanic eruptions at Stromboli: New insights on the explosive process and the acoustic source. Geophys Res Lett 41 (11):3851–3857

  • Grunwald GK, Jones RH (2000) Markov models for time series with mixed distribution. Environmetrics 11:327–339

    Article  Google Scholar 

  • Gurioli L, Harris A, Houghton B, Polacci M, Ripepe M (2008) Textural and geophysical characterization of explosive basaltic activity at Villarrica volcano. J Geophys Res 113. https://doi.org/10.1029/2007JB005328

  • Gurioli L, Colo L, Bollasina AJ, Harris AJL, Whittington A, Ripepe M (2014) Dynamics of Strombolian explosions: inferences from field and laboratory studies of erupted bombs from Stromboli volcano. J. Geophys. Res. Solid Earth 119:319–345. https://doi.org/10.1002/2013JB010355

    Article  Google Scholar 

  • Guttorp P (1995) Stochastic modelling of scientific data. Chapman and Hall, London, 372p

  • Harris A, Ripepe M (2007a) Synergy of multiple geophysical approaches to unravel explosive eruption conduit and source dynamics: a case study from Stromboli. Chemie der Erde - Geochemistry 67(1):1–35. https://doi.org/10.1016/j.chemer.2007.01.003

    Article  Google Scholar 

  • Harris A, Ripepe M (2007b) Temperature and dynamics of degassing at Stromboli. J Geophys Res 112:B03205. https://doi.org/10.1029/2006JB004393

    Article  Google Scholar 

  • Harris AJL, Stevens NF, Maciejewski AJH, Rollin PJ (1996) Thermal evidence for linked vents at Stromboli. Acta Vulcanol 8:57–61

    Google Scholar 

  • Horton KA, Williams-Jones G, Garbeil H, Elias T, Sutton AJ, Mouginnis-Mark P, Porter JN, Clegg S (2006a) Real-time measurement of volcanic SO2 emissions: validation of a new UV correlation spectrometer (FLYSPEC). bull. Volc 68(4):323–327. https://doi.org/10.1007/s00445-005-0014-9

    Article  Google Scholar 

  • Horton K, Porter J, Mouginis-Mark P, Oppenheimer C, Garbeil H (2006b) Apparatus for measuring radiation and method of use (FLYSPEC), US Utility Patent No 7,148,488

  • Houghton BF, Taddeucci J, Andronico D, Gonnermann HM, Pistolesi M, Patrick MR, Orr TR, Swanson DA, Edmonds M, Gaudin D, Carey RJ, Scarlato P (2016) Stronger or longer: discriminating between Hawaiian and Strombolian eruption styles. Geology 44(2):163–166. https://doi.org/10.1130/G37423.1

    Article  Google Scholar 

  • Hydnman RJ, Grunwald GK (2000) Generalized additive modelling of mixed distribution Markov models with application to Melbourne’s rainfall. Australian and New Zealand Journal of Statistics 42:145–158

    Article  Google Scholar 

  • James MR, Lane SJ, Corder SB (2008) Modelling the rapid near-surface expansion of gas slugs in low-viscosity magmas. Geol. Soc. London, Spec. Publ. 307(1):147–167. https://doi.org/10.1144/SP307.9

    Article  Google Scholar 

  • James M, Lane S, Wilson L, Corder SB (2009) Degassing at low magma-viscosity volcanoes: quantifying the transition between passive bubble-burst and Strombolian eruption. Journal of Volcanology and Geothermal Research 180:81–88. https://doi.org/10.1016/j.jvolgeores.2008.09.002

    Article  Google Scholar 

  • Jaupart C, Vergniolle S (1988) Laboratory models of Hawaiian and Strombolian eruptions. Nature 331:58–60

  • Jolly A, Matoza R, Fee D, Kennedy B, Iezzi A, Fitzgerald R, Austin A, Johnson R (2017) Capturing the acoustic radiation pattern of Strombolian eruptions using infrasound sensors aboard a tethered aerostat, Yasur volcano, Vanuatu. Geophys Res Lett 44 (19):9672–9680. https://doi.org/10.1002/2017GL074971

  • Kazahaya K, Shinohara H, Saito G (1994) Excessive degassing of Izu-Oshima volcano magma convection in a conduit. Bull Volcanol 56:207–216

    Article  Google Scholar 

  • Kern C, Deutschmann T, Vogel L, Wohrbach M, Wagner T, Platt U (2010) Radiative transfer corrections for accurate spectroscopic measurements of volcanic gas emissions. Bull Volcanol 72:233–247

    Article  Google Scholar 

  • Koh T (2019) Characterizing explosion depth and investigating activity at Yasur Volcano (BSc dissertation). School of Environment, the University of Auckland, Auckland and Asian School of the Environment, Nanyang Technological University, Singapore.

  • Kremers S, Lavallée Y, Hanson J, Hess K-U, Chevrel MO, Wassermann J, Dingwell DB (2012) Shallow magma-mingling-driven Strombolian eruptions at Mt. Yasur volcano, Vanuatu. Geophys. Res. Lett. 39:L21304. https://doi.org/10.1029/2012GL053312

    Article  Google Scholar 

  • Kremers S, Wassermann J, Meier K, Pelties C, van Driel M, Vasseur J, Hort M (2013) Inverting the source mechanism of Strombolian explosions at Mt. Yasur, Vanuatu, using a multi-parameter dataset. J. Volcanol. Geotherm. Res 262:104–122

    Article  Google Scholar 

  • Landi P, Marchetti E, La Felice S, Ripepe M, Rosi M (2011) Integrated petrochemical and geophysical data reveals thermal distribution of the feeding conduits at Stromboli volcano, Italy. Geophys Res Lett 38:L08305. https://doi.org/10.1029/2010GL046296

    Article  Google Scholar 

  • Lautze NC, Houghton BF (2005) Physical mingling of magma and complex eruption dynamics in the shallow conduit at Stromboli volcano, Italy. Geology 33(5):425

  • Lautze NC, Houghton BF (2007) Linking variable explosion style and magma textures during 2002 at Stromboli volcano, Italy. Bull Volcanol 69(4):445–460. https://doi.org/10.1007/s00445-006-0086-1

    Article  Google Scholar 

  • Leduc L, Gurioli L, Harris A, Colò L, Rose-Koga EF (2015) Types and mechanisms of Strombolian explosions: characterization of a gas-dominated explosion at Stromboli. Bull Volcanol 77(1):1–15. https://doi.org/10.1007/s00445-014-0888-5

    Article  Google Scholar 

  • Li WK (1994) Time series models based on generalized linear models: some further results. Biometrics 50:506–511

    Article  Google Scholar 

  • López T, Ushakov S, Izbekov P, Tassi F, Cahill C, Neill O, Werner C (2013) Constraints on magma processes, subsurface conditions, and total volatile flux at Bezymianny volcano in 2007–2010 from direct and remote volcanic gas measurements. J Volcanol Geotherm Res 263(1):92–107

    Article  Google Scholar 

  • Lyons JJ, Waite GP (2011) Dynamics of explosive volcanism at Fuego volcano imaged with very long period seismicity. J Geophys Res 116:B09303. https://doi.org/10.1029/2011JB008521

    Article  Google Scholar 

  • Mammen E, Nielsen JP, Fitzenberger B (2011) Generalized linear time series regression. Biometrika 98:1007–1014

    Article  Google Scholar 

  • Mandon CL, Christenson BW, Schipper CI, Seward TM, Garaebiti E (2018) Metal transport in volcanic plumes: a case study at White Island and Yasur volcanoes. Journal of Volcanology and Geothermal Research, Volume 369(2019):155–171, ISSN 0377-0273. https://doi.org/10.1016/j.jvolgeores.2018.11.024

  • Marti S, Shoham O (1997) A unified model for stratified-wavy two-phase flow splitting at a reduced T-junction with an inclined branch arm. Int J Multip Flow 23(4):725–748. https://doi.org/10.1016/S0301-9322(97)82477-9

  • Meier K, Hort M, Wassermann J, Garaebiti E (2015) Strombolian surface activity regimes at Yasur volcano, Vanuatu, as observed by Doppler radar, infrared camera and infrasound. J Volcanol Geotherm Res 322:184–195. https://doi.org/10.1016/j.jvolgeores.2015.07.038

    Article  Google Scholar 

  • Métrich N, Bertagnini A, Di Muro A (2010) Conditions of magma storage, degassing and ascent at Stromboli: new insights into the volcano plumbing system with inferences on the eruptive dynamics. J Petrol 51:603–626

    Article  Google Scholar 

  • Métrich N, Allard P, Aiuppa A, Bani P, Bertagnini A, Shinohara H, Parello F, Di Muro A, Garaebiti E, Belhadj O, Massare D (2011) Magma and volatile supply to post-collapse volcanism and block resurgence in Siwi Caldera (Tanna Island, Vanuatu arc). J Petrol 52:1077–1105

    Article  Google Scholar 

  • Mercalli G (1907) I Vulcani Attivi Della Terra: Morfologia, Dinamismo, Prodotti, Distribuzione Geografica, Cause, Ulrico Hoepli, Milano.

  • Nabyl A, Dorel J, Lardy M (1997) A comparative study of low-frequency seismic signals recorded at Stromboli volcano, Italy and Yasur volcano, Vanuatu. N Z J Geol Geophys 40:549–558

    Article  Google Scholar 

  • Nairn IA, Scott BJ, Giggenbach WF (1988) Yasur volcano investigations, Vanuatu, Sept 1988. New Zealand Geological Survey Report G 134:74 pp

  • Namiki A, Manga M (2008) Transition between fragmentation and permeable outgassing of low viscosity magmas. Journal of Volcanology and Geothermal Research 169(48):1–2

    Google Scholar 

  • Németh, K., Cronin, S.J., 2008. Volcanic craters, pit craters and high level magma-feeding systems of a mafic island-arc volcano: Ambrym, South Pacific. In: Thomson, K., Petford N. (eds) structure and emplacement of high-level magmatic systems. Geol Soc Lond, Spec Publ, 302, 87–102. doi:https://doi.org/10.1144/SP302.6

  • Neuberg J, Luckett R, Ripepe M, Braun T (1994) Highlights from a seismic broadband array on Stromboli volcano. Geophys Res Lett 21(9):749–752

    Article  Google Scholar 

  • O’Hara MJ (1977) Geochemical evolution during fractional crystallisation of a periodically refilled magma chamber. Nature 266:503–507

    Article  Google Scholar 

  • Oppenheimer C, Bani P, Calkins JA, Burton MR, Sawyer GM (2006) Rapid FTIR sensing of volcanic gasses released by Strombolian explosions at Yasur volcano, Vanuatu. Applied Physics B 85:453–460

    Article  Google Scholar 

  • Palma JL, Blake S, Calder ES (2011) Constraints on the rates of degassing and convection in basaltic open-vent volcanoes. Geochemistry, Geophysics, Geosystems 12(11)

  • Parfitt EA (2004) A discussion of the mechanisms of explosive basaltic eruptions. J Volcanol Geotherm Res 134(1–2):77–107. https://doi.org/10.1016/j.jvolgeores.2004.01.002

    Article  Google Scholar 

  • Patrick MR, Harris A, Ripepe M, Dehn J, Rothery DA, Calvari S (2007) Strombolian explosive styles and source conditions: insights from thermal (FLIR) video. Bull Volcanol 69(7):769–784

    Article  Google Scholar 

  • Pioli L, Azzopardi B, Cashman K (2009) Controls on the explosivity of scoria cone eruptions: magma segregation at conduit junctions. Journal of Volcanology and Geothermal Research - J VOLCANOL GEOTHERM RES 186:407–415. https://doi.org/10.1016/j.jvolgeores.2009.07.014

    Article  Google Scholar 

  • Pioli L, Bonadonna C, Azzopardi BJ, Phillips JC, Ripepe M (2012) Experimental constraints on the outgassing dynamics of basaltic magmas. J Geophys Res 117:B03204. https://doi.org/10.1029/2011JB008392

    Article  Google Scholar 

  • Ripepe M, Harris AJL, Marchetti E (2005a) Coupled thermal oscillations in explosive activity at different craters of Stromboli Volcano. Geophys Res Lett 32:L17302. https://doi.org/10.1029/2005GL022711

    Article  Google Scholar 

  • Ripepe M, Marchetti E, Ulivieri G, Harris A, Dehn J, Burton M, Caltabianco T, Salerno G (2005b) Effusive to explosive transition during the 2003 eruption of Stromboli volcano. Geology 33(5):341–344. https://doi.org/10.1130/G21173.1

    Article  Google Scholar 

  • Rosi M, Pistolesi M, Bertagnini A, Landi P, Pompillio M, Di Roberto A (2013) Stromboli volcano, Aeolian Islands (Italy): present eruptive activity and hazards. Geological Society of London Memoirs 37:473–449

    Article  Google Scholar 

  • Salvatore V, Silleni A, Corneli D, Taddeucci J, Palladino D, Sottili G, Bernini D, Andronico D, Cristaldi A (2018) Parameterizing multi-vent activity at Stromboli Volcano (Aeolian Islands, Italy). Bull Volcanol 80. https://doi.org/10.1007/s00445-018-1239-8

  • Scarlato P, Del Bello E, Gaudin D, Taddeucci J, Ricci T, Cesaroni C (2015) Dynamics of strombolian eruptions at Batu Tara volcano (Indonesia)

  • Simons B, Jolly A, Cronin S, Eccles J (2020) Spatiotemporal relationships between two closely-spaced Strombolian-style vents. Yasur, Vanuatu, Geophysical Research Letters 47. https://doi.org/10.1029/2019GL085687

  • Spina L, Taddeucci J, Cannata A, Gresta S, Lodato L, Privitera E, Scarlato P, Gaeta M, Gaudin D, Palladino DM (2015) Explosive volcanic activity at Mt. Yasur: a characterization of the acoustic events (9–12th July 2011). J Volcanol Geotherm Res 302:24–32. https://doi.org/10.1016/j.jvolgeores.2015.07.027

    Article  Google Scholar 

  • Stoiber R, Malinconico L, Williams S (1983) Use of the correlation spectrometer at volcanoes. In: Tazieff, H. and Sabroux, J.C. (Editors), Forecasting Volcanic Events. Elsevier, New York, p. 424–444

  • Suckale J, Keller T, Cashman KV, Persson PO (2016) Flow-to-fracture transition in a volcanic mush plug may govern normal eruptions at Stromboli. Geophys Res Lett 43:12,071–12,081. https://doi.org/10.1002/2016GL071501

    Article  Google Scholar 

  • Taddeucci J, Palladino DM, Sottili G, Bernini D, Andronico D, Cristaldi A (2013) Linked frequency and intensity of persistent volcanic activity at Stromboli (Italy). Geophys Res Lett 40:3384–3388. https://doi.org/10.1002/grl.50652

    Article  Google Scholar 

  • Tournigand P-Y, Taddeucci J, Gaudin D, Peña Fernández JJ, Del Bello E, Scarlato P, Yokoo A (2017) The initial development of transient volcanic plumes as a function of source conditions. Journal of Geophysical Research: Solid Earth 122:9784–9803. https://doi.org/10.1002/2017JB014907

    Article  Google Scholar 

  • Turner JS, Campbell IH (1986) Convection and mixing in magma chambers. Earth-Sci Rev 23(4):255–352

  • Vergniolle S, Mangan M (2000) In: Sigurdsson H (ed) Hawaiian and strombolian eruptions, in Encyclopedia of Volcanoes. Academic Press,San Diego, Toronto, p 1417

    Google Scholar 

  • Washington HS (1917) Persistence of vents at Stromboli and its bearing on volcanic mechanism. Bull Geol Soc Am 28:249–278

    Article  Google Scholar 

  • Williams-Jones G, Horton K, Elias T, Garbeil H, Mouginis-Mark P, Sutton AJ, Harris AJL (2006) Accurately measuring volcanic plume velocity with multiple UV spectrometers. Bull Volcanol 684:328–332

    Article  Google Scholar 

  • Williams-Jones G, Stix J, Nadeau P, (2008) Using the COSPEC in the field. In: Williams-Jones G, Stix J, Hickson C (Eds.) the COSPEC cookbook: making SO2 measurements at active volcanoes. IAVCEI, pp. 63–119

  • Zeger SL, Liang K-Y (1991) Feedback models for discrete and continuous time-series. Stat Sin 1:51–64

    Google Scholar 

Download references

Acknowledgements

BS thanks Geoff Lerner, Christina Walter, Sanji Karu, Mirja Heinrich, Edgar Zorn and Manuela Tost for their invaluable aid during fieldwork. UoA Doctoral Scholarship and JL (EQC) funded BS. SJC and MB are supported by MBIE Natural Hazard Research Platform project ‘Quantifying risks from multiphase volcanic activity’. Thank you to Kelson Hosea and family for accommodation during the study. Thanks to the Vanuatu Meteorology and Geohazards Department for helping to facilitate the research. Thank you to the reviewers and editors for their constructive feedback that substantially improved this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. C. Simons.

Additional information

Editorial responsibility: L. Pioli

Electronic supplementary material

ESM 1

(PDF 809 kb)

ESM 2

(PDF 83747 kb)

ESM 3

(PDF 932 kb)

ESM 4

(PDF 48943 kb)

ESM 5

(PDF 85366 kb)

ESM 6

(PDF 60468 kb)

ESM 7

(XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simons, B.C., Cronin, S.J., Eccles, J.D. et al. Spatiotemporal variations in eruption style, magnitude and vent morphology at Yasur volcano, Vanuatu: insights into the conduit system. Bull Volcanol 82, 59 (2020). https://doi.org/10.1007/s00445-020-01394-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-020-01394-4

Keywords

Navigation