Skip to main content
Log in

Comment on " Volume of magma accumulation or withdrawal estimated from surface uplift or subsidence, with application to the 1960 collapse of Kīlauea volcano" by P. T. Delaney and D. F. McTigue

  • COMMENT
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

 In volcanoes that store a significant quantity of magma within a subsurface summit reservoir, such as Kīlauea, bulk compression of stored magma is an important mode of deformation. Accumulation of magma is also accompanied by crustal deformation, usually manifested at the surface as uplift. These two modes of deformation – bulk compression of resident magma and deformation of the volcanic edifice – act in concert to accommodate the volume of newly added magma. During deflation, the processes reverse and reservoir magma undergoes bulk decompression, the chamber contracts, and the ground surface subsides. Because magma compression plays a role in creating subsurface volume to accommodate magma, magma budget estimates that are derived from surface uplift observations without consideration of magma compression will underestimate actual magma volume changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 30 September 1998 / Accepted: 27 July 1999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, D., Sigmundsson, F. & Delaney, P. Comment on " Volume of magma accumulation or withdrawal estimated from surface uplift or subsidence, with application to the 1960 collapse of Kīlauea volcano" by P. T. Delaney and D. F. McTigue. Bull Volcanol 61, 491–493 (2000). https://doi.org/10.1007/s004450050006

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004450050006

Navigation