Skip to main content

Advertisement

Log in

Potential impacts of tephra fallout from a large-scale explosive eruption at Sakurajima volcano, Japan

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

We present an exposure analysis of infrastructure and lifeline to tephra fallout for a future large-scale explosive eruption of Sakurajima volcano. An eruption scenario is identified based on the field characterization of the last subplinian eruption at Sakurajima and a review of reports of the eruptions that occurred in the past six centuries. A scenario-based probabilistic hazard assessment is performed using the Tephra2 model, considering various eruption durations to reflect complex eruptive sequences of all considered reference eruptions. A quantitative exposure analysis of infrastructures and lifelines is presented primarily using open-access data. The post-event impact assessment of Magill et al. (Earth Planets Space 65:677–698, 2013) after the 2011 VEI 2 eruption of Shinmoedake is used to discuss the vulnerability and the resilience of infrastructures during a future large eruption of Sakurajima. Results indicate a main eastward dispersal, with longer eruption durations increasing the probability of tephra accumulation in proximal areas and reducing it in distal areas. The exposure analysis reveals that 2300 km of road network, 18 km2 of urban area, and 306 km2 of agricultural land have a 50% probability of being affected by an accumulation of tephra of 1 kg/m2. A simple qualitative exposure analysis suggests that the municipalities of Kagoshima, Kanoya, and Tarumizu are the most likely to suffer impacts. Finally, the 2011 VEI 2 eruption of Shinmoedake demonstrated that the already implemented mitigation strategies have increased resilience and improved recovery of affected infrastructures. Nevertheless, the extent to which these mitigation actions will perform during the VEI 4 eruption presented here is unclear and our hazard assessment points to possible damages on the Sakurajima peninsula and the neighboring municipality of Tarumizu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aramaki S (1984) Formation of the Aira Caldera, southern Kyushu, ∼22,000 years ago. J Geophys Res Solid Earth 89:8485–8501. https://doi.org/10.1029/JB089iB10p08485

    Article  Google Scholar 

  • Ayris P, Delmelle P (2012) The immediate environmental effects of tephra emission. Bull Volcanol 74:1905–1936. https://doi.org/10.1007/s00445-012-0654-5

    Article  Google Scholar 

  • Bagheri GH, Bonadonna C, Manzella I, Vonlanthen P (2015) On the characterization of size and shape of irregular particles. Powder Technol 270:141–153. https://doi.org/10.1016/j.powtec.2014.10.015

  • Bagheri G, Rossi E, Biass S, Bonadonna C (2016) Timing and nature of volcanic particle clusters based on field and numerical investigations. J Volcanol Geotherm Res 327:520–530. https://doi.org/10.1016/j.jvolgeores.2016.09.009

  • Biass S, Bagheri G, Aeberhard W, Bonadonna C (2014a) TError: towards a better quantification of the uncertainty propagated during the characterization of tephra deposits. Stat Volcanol 1:1–27. https://doi.org/10.5038/2163-338X.1.2

    Article  Google Scholar 

  • Biass S, Bonadonna C (2011) A quantitative uncertainty assessment of eruptive parameters derived from tephra deposits: the example of two large eruptions of Cotopaxi volcano, Ecuador. Bull Volcanol 73:73–90

    Article  Google Scholar 

  • Biass S, Bonadonna C (2014) TOTGS: total grainsize distribution of tephra fallout. In: https://vhub.org/resources/3297. https://vhub.org/resources/3297. Accessed 30 Jan 2015

  • Biass S, Bonadonna C (2013) A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador—part I: probabilistic hazard assessment. Nat Hazards 65:477–495

    Article  Google Scholar 

  • Biass S, Bonadonna C, Connor L, Connor C (2016a) TephraProb: a Matlab package for probabilistic hazard assessments of tephra fallout. J Appl Volcanol 5:1–16. https://doi.org/10.1186/s13617-016-0050-5

    Article  Google Scholar 

  • Biass S, Bonadonna C, Traglia F et al (2016b) Probabilistic evaluation of the physical impact of future tephra fallout events for the Island of Vulcano, Italy. Bull Volcanol 78:1–22. https://doi.org/10.1007/s00445-016-1028-1

    Article  Google Scholar 

  • Biass S, Frischknecht C, Bonadonna C (2013) A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador—part II: vulnerability and risk assessment. Nat Hazards 65:497–521

    Article  Google Scholar 

  • Biass S, Scaini C, Bonadonna C et al (2014b) A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes—part 1: hazard assessment. Nat Hazards Earth Syst Sci 14:2265–2287. https://doi.org/10.5194/nhess-14-2265-2014

    Article  Google Scholar 

  • Bird D, Gisladottir G, Dominey-Howes D (2009) Resident perception of volcanic hazards and evacuation procedures. Nat Hazards Earth Syst Sci 9:251–266

    Article  Google Scholar 

  • Bird DK, Gísladóttir G (2012) Residents’ attitudes and behaviour before and after the 2010 Eyjafjallajökull eruptions—a case study from southern Iceland. Bull Volcanol 74:1263–1279. https://doi.org/10.1007/s00445-012-0595-z

    Article  Google Scholar 

  • Black BA, Manga M, Andrews B (2016) Ash production and dispersal from sustained low-intensity mono-Inyo eruptions. Bull Volcanol 78:1–13. https://doi.org/10.1007/s00445-016-1053-0

    Article  Google Scholar 

  • Blake DM, Wilson TM, Gomez C (2016) Road marking coverage by volcanic ash: an experimental approach. Environ Earth Sci 75:1348. https://doi.org/10.1007/s12665-016-6154-8

    Article  Google Scholar 

  • Blong RJ (1984) Volcanic hazards. A sourcebook on the effects of eruptions. Academic Press, Sydney

    Google Scholar 

  • Bonadonna C (2006) Probabilistic modelling of tephra dispersion. In: Mader HM, Coles SG, Connor CB, Connor LJ (eds) Statistics in volcanology. Geological Society of London, London, pp 243–259

    Google Scholar 

  • Bonadonna C, Biass S, Costa A (2015) Physical characterization of explosive volcanic eruptions based on tephra deposits: propagation of uncertainties and sensitivity analysis. J Volcanol Geotherm Res 296:80–100. https://doi.org/10.1016/j.jvolgeores.2015.03.009

    Article  Google Scholar 

  • Bonadonna C, Connor CB, Houghton BF, et al (2005) Probabilistic modeling of tephra dispersal: hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand. J Geophys Res 110:2156–2202

  • Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: A new simple strategy. Geology 40:415–418

  • Bonadonna C, Costa A (2013) Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. Bull Volcanol 75:1–19

    Google Scholar 

  • Bonadonna C, Cioni R, Pistolesi M, et al (2013) Determination of the largest clast sizes of tephra deposits for the characterization of explosive eruptions: a study of the IAVCEI commission on tephra hazard modelling. Bull Volcanol 75:1–15. https://doi.org/10.1007/s00445-012-0680-3

  • Bonadonna C, Genco R, Gouhier M et al (2011) Tephra sedimentation during the 2010 Eyjafjallajökull eruption (Iceland) from deposit, radar, and satellite observations. J Geophys Res 116:B12202

    Article  Google Scholar 

  • Bonadonna C, Houghton B (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456

    Article  Google Scholar 

  • Bonadonna C, Macedonio G, Sparks R (2002) Numerical modelling of tephra fallout associated with dome collapses and Vulcanian explosions: application to hazard assessment on Montserrat. In: Druitt T, Kokelaar B (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geological Society, London, pp 483–516

    Google Scholar 

  • Bonne K, Kervyn M, Cascone L et al (2008) A new approach to assess long-term lava flow hazard and risk using GIS and low-cost remote sensing: the case of Mount Cameroon, West Africa. Int J Remote Sens 29:6539–6564

    Article  Google Scholar 

  • Chester DK, Dibben CJ, Duncan AM (2002) Volcanic hazard assessment in western Europe. J Volcanol Geotherm Res 115:411–435. https://doi.org/10.1016/S0377-0273(02)00210-X

    Article  Google Scholar 

  • Commission for the 100-year Memorial of Sakurajima Taisho Eruption (2014) The 100-year memorial of Sakurajima Taisho eruption. Kagoshima

  • Connor LJ, Connor CB (2006) Inversion is the key to dispersion: understanding eruption dynamics by inverting tephra fallout. In: Mader HM, Coles SG, Connor CB, Connor LJ (eds) Statistics in volcanology. Geological Society of London, London, pp 231–242

    Google Scholar 

  • Craig H, Wilson T, Stewart C et al (2016a) Agricultural impact assessment and management after three widespread tephra falls in Patagonia, South America. Nat Hazards 82:1167–1229. https://doi.org/10.1007/s11069-016-2240-1

    Article  Google Scholar 

  • Craig H, Wilson T, Stewart C et al (2016b) Impacts to agriculture and critical infrastructure in Argentina after ashfall from the 2011 eruption of the Cordón Caulle volcanic complex: an assessment of published damage and function thresholds. J Appl Volcanol 5:7. https://doi.org/10.1186/s13617-016-0046-1

    Article  Google Scholar 

  • Cronin SJ, Stewart C, Zernack AV et al (2014) Volcanic ash leachate compositions and assessment of health and agricultural hazards from 2012 hydrothermal eruptions, Tongariro, New Zealand. J Volcanol Geotherm Res. https://doi.org/10.1016/j.jvolgeores.2014.07.002

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Degruyter W, Bonadonna C (2012) Improving on mass flow rate estimates of volcanic eruptions. Geophys Res Lett. https://doi.org/10.1029/2012GL052566

  • Deguchi K (1991) Development of a ventilation system against volcanic ash fall in Kagoshima. Energ Buildings 16:663–671. https://doi.org/10.1016/0378-7788(91)90035-2

    Article  Google Scholar 

  • Durand M, Gordon K, Johnston D, et al (2001) Impacts of, and responses to ashfall in Kagoshima from Sakurajima Volcano—lessons for New Zealand. Institute of Geological & Nuclear Sciences Science Report 2001/30, p 53

  • Elissondo M, Baumann V, Bonadonna C et al (2016) Chronology and impact of the 2011 Cordón Caulle eruption, Chile. Nat Hazards Earth Syst Sci 16:675–704. https://doi.org/10.5194/nhess-16-675-2016

    Article  Google Scholar 

  • Engwell SL, Aspinall WP, Sparks RSJ (2015) An objective method for the production of isopach maps and implications for the estimation of tephra deposit volumes and their uncertainties. Bull Volcanol 77:1–18. https://doi.org/10.1007/s00445-015-0942-y

    Article  Google Scholar 

  • Engwell SL, Sparks RSJ, Aspinall WP (2013) Quantifying uncertainties in the measurement of tephra fall thickness. J Appl Volcanol 2:1–12. https://doi.org/10.1186/2191-5040-2-5

    Article  Google Scholar 

  • Favalli M, Tarquini S, Papale P et al (2012) Lava flow hazard and risk at Mt. Cameroon volcano. Bull Volcanol 74:423–439. https://doi.org/10.1007/s00445-011-0540-6

    Article  Google Scholar 

  • Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54:156–167

    Article  Google Scholar 

  • Gregg C, Houghton B, Johnston D et al (2004) The perception of volcanic risk in Kona communities from Mauna Loa and Hualalai volcanoes, Hawai’i. J Volcanol Geotherm Res 130:179–196. https://doi.org/10.1016/S0377-0273(03)00288-9

    Article  Google Scholar 

  • GSI (2016) GSI. http://www.gsi.go.jp/ENGLISH/. Accessed 20 Feb 2017

  • Guffanti M, Mayberry GC, Casadevall TJ, Wunderman R (2009) Volcanic hazards to airports. Nat Hazards 51:287–302

    Article  Google Scholar 

  • Hampton SJ, Cole JW, Wilson G et al (2015) Volcanic ashfall accumulation and loading on gutters and pitched roofs from laboratory empirical experiments: implications for risk assessment. J Volcanol Geotherm Res 304:237–252. https://doi.org/10.1016/j.jvolgeores.2015.08.012

    Article  Google Scholar 

  • Hayes J, Wilson TM, Deligne NI et al (2017) A model to assess tephra clean-up requirements in urban environments. J Appl Volcanol 6:1. https://doi.org/10.1186/s13617-016-0052-3

    Article  Google Scholar 

  • Hayes JL, Wilson TM, Magill C (2015) Tephra fall clean-up in urban environments. J Volcanol Geotherm Res 304:359–377. https://doi.org/10.1016/j.jvolgeores.2015.09.014

    Article  Google Scholar 

  • Hickey J, Gottsmann J, Nakamichi H, Iguchi M (2016) Thermomechanical controls on magma supply and volcanic deformation: application to Aira caldera, Japan. Sci Rep 6:32691

  • Hincks TK, Komorowski J-C, Sparks SR, Aspinall WP (2014) Retrospective analysis of uncertain eruption precursors at La Soufrière volcano, Guadeloupe, 1975–77: volcanic hazard assessment using a Bayesian belief network approach. J Appl Volcanol 3:3. https://doi.org/10.1186/2191-5040-3-3

    Article  Google Scholar 

  • Igushi M (2013) A precursory process of the 1914 eruption of the Sakurajima volcano inferred from experience of residents. In: IAVCEI 2013 Scientific assembly. Kagoshima

  • Inman DL (1952) Measures for describing the size distribution of sediments. J Sediment Res 22:125–145

    Google Scholar 

  • Jenkins SF, Barsotti S, Hincks TK et al (2015a) Rapid emergency assessment of ash and gas hazard for future eruptions at Santorini Volcano, Greece. J Appl Volcanol 4:1–22. https://doi.org/10.1186/s13617-015-0033-y

    Article  Google Scholar 

  • Jenkins SF, Spence RJS, Fonseca JFBD et al (2014a) Volcanic risk assessment: quantifying physical vulnerability in the built environment. J Volcanol Geotherm Res 276:105–120. https://doi.org/10.1016/j.jvolgeores.2014.03.002

    Article  Google Scholar 

  • Jenkins SF, Wilson TM, Magill C, et al (2014b) Volcanic ash fall hazard and risk: technical background paper for the UN-ISDR 2015 global assessment report on disaster risk reduction

  • Jenkins SF, Wilson TM, Magill C et al (2015b) Volcanic ash fall hazard and risk. In: Loughlin S, Sparks S, Brown S et al (eds) Global Volcanic Hazards and Risk. Cambridge University Press, Cambridge, pp 173–222

    Chapter  Google Scholar 

  • Johnston DM, Houghton BF, Neall VE et al (2000) Impacts of the 1945 and 1995-1996 Ruapehu eruptions, New Zealand: an example of increasing societal vulnerability. Geol Soc Am Bull 112:720–726

    Article  Google Scholar 

  • Kagoshima City (2010) Sakurajima Volcano Hazard Map http://www.city.kagoshima.lg.jp/soumu/shichoshitu/kokusai/en/emergency/sakurajima.html. Accessed 21 Feb 2017

  • Klawonn M, Houghton B, Swanson D et al (2014) From field data to volumes: constraining uncertainties in pyroclastic eruption parameters. Bull Volcanol 76:1–16. https://doi.org/10.1007/s00445-014-0839-1

    Google Scholar 

  • Kobayashi T, Miki D, Sasaki H, et al (2013) Geological map of Sakurajima Volcano, 2nd edn

  • Kobayashi T, Tameike T (2002) History of eruptions and volcanic damage from Sakurajima volcano, southern Kyushu, Japan. Quat Res 41:269–278

    Article  Google Scholar 

  • Kotô B (1916) The Great Eruption of Sakura-Jima in 1914. J Coll Sci Tokyo Imp Univ Japan 38:1–334

    Google Scholar 

  • Macedonio G, Costa A, Folch A (2008) Ash fallout scenarios at Vesuvius: numerical simulations and implications for hazard assessment. J Volcanol Geotherm Res 178:366–377. https://doi.org/10.1016/j.jvolgeores.2008.08.014

    Article  Google Scholar 

  • Machida H (2002) Volcanoes and tephras in the Japan area. Glob Environ Res 6:19–28

    Google Scholar 

  • Maeno F, Nagai M, Nakada S et al (2014) Constraining tephra dispersion and deposition from three subplinian explosions in 2011 at Shinmoedake volcano, Kyushu, Japan. Bull Volcanol 76:1–16. https://doi.org/10.1007/s00445-014-0823-9

    Article  Google Scholar 

  • Magill C, Wilson T, Okada T (2013) Observations of tephra fall impacts from the 2011 Shinmoedake eruption, Japan. Earth Planets Space 65:677–698. https://doi.org/10.5047/eps.2013.05.010

    Article  Google Scholar 

  • Marrero JM, Garcia A, Llinares A et al (2010) The Variable Scale Evacuation Model (VSEM): a new tool for simulating massive evacuation processes during volcanic crises. Nat Hazards Earth Syst Sci 10:747–760

    Article  Google Scholar 

  • Marti J, Spence R, Calogero E et al (2008) Estimating building exposure and impact to volcanic hazards in Icod de los Vinos, Tenerife (Canary Islands). J Volcanol Geotherm Res 178:553–561

    Article  Google Scholar 

  • Marzocchi W, Newhall C, Woo G (2012) The scientific management of volcanic crises. J Volcanol Geotherm Res 247–248:181–189. https://doi.org/10.1016/j.jvolgeores.2012.08.016

    Article  Google Scholar 

  • McDonald GW, Smith NJ, Kim J et al (2017) The spatial and temporal “cost” of volcanic eruptions: assessing economic impact, business inoperability, and spatial distribution of risk in the Auckland region, New Zealand. Bull Volcanol 79:48. https://doi.org/10.1007/s00445-017-1133-9

    Article  Google Scholar 

  • Meier P (2012) Crisis mapping in action: how open source software and global volunteer networks are changing the world, one map at a time. J Map Geogr Libr 8:89–100. https://doi.org/10.1080/15420353.2012.663739

    Article  Google Scholar 

  • Metzger P, D’Ercole R, Sierra A (1999) Political and scientific uncertainties in volcanic risk management: the yellow alert in Quito in October 1998. GeoJournal 49:213–221

    Article  Google Scholar 

  • Ministry of Agriculture Forestry and Fishery (2010) Report on results of 2010 World Census of Agriculture and Forestry in Japan http://www.maff.go.jp/e/data/stat/index.html. Accessed 1 Dec 2016

  • Miyabuchi Y, Hanada D, Niimi H, Kobayashi T (2013) Stratigraphy, grain-size and component characteristics of the 2011 Shinmoedake eruption deposits, Kirishima Volcano, Japan. J Volcanol Geotherm Res 258:31–46. https://doi.org/10.1016/j.jvolgeores.2013.03.027

    Article  Google Scholar 

  • Newhall CG, Self S (1982) The volcanic explosivity index (VEI)—an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238

    Article  Google Scholar 

  • Omori F (1914) The Sakura-Jima eruptions and earthquakes. Bull Imp Earthq Investig Comm 8:1–630

    Google Scholar 

  • OpenFlights.org (2016) OpenFlights.org. http://openflights.org. Accessed 20 Feb 2017

  • Ort MH, Elson MD, Anderson KC et al (2008) Effects of scoria-cone eruptions upon nearby human communities. Geol Soc Am Bull 120:476–486. https://doi.org/10.1130/B26061.1

    Article  Google Scholar 

  • OSM (2016) Open Street Map. http://www.openstreetmap.org/. Accessed 20 Feb 2017

  • Oze C, Cole J, Scott A et al (2014) Corrosion of metal roof materials related to volcanic ash interactions. Nat Hazards 71:785–802. https://doi.org/10.1007/s11069-013-0943-0

    Article  Google Scholar 

  • Pomonis A, Spence R, Baxter P (1999) Risk assessment of residential buildings for an eruption of Furnas Volcano, Sao Miguel, the Azores. J Volcanol Geotherm Res 92:107–131

    Article  Google Scholar 

  • Pyle D (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15

  • QGIS Development Team (2016) QGIS Geographic Information System

  • Renschler CS (2005) Scales and uncertainties in using models and GIS for volcano hazard prediction. J Volcanol Geotherm Res 139:73–87. https://doi.org/10.1016/j.jvolgeores.2004.06.016

    Article  Google Scholar 

  • Sabo and Landslide Technical Center (2007) Sakurajima wide-area disaster prevention map. http://www.qsr.mlit.go.jp/osumi/files/Content/234/pdf/150424_bousai_map.pdf. Accessed 21 Feb 2017

  • Sandri L, Costa A, Selva J et al (2016) Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes. Sci Rep 6:24271

    Article  Google Scholar 

  • Scaini C, Biass S, Galderisi A et al (2014) A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes—part 2: vulnerability and impact. Nat Hazards Earth Syst Sci 14:2289–2312. https://doi.org/10.5194/nhess-14-2289-2014

    Article  Google Scholar 

  • Scaini C, Folch A, Navarro M (2012) Tephra hazard assessment at Concepción Volcano, Nicaragua. J Volcanol Geotherm Res 219--220:41–51

  • Scollo S, Tarantola S, Bonadonna C et al (2008) Sensitivity analysis and uncertainty estimation for tephra dispersal models. J Geophys Res Solid Earth 113:B06202

    Article  Google Scholar 

  • Selva J, Costa A, Marzocchi W, Sandri L (2010) BET_VH: exploring the influence of natural uncertainties on long-term hazard from tephra fallout at Campi Flegrei (Italy). Bull Volcanol 72:717–733

    Article  Google Scholar 

  • Sheldrake T, Caricchi L (2016) Regional variability in the frequency and magnitude of large explosive volcanic eruptions. Geology. https://doi.org/10.1130/G38372.1

  • Spence RJS, Kelman I, Baxter PJ et al (2005) Residential building and occupant vulnerability to tephra fall. Nat Hazards Earth Syst Sci 5:477–494

    Article  Google Scholar 

  • Stewart C, Craig HM, Gaw S et al (2016) Fate and agricultural consequences of leachable elements added to the environment from the 2011 Cordón Caulle tephra fall. J Volcanol Geotherm Res. https://doi.org/10.1016/j.jvolgeores.2016.09.017

  • Sword-Daniels V, Wilson TM, Sargeant S et al (2014) Chapter 26 consequences of long-term volcanic activity for essential services in Montserrat: challenges, adaptations and resilience. Geol Soc London, Mem 39:471–488

    Article  Google Scholar 

  • Tajima Y, Tamura K, Yamakoshi T et al (2013) Ellipse-approximated isopach maps for estimating ashfall volume at Sakurajima Volcano. Bull Volc Soc Japan 58:291–306

    Google Scholar 

  • Thompson MA, Lindsay JM, Wilson TM et al (2016) Quantifying risk to agriculture from volcanic ashfall: a case study from the Bay of Plenty, New Zealand. Nat Hazards 86:31–56. https://doi.org/10.1007/s11069-016-2672-7

    Article  Google Scholar 

  • Todde A (2016) The Plinian activity of Sakurajima volcano (Japan) in the last six centuries: stratigraphy and dynamics of Bunmei, Anei and Taisho eruptions. Universita degli studi Firenze

  • Todde, R. Cioni, M. Pistolesi, N. Geshi, C. Bonadonna (2017) The 1914 Taisho eruption of Sakurajima volcano: stratigraphy and dynamics of the largest explosive event in Japan during the twentieth century. Bull Volcanol. https://doi.org/10.1007/s00445-017-1154-4

  • United Nations Statistics Division (2005) Demographic yearbook. http://unstats.un.org/unsd/demographic/products/dyb/dyb2005.htm

  • Volentik ACM, Bonadonna C, Connor CB et al (2010) Modeling tephra dispersal in absence of wind: insights from the climactic phase of the 2450BP Plinian eruption of Pululagua volcano (Ecuador). J Volcanol Geotherm Res 193:117–136. https://doi.org/10.1016/j.jvolgeores.2010.03.011

    Article  Google Scholar 

  • Volentik ACM, Connor CB, Connor LJ, Bonadonna C (2009) Aspects of volcanic hazards assessment for the Bataan nuclear power plant, Luzon Peninsula, Philippines. In: Connor C, Chapman NA, Connor L (eds) Volcanic and tectonic hazard assessment for nuclear facilities. Cambridge University Press, Cambridge

    Google Scholar 

  • Volentik AM, Houghton B (2015) Tephra fallout hazards at Quito International Airport (Ecuador). Bull Volcanol 77:1–14. https://doi.org/10.1007/s00445-015-0923-1

    Article  Google Scholar 

  • Wardman J, Wilson T, Bodger P, et al (2012) Investigating the electrical conductivity of volcanic ash and its effect on HV power systems. Phys Chem Earth, Parts A/B/C 45--46:128–145

  • Wilson G, Wilson T, Cole J, Oze C (2012b) Vulnerability of laptop computers to volcanic ash and gas. Nat Hazards 63:711–736. https://doi.org/10.1007/s11069-012-0176-7

    Article  Google Scholar 

  • Wilson G, Wilson TM, Deligne NI, Cole JW (2014) Volcanic hazard impacts to critical infrastructure: a review. J Volcanol Geotherm Res 286:148–182. https://doi.org/10.1016/j.jvolgeores.2014.08.030

    Article  Google Scholar 

  • Wilson T, Cole J, Cronin S, Stewart C (2011a) Impacts on agriculture following the 1991 eruption of Vulcan Hudson, Patagonia: lessons for recovery. Nat Hazards 57:185–212

    Article  Google Scholar 

  • Wilson T, Stewart C, Bickerton H, et al (2013) Impacts of the June 2011 Puyehue-Cordón Caulle volcanic complex eruption on urban infrastructure, agriculture and public health

  • Wilson T, Stewart C, Sword-Daniels V, et al (2012a) Volcanic ash impacts on critical infrastructure. Phys Chem Earth, Parts A/B/C 45--46:5–23

  • Wilson TM, Cole JW, Stewart C et al (2011b) Ash storms: impacts of wind-remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile. Bull Volcanol 73:223–239

    Article  Google Scholar 

  • Yasui M, Takahashi M, Shimada J et al (2013) Comparative study of proximal eruptive events in the large-scale eruption of Sakurajima: An-ei eruption vs. Taisho eruption. Bull Volcanol Soc Japan 58:59–76

    Google Scholar 

  • Yokoama I (1997) An interpretation of the 1914 eruption of Sakurajima volcano. Proc Japan Acad Ser B 73:53–58. https://doi.org/10.2183/pjab.73.53

    Article  Google Scholar 

  • Zook M, Graham M, Shelton T, Gorman S (2010) Volunteered geographic information and crowdsourcing disaster relief: a case study of the Haitian earthquake. World Med Heal Policy 2:7–33. https://doi.org/10.2202/1948-4682.1069

    Google Scholar 

  • Zorn E, Walter TR (2016) Influence of volcanic tephra on photovoltaic (PV)-modules: an experimental study with application to the 2010 Eyjafjallajökull eruption, Iceland. J Appl Volcanol 5:2. https://doi.org/10.1186/s13617-015-0041-y

    Article  Google Scholar 

  • Zuccaro G, De Gregorio D, Baxter P (2015) Human and structural vulnerability to volcanic processes. In: Papale P (ed) Volcanic hazards, risks, and disasters. Elsevier Inc., pp 261–288

Download references

Acknowledgements

All authors are grateful to B.F. Houghton for allowing the completion of this project, to C. Magill for her assistance with various datasets, and to Executive Editor Andy Harris, Editor Laura Sandri, and three anonymous reviewers who greatly contributed to improving this manuscript. Landsat data were accessed through the USGS Global Visualization Viewer.

Funding

S. Biass was supported by the Friedlander foundation and benefited from the additional support of the NSF EAR-1427357 grant. C. Bonadonna was supported by the Swiss National Science Foundation grant no. 200021_156255. R. Cioni and M. Pistolesi benefited from the support of funds from M. Ripepe, who is greatly thanked. A. Todde was partially funded by PIA funds from the Earth Science Dept. of the University of Florence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Biass.

Additional information

Editorial responsibility: L. Sandri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biass, S., Todde, A., Cioni, R. et al. Potential impacts of tephra fallout from a large-scale explosive eruption at Sakurajima volcano, Japan. Bull Volcanol 79, 73 (2017). https://doi.org/10.1007/s00445-017-1153-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-017-1153-5

Keywords

Navigation