Skip to main content

Advertisement

Log in

The immediate environmental effects of tephra emission

  • Review Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The Earth’s history is punctuated by large explosive eruptions that eject large quantities of magma and silicate rock fragments into the atmosphere. These tephra particles can sometimes be dispersed across millions of square kilometres or even entire continents. The interaction of tephra with or in receiving environments may induce an array of physical, chemical and biological effects. The consequences for affected systems and any dependent communities may be chronic and localised in the event of frequent, small eruptions, while larger and rarer events may have acute, regional-scale impacts. It is, therefore, necessary to document the range of possible impacts that tephra may induce in receiving environments and any resulting effects in interconnected systems. We collate results from many studies to offer a detailed multidisciplinary and interdisciplinary review of the immediate post-eruptive effects of tephra emission into the atmosphere, onto vegetation, soil or ice/snow surfaces and in aquatic systems. We further consider the repercussions that may be induced in the weeks to years afterwards. In the atmosphere, tephra can influence cloud properties and air chemistry by acting as ice nuclei (IN) or by offering sites for heterogeneous reactions, respectively. Tephra on vegetation causes physical damage, and sustained coverage may elicit longer-term physiological responses. Tephra deposits on soils may alter their capacity to exchange gas, water and heat with the atmosphere or may have a specific chemical effect, such as nutrient input or acidification, on sensitive soils. Tephra deposition onto snow or ice may affect ablation rates. Rivers and lakes may experience turbidity increases and changes in their morphology as a result of fallout and prolonged (months or years) erosion from the tephra-covered catchment. In the first weeks after deposition, tephra leaching may affect river chemistry. The abundance and speciation of phytoplankton populations in lakes may be altered by tephra-induced changes in water chemistry or sediment–water nutrient cycling. In the oceans, tephra deposition may fertilise Fe-limited waters, with potential impacts on the global carbon cycle. Embracing the full complexity of environmental effects caused by tephra fall demands a renewed investigative effort drawing on interdisciplinary field and laboratory studies, combined with consideration of the interconnectivity of induced impacts within and between different receiving environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. For eruption details (i.e. date, position, volume of erupted magma), see Fig. 2, cross-referencing the uppercase superscript letter with those listed in the diagram and caption.

References

  • Abella S (1988) The effect of the Mt. Mazama ashfall on the planktonic diatom community of Lake Washington. Limnol Oceanogr 33(6):1367–1385

    Google Scholar 

  • Adams CM, Hutchinson TC (1987) Comparative abilities of leaf surfaces to neutralise acidic raindrops. II. The influence of leaf wettability, leaf age and rain duration on changes in droplet pH and chemistry on leaf surface. New Phytol 106(3):437–456

    Google Scholar 

  • Alfano F, Bonadonna C, Delmelle P, Costantini L (2011) Insights on tephra settling velocity from morphological observations. J Volcanol Geotherm Res 208:86–98

    Google Scholar 

  • Anderson T (1908) Report on the eruptions of the Soufriere in St. Vincent in 1902, and on a visit to Montagne Pelee in Martinique. Part II. The changes in the districts and the subsequent history of the volcanoes. Proc R Soc Lond A 208:278–303

    Google Scholar 

  • Antos JA, Zobel DB (1982) Snowpack modification of volcanic tephra effects on forest understory plants near Mount St. Helens. Ecology 63(6):1969–1972

    Google Scholar 

  • Antos JA, Zobel DB (1985a) Recovery of forest under-stories buried by tephra from Mount St. Helens. Vegetatio 64(2–3):103–111

    Google Scholar 

  • Antos JA, Zobel DB (1985b) Upward movement of underground plant parts into deposits of tephra from Mount St. Helens. Can J Bot 63(12):2091–2096

    Google Scholar 

  • Antos JA, Zobel DB (1985c) Plant form, developmental plasticity, and survival following burial by volcanic tephra. Can J Bot 63(12):2083–2090

    Google Scholar 

  • Antos JA, Zobel DB (1987) How plants survive burial: a review and initial responses to tephra from Mount St. Helens. In: Bilderback DE (ed) Mount St. Helens 1980: botanical consequences of the explosive eruptions. University of California Press, Berkeley, pp 246–261

    Google Scholar 

  • Antos JA, Zobel DB (2005) Plant responses in forests of the tephra-fall zone. In: Dale VH, Swanson FJ, Crisafulli CM (eds) Ecological responses to the 1980 eruption of Mount St. Helens. Springer, New York, pp 47–58

    Google Scholar 

  • Armienta MA, Cruz-Renya SDI, Morton O, Cruz O, Ceniceros N (2002) Chemical variations of tephra-fall deposit leachates for three eruptions from Popocatepetl volcano. J Volcanol Geotherm Res 113(1–2):61–80

    Google Scholar 

  • Armienta MA, De la Cruz-Reyna M, Cruz O, Ceniceros N, Aguayo A, Marin M (2011) Fluoride in ash leachates: environmental implications at Popocatépetl volcano, central Mexico. Nat Hazards Earth Syst Sci 11:1949–1956

    Google Scholar 

  • Armienta MA, Martin-Del-Pozzo AL, Espinasa R, Cruz O, Ceniceros N, Aguayo A, Butron MA (1998) Geochemistry of ash leachates during the 1994–1996 activity of Popocatépetl volcano. Appl Geochem 13(7):841–850

    Google Scholar 

  • Araya O, Wittwer F, Villa A, Ducom C (1990) Bovine fluorosis following volcanic activity in the southern Andes. Vet Rec 126(26):641–642

    Google Scholar 

  • Ayris PM, Delmelle P (2012) Volcanic and atmospheric controls on ash iron solubility: a review. Phy Chem Earth A B C. doi:10.1016/j.pce.2011.1004.1013

  • Bains S, Norris RD, Corfield RM, Faul KL (2000) Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature 407:171–174

    Google Scholar 

  • Baker AJM (1987) Metal tolerance. New Phytol 106(1):93–111

    Google Scholar 

  • Barker P, Telford R, Merdaci O, Williamson D, Taieb M, Vincens A, Gibert E (2000) The sensitivity of a Tanzanian crater lake to catastrophic tephra input and four millenia of climate change. Holocene 10(3):301–310

    Google Scholar 

  • Bay RC, Bramall N, Price PB (2004) Bipolar correlation of volcanism with millennial climate change. Proc Natl Acad Sci U S A 101(17):6341–6345

    Google Scholar 

  • Benn DI, Evans DJA (2010) Glaciers and glaciation. Arnold, London, p 816

    Google Scholar 

  • Bingemer H, Klein H, Ebert M, Haunold W, Bundke U, Herrmann T, Kandler K, Müller-Ebert D, Weinbruch S, Judt A, Ardon-Dryer K, Levin Z, Curtius J (2011) Atmospheric ice nuclei in the Eyjafjallajökull volcanic ash plume. Atmos Chem Phys Discuss 11(1):2733–2748

    Google Scholar 

  • Biondi F, Estrada IG, Gavilanes Ruiz JC, Torres AE (2003) Tree growth response to the 1913 eruption of Volcán de Fuego de Colima, Mexico. Quat Res 59(3):293–299

    Google Scholar 

  • Black RA, Mack RN (1984) A seasonal leaf abscission in Populus induced by volcanic ash. Oecologia 64(3):295–299

    Google Scholar 

  • Black RA, Mack RN (1986) Mount St. Helens ash: recreating its effects on the steppe environment and ecophysiology. Ecology 67(5):1289–1302

    Google Scholar 

  • Blackford JJ, Edwards KJ, Dugmore AJ, Cook GT, Buckland PC (1992) Icelandic volcanic ash and the mid-Holocene Scots pine (Pinus sylvestris) pollen decline in northern Scotland. Holocene 2(3):260–265

    Google Scholar 

  • Bonadonna C, Ernst GGJ, Sparks RSJ (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81(3–4):173–187

    Google Scholar 

  • Bonadonna C, Phillips JC (2003) Sedimentation from strong volcanic plumes. J Geophys Res 108. doi:10.1029/2002JB002034,2003

  • Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67(5):441–456

    Google Scholar 

  • Bourne HL (2011) Linkages between climate change, volcanism, and diatom productivity over the past 13,000 years in Swiftcurrent Lake, Glacier National Park, Montana. Honors Theses—All. Paper 639, Wesleyan University, Middletown

  • Brady PV, Walther JV (1992) Surface chemistry and silicate dissolution at elevated temperatures. Am J Sci 292(9):639–658

    Google Scholar 

  • Braen S, Weinstein L (1985) Uptake of fluoride and aluminum by plants grown in contaminated soils. Water Air Soil Pollut 24(2):215–223

    Google Scholar 

  • Brand LE, Sunda WG, Guillard RRL (1983) Limitation of marine phytoplankton reproductive rates by zinc, manganese, and iron. Limnol Oceanogr 28(6):1182–1198

    Google Scholar 

  • Brand LE, Sunda WG, Guillard RRL (1986) Reduction of marine phytoplankton reproduction rates by copper and cadmium. J Exp Mar Biol Ecol 96(3):225–250

    Google Scholar 

  • Brock B, Rivera A, Casassa G, Bown F, Acuñn C (2007) The surface energy balance of an active ice-covered volcano: Villarrica Volcano, southern Chile. Ann Glaciol 45(1):104–114

    Google Scholar 

  • Brown RJ, Bonadonna C, Durant AJ (2012) A review of volcanic ash aggregation. Phys Chem Earth A B C. doi:10.1016/j.pce.2011.11.001

  • Bruland KW, Donat JR, Hutchins DA (1991) Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol Oceanogr 36(8):1555–1577

    Google Scholar 

  • Burnham RJ (1993) Plant deposition in modern volcanic environments. Transactions of the Royal Society of Edinburgh Earth Sci 84(3–4):275–281

    Google Scholar 

  • Burns RG (1970) Mineralogical applications of crystal field theory. Cambridge University Press, Cambridge, p 551

    Google Scholar 

  • Calkins JA, Nattrass C, Harris E, Detienne M, Myers N, Van den Berg L, Delmelle P (2011) Impacts of ash deposition on soils following the 2010 eruption of Eyjafjallajökull volcano, Iceland. Geophysical Research Abstracts: EGU2011-11112

  • Carey S (1997) Influence of convective sedimentation on the formation of widespread tephra fall layers in the deep sea. Geology 25(9):839–842

    Google Scholar 

  • Carey S, Sigurdsson H (1982) Influence of particle aggregation on deposition of distal tephra from the May 18, 1980 eruption of Mount St. Helens volcano. J Geophys Res 87(B8):7061–7072

    Google Scholar 

  • Cashman KV, Sturtevant B, Papale P, Navon O (2000) Magmatic fragmentation. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, London, pp 421–430

    Google Scholar 

  • Cather SM, Dunbar NW, McDowell FW, McIntosh WC, Scholle PA (2009) Climate forcing by iron fertilization from repeated ignimbrite eruptions: the icehouse–silicic large igneous province (SLIP) hypothesis. Geosphere 5(3):315–324

    Google Scholar 

  • Cimino G, Toscano G (1998) Dissolution of trace metals from lava ash: influence on the composition of rainwater in the Mount Etna volcanic area. Environ Pollut 99:389–393

    Google Scholar 

  • Chakraborty P, Raghunadh Babu PV, Acharyya T, Bandyopadhyay D (2010) Stress and toxicity of biologically important transition metals (Co, Ni, Cu and Zn) on phytoplankton in a tropical freshwater system: an investigation with pigment analysis by HPLC. Chemosphere 80(5):548–553

    Google Scholar 

  • Chen H, Navea JG, Young MA, Grassian VH (2011) Heterogeneous photochemistry of trace atmospheric gases with components of mineral dust aerosol. J Phys Chem A 115(4):490–499

    Google Scholar 

  • Chinen T (1986) Surface erosion associated with tephra deposition on Mt. Usu and other volcanoes. Environmental Science, Hokkaido: J Grad Sch Environ Sci Hokkaido Univ Sapporo 9(1):137–149

    Google Scholar 

  • Christenson B (2000) Geochemistry of fluids associated with the 1995–1996 eruption of Mt. Ruapehu, New Zealand: signatures and processes in the magmatic–hydrothermal system. J Volcanol Geotherm Res 97(1–4):1–30

    Google Scholar 

  • Cienfuegos MS, Beltrano J (1995) Las cenizas del Volcan Hudson como sustrato para el cultivo de plantas. In: Bitschene PR, Menida J (eds) The August 1991 eruption of the Hudson Volcano (Patagonian Andes): a thousand days after. Cuvillier, Gottingen, pp 65–69

    Google Scholar 

  • Collins BD, Dunne T (1986) Erosion of tephra from the 1980 eruption of Mount St. Helens. Geol Soc Am Bull 97(7):896–905

    Google Scholar 

  • Collinson JD, Thompson DB (1989) Sedimentary structures. Unwin Hyman Ltd, London, p 207

    Google Scholar 

  • Colton HS (1965) Experiments in raising corn in the Sunset Crater ashfall area east of Flagstaff, Arizona. Plateau 37:77–79

    Google Scholar 

  • Conway HA, Gades A, Raymond CF (1996) The brightening of dirty snow. Water Resour Res 32(6):1713–1718

    Google Scholar 

  • Cook RJ, Barron JC, Papendick RI, Williams GJ III (1981) Impact on agriculture of the Mt. St. Helens eruptions. Science 211(4477):16–22

    Google Scholar 

  • Cronin SJ, Hedley MJ, Neall VE, Smith RG (1998) Agronomic impact of tephra fallout from the 1995 and 1996 Ruapehu volcano eruptions, New Zealand. Environ Geol 34(1):21–30

    Google Scholar 

  • Cronin SJ, Manoharan V, Hedley MJ, Loganathan P (2000) Fluoride: a review of its fate, bioavailability and risks of fluorosis in grazed-pasture systems in New Zealand. N Z J Agric Res 43:295–321

    Google Scholar 

  • Cronin SJ, Neall VE, Lecointre JA, Hedley MJ, Loganathan P (2003) Environmental hazards of fluoride in volcanic ash: a case study from Ruapehu volcano, New Zealand. J Volcanol Geotherm Res 121(3–4):271–291

    Google Scholar 

  • Crowley SS, Dufek DA, Stanton RW, Ryer TA (1994) The effects of volcanic ash disturbances on a peat-forming environment: environmental disruption and taphonomic consequences. Palaios 9(2):158–174

    Google Scholar 

  • Cushing CE, Smith SD (1982) Effects of Mount St. Helens ashfall on lotic algae and caddislies. J Freshw Ecol 1(5):527–538

    Google Scholar 

  • Cwiertny DM, Young MA, Grassian VH (2008) Chemistry and photochemistry of mineral dust aerosol. Annu Rev Phys Chem 59:27–51

    Google Scholar 

  • Dahlgren RA (2008) Acid deposition effects on soils. In: Chesworth W (ed) Encyclopedia of soil science. Springer, Dordrecht, pp 2–7

    Google Scholar 

  • Dahlgren RA, Ugolini FC (1989) Aluminum fractionation of soil solutions from unperturbed and tephra-treated spodosols, cascade range, Washington, USA. Soil Sci Soc Am J 53:559–566

    Google Scholar 

  • Dahlgren RA, Ugolini FC, Casey WH (1999) Field weathering rates of Mt. St. Helens tephra. Geochim Cosmochim Acta 63(5):587–598

    Google Scholar 

  • Dale VH, Swanson FJ, Crisafulli CM (2005) Ecological responses to the 1980 eruption of Mount St. Helens. Springer, New York, p 342

    Google Scholar 

  • Dartevelle S, Ernst GGJ, Stix J, Bernard ET (2002) Origin of the Mount Pinatubo climactic eruption cloud: implications for volcanic hazards and atmospheric impacts. Geology 30(7):663–666

    Google Scholar 

  • de Hoog JCM, Koetsier GW, Bronto S, Sriwana T, van Bergen MJ (2001) Sulfur and chlorine degassing from primitive arc magmas: temporal changes during the 1982–1983 eruptions of Galunggung (West Java, Indonesia). J Volcanol Geotherm Res 108(1):55–83

    Google Scholar 

  • de Moor JM, Fischer TP, Hilton DR, Hauri E, Jaffe LA (2005) Degassing at Anatahan volcano during the May 2003 eruption: implications from petrology, ash leachates, and SO2 emissions. J Volcanol Geotherm Res 146(1–3):117–138

    Google Scholar 

  • Delfosse T, Delmelle P, Iserentant A, Delvaux B (2005) Contribution of SO3 to the acid neutralizing capacity of Andosols exposed to strong volcanogenic acid and SO2 deposition. Eur J Soil Sci 56(1):113–125

    Google Scholar 

  • Delmelle P, Lambert M, Dufrêne Y, Gerin P, Óskarsson N (2007) Gas/aerosol–ash interaction in volcanic plumes: new insights from surface analysis of fine volcanic ash. Earth Planet Sci Lett 259(1–2):159–170

    Google Scholar 

  • Delmelle P, Villiéras F, Pelletier M (2005) Surface area, porosity and water adsorption properties of fine volcanic ash particles. Bull Volcanol 67(2):160–169

    Google Scholar 

  • De Vleeschouwer F, van Vliët-Lanoé B, Fagel N (2008) Long-term mobilisation of chemical elements in tephra-rich peat (NE Iceland). Appl Geochem 23(12):3819–3839

    Google Scholar 

  • Diaz F, Jiménez C, Tejedor M (2005) Influence of the thickness and grain size of tephra mulch on soil water evaporation. Agric Water Manag 74(1):47–55

    Google Scholar 

  • Dingwell DB (1996) Volcanic dilemma: flow or blow? Science 273:1054–1055

    Google Scholar 

  • Dingwell DB (2012) Volcanic ash: a primary agent in the Earth system. Phys Chem Earth A B C. doi:10.1016/j.pce.2011.07.007

  • Dise NB, Verry ES (2001) Suppression of peatland methane emission by cumulative sulfate deposition in simulated acid rain. Biogeochemistry 53(2):143–160

    Google Scholar 

  • Driedger CL (1981) Effect of ash thickness on snow ablation. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington: USGS professional paper 1250. USGS, Washington DC, pp 757–760

    Google Scholar 

  • Duggen S, Croot P, Schacht U, Hoffman L (2007) Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: evidence from biogeochemical experiments and satellite data. Geophys Res Lett 34(L01612). doi:10.1029/2006GL027522

  • Duggen S, Olgun N, Croot P, Hoffman L, Dietze H, Teschner C (2010) The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review. Biogeosciences Discussions 6:6441–6489

    Google Scholar 

  • Dunbar NW, McIntosh WC, Esser RP (2008) Physical setting and tephrochronology of the summit caldera ice record at Mount Moulton, West Antarctica. Geol Soc Am Bull 120(7–8):796–812

    Google Scholar 

  • Durant AJ, Shaw RA, Rose WI, Mi Y, Ernst GGJ (2008) Ice nucleation and overseeding of ice in volcanic clouds. J Geophys Res 113(D09206). doi:10.1029/2007JD009064

  • Durant AJ, Villarosa G, Rose WI, Delmelle P, Prata AJ, Viramonte JG (2012) Long-range volcanic ash transport and fallout during the 2008 eruption of Chaitén volcano, Chile. Phys Chem Earth A B C. doi:10.1016/j.pce.2011.09.004

  • Dwyer RB, Mitchell FJG (1997) Investigation of the environmental impact of remote volcanic activity on north Mayo, Ireland, during the mid-Holocene. Holocene 7(1):113–118

    Google Scholar 

  • Edmonds M, Oppenheimer C, Pyle DM, Herd RA (2003) Rainwater and ash leachate analysis as proxies for plume chemistry at Soufriere Hills Volcano, Montserrat. Geol Soc Spec Publ 213:203–218

    Google Scholar 

  • Edwards JS (2005) Animals and volcanoes: survival and revival. In: Marti J, Ernst GGJ (eds) Volcanoes and the environment. Cambridge University Press, Cambridge, pp 250–272

    Google Scholar 

  • Edwards KJ, Craigie R (1998) Palynological and vegetational changes associated with the deposition of Saksunarvatn Ash in the Faroe Islands. Fróðskaparrit 46:245–258

    Google Scholar 

  • Edwards KJ, Dugmore AJ, Blackford JJ (2004) Vegetational response to tephra deposition and land-use change in Iceland: a modern analogue and multiple working hypothesis approach to tephropalynology. Polar Rec 40(213):113–120

    Google Scholar 

  • Eggler WA (1948) Plant communities in the vicinity of the volcano El Paricutin, Mexico, after two and a half years of eruption. Ecology 29(4):415–436

    Google Scholar 

  • Eicher GJ, Rounsefell GA (1957) Effects of lake fertilization by volcanic activity on abundance of salmon. Limnol Oceanogr 2(2):70–76

    Google Scholar 

  • El-Swaify SA, Dangler EW, Armstrong CL (1982) Soil erosion by water in the tropics. In: College of Tropical Agriculture and Human Resources, University of Hawaii Research Extension Series 024, Honolulu, p 172

  • Elliot LF, Tittemore D, Papendick RI, Cochran VI, Bezdicek DF (1982) The effect of Mount Saint Helens ash on soil microbial respiration and numbers. J Environ Qual 11(2):164–166

    Google Scholar 

  • Fasham MJR (2003) Ocean biogeochemistry: the role of the ocean carbon cycle in global change. Springer, Berlin, p 297

    Google Scholar 

  • Faulconer L, Mongillo P (1981) Effects of Mount St. Helens ashfall on three trout streams and Bumping Lake in the Yakima Basin. Wash State Game Dept Bull 16:1–34

    Google Scholar 

  • Ferguson RI, Church M (2004) A simple universal equation for grain settling velocity. J Sediment Res 74(6):933–937

    Google Scholar 

  • Flaathen TK, Gislason SR (2007) The effect of volcanic eruptions on the chemistry of surface waters: the 1991 and 2000 eruptions of Mt. Hekla, Iceland. J Volcanol Geotherm Res 164(4):293–316

    Google Scholar 

  • Forchhammer (1822) LXXXVII. Account of a volcanic eruption in Iceland. Phil Mag Ser 1 59(290):428–432

    Google Scholar 

  • Fornea AP, Brooks SD, Dooley JB, Saha A (2009) Heterogeneous freezing of ice on atmospheric aerosols containing ash, soot, and soil. J Geophys Res 114(D13):D13201

    Google Scholar 

  • Frenzel SA (1983) Effects of volcanic ash on the benthic environment of a mountain stream, Northern Idaho. USGS Water-Res Investig Rep 82(4106):1–32

    Google Scholar 

  • Frogner Kockum PC, Gislason SR, Óskarsson N (2001) Fertilizing potential of volcanic ash in ocean surface waters. Geology 29(6):487–490

    Google Scholar 

  • Funk WH (1980) Effects of ash fallout on eastern Washington lakes and the upper Spokane River. In: Cassidy JJ (ed) Proceedings of the Conference on the Aftermath of Mount St. Helens. Washington State University, Pullman, Washington, pp 18–19

  • Gauci V, Blake S, Stevenson D, Highwood EJ (2008) Halving of the northern wetland CH4 source by a large Icelandic volcanic eruption. J Geophys Res 113(G00A11). doi:10.1029/2007JG000499

  • Gauci V, Dise NB, Fowler R (2002) Controls on suppression of methane flux from a peat bog subjected to simulated acid rain sulfate deposition. Global Biogeochem Cycles 16(1004):10.1029/2000GB001370

    Google Scholar 

  • GEBCO (2008) GEBCO_08 Grid, version 20100927. Available at http://www.gebco.net. Accessed 6 Aug 2012

  • Germanovich LN, Lowell RP (1995) The mechanism of phreatic eruptions. J Geophys Res 100(B5):8417–8434

    Google Scholar 

  • Gerstell MF, Crisp J, Crisp D (1995) Radiative forcing of the stratosphere by SO2 gas, silicate ash, and H2SO4 aerosols shortly after the 1982 eruptions of El Chichón. J Clim 8(5):1060–1070

    Google Scholar 

  • Giles TM, Newnham RM, Lowe DJ, Munro AJ (1999) Impact of tephra fall and environmental change: a 1000 year record from Matakana Island, Bay of Plenty, North Island, New Zealand. Geol Soc Lond Spec Publ 161:11–26

    Google Scholar 

  • Ginot P, Schotterer U, Stichler W, Godoi MA, Francou B, Schwikowski M (2010) Influence of the Tungurahua eruption on the ice core records of Chimborazo, Ecuador. Cryosphere Discuss 4(3):1343–1363

    Google Scholar 

  • Gintenreiter S, Ortel J, Nopp HJ (1993) Bioaccumulation of cadmium, lead, copper, and zinc in successive developmental stages of Lymantria dispar L. (Lymantriidae, Lepid): a life cycle study. Arch Environ Contam Toxicol 25(1):55–61

    Google Scholar 

  • Gislason SR, Hassenkam T, Nedel S, Bovet N, Eiriksdottir ES, Alfredsson HA, Hem CP, Balogh ZI, Dideriksen K, Oskarsson N, Sigfusson B, Larsen G, Stipp SLS (2011) Characterization of Eyjafjallajökull volcanic ash particles and a protocol for rapid risk assessment. Proc Natl Acad Sci 108(18):7307–7312

    Google Scholar 

  • Gislason SR, Snorrason Á, Kristmannsdóttir HK, Sveinbjörnsdóttir ÁE, Torsander P, Ólafsson J, Castet S, Dupré B (2002) Effects of volcanic eruptions on the CO2 content of the atmosphere and the oceans: the 1996 eruption and flood within the Vatnajökull Glacier, Iceland. Chem Geol 190(1–4):181–205

    Google Scholar 

  • Goldin A (1982) Influence of volcanic ash from the May 18, 1980, eruption of Mount St. Helens on the properties of soils. J Soil Water Conserv 37(3):185–189

    Google Scholar 

  • Goudie AS, Middleton NJ (2001) Saharan dust storms: nature and consequences. Earth Sci Rev 56(1–4):179–204

    Google Scholar 

  • Gow AJ, Williamson T (1971) Volcanic ash in the Antarctic ice-sheet and its possible climatic implications. Earth Planet Sci Lett 13(1):210–218

    Google Scholar 

  • Granberg G, Sundh I, Svensson BH, Nilsson M (2001) Effects of temperature, and nitrogen and sulfur deposition, on methane emission from a boreal mire. Ecology 82(7):1982–1998

    Google Scholar 

  • Griggs RF (1915) The effect of the eruption of Katmai on land vegetation. Bull Am Geogr Soc 47(3):193–203

    Google Scholar 

  • Griggs RF (1919) The beginnings of revegetation in Katmai Valley. Ohio J Sci 19(6):318–342

    Google Scholar 

  • Grishin SY, del Moral R, Krestov PV, Verkholat VP (1996) Succession following the catastrophic eruption of Ksudach volcano (Kamchatka, 1907). Vegetatio 127(2):129–153

    Google Scholar 

  • Grobbelaar JU (1985) Phytoplankton productivity in turbid waters. J Plankton Res 7(5):653–663

    Google Scholar 

  • Gronvold K, Johannesson H (1984) Eruption in Grimsvotn 1983; course of events and chemical studies of tephra. Jokull 34:1–11

    Google Scholar 

  • Hadley D, Hufford GL, Simpson JJ (2004) Resuspension of relic volcanic ash and dust from katmai: still an aviation hazard. Weather Forecast 19:829–840

    Google Scholar 

  • Haeckel M, van Beusekom J, Wiesner MG, König I (2001) The impact of the 1991 Mount Pinatubo tephra fallout on the geochemical environment of the deep-sea sediments in the South China Sea. Earth Planet Sci Lett 193(1–2):151–166

    Google Scholar 

  • Haines BL, Jernstedt JA, Neufeld HS (1985) Direct foliar effects of simulated acid rain. II. Leaf surface characteristics. New Phytol 99(3):407–416

    Google Scholar 

  • Hamme RC, Webley PW, Crawford WR, Whitney FA, DeGrandpre MD, Emerson SR, Eriksen CC, Giesbrecht KE, Gower JFR, Kavanaugh MT, Peña MA, Sabine CL, Batten SD, Coogan LA, Grundle DS, Lockwood D (2010) Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific. Geophys Res Lett 37(L19604). doi:10.1029/2010GL044629

  • Harris E, Mack RN, Ku MSB (1987) Death of steppe cryptograms under the ash from Mount. St. Helens. Am J Bot 74(8):1249–1253

    Google Scholar 

  • Hayes SK, Montgomery DR, Newhall CG (2002) Fluvial sediment transport and deposition following the 1991 eruption of Mount Pinatubo. Geomorphology 45(3–4):211–224

    Google Scholar 

  • Healy E (2007) Dominant types of problem lands. Land and Water Digital Media Series (20). FAO-UNESCO. Available at http://www.fao.org/nr/land/soils/en/. Accessed 6 Aug 2012

  • Heiken G (1972) Morphology and petrography of volcanic ash. Geol Soc Am Bull 83(7):1961–1988

    Google Scholar 

  • Helgason J (2000) Ground ice in iceland: possible analogs for equatorial Mars. In: International Conference on Mars Polar Science and Exploration, p 72

  • Hickman M, Reasoner MA (1998) Diatom responses to late Quaternary vegetation and climate change, and to deposition of two tephra in an alpine and sub-alpine lake in Yoho National Park, British Columbia. J Paleolimnol 20(3):253–265

    Google Scholar 

  • Hinckley TM, Imoto H, Lee K, Lacker S, Morikawa Y, Vogt KA, Grier CG, Keyes MR, Teskey RO, Seymour V (1984) Impact of tephra deposition on growth in conifers: the year of the eruption. Can J For Res 14(5):731–739

    Google Scholar 

  • Hinkley TK, Smith KS (1982) Leachate chemistry of ash from the May 18, 1980 eruption of Mount St. Helens. US Geol Surv Prof Pap 1397-B:23–64

    Google Scholar 

  • Hinkley TK, Smith KS, Taggart JE, Brown JT (1982) Chemical and mineralogic aspects of observed fractionation of ash from May 18, 1980 eruption of Mount St. Helens. US Geol Surv Prof Pap 1397-A:10–22

    Google Scholar 

  • Hobbie SE (1992) Effects of plant species on nutrient cycling. Trends Ecol Evol 7(10):336–339

    Google Scholar 

  • Hobbs L, Gilbert JS, Lane SJ (2011) The significance of volcanic ash fall for Earth’s glaciers. In: Volcanic and Magmatic Studies Group Annual Meeting, 5–7 January 2011, Queens' College, Cambridge, p A43

  • Hobbs PV, Hegg DA, Radke LF (1983) Resuspension of volcanic ash from Mount St. Helens. J Geophys Res 88(C6):3919–3922

    Google Scholar 

  • Hogg P, Squires P, Fitter AH (1995) Acidification, nitrogen deposition and rapid vegetational change in a small valley mire in Yorkshire. Biol Conserv 71(2):143–153

    Google Scholar 

  • Hooper DM, Hill BE (2004) Geomorphologic evolution of the tephra deposit from Parícutin Volcano, Mexico. In: IAVCEI General Assembly: Volcanism and its Impact on Society, 17–24 November 2004, Pucón, Chile

  • Horwell CJ, Baxter PJ (2006) The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation. Bull Volcanol 69(1):1–24

    Google Scholar 

  • Horwell CJ, Baxter PJ, Hillman S, Damby D (2011) Respiratory health hazard assessment of ash from the 2010 eruption of Eyjafjallajökull volcano, Iceland. Geophys Res Abstr 13:EGU2011-2598-2

    Google Scholar 

  • Horwell CJ, Fenoglio I, Fubini B (2007) Iron-induced hydroxyl radical generation from basaltic volcanic ash. Earth Planet Sci Lett 261(3–4):662–669

    Google Scholar 

  • Hotes S, Poschlod P, Sakai H, Inoue T (2001) Vegetation, hydrology and development of a coastal mire in Hokkaido, Japan, affected by flooding and tephra deposition. Can J Bot 79(3):341–361

    Google Scholar 

  • Hotes S, Poschlod P, Takahashi H (2006) Effects of volcanic activity on mire development: case studies from Hokkaido, northern Japan. Holocene 16(4):561–573

    Google Scholar 

  • Hotes S, Poschlod P, Takahashi H, Grootjans AP, Adema E (2004) Effects of tephra deposition on mire vegetation: a field experiment in Hokkaido, Japan. J Ecol 92(4):624–634

    Google Scholar 

  • Hoyle FR, Pinti V, Welti A, Zobrist B, Marcolli C, Luo B, Höskuldsson Á, Mattsson HB, Stetzer O, Thorsteinsson T, Larsen G, Peter T (2011) Ice nucleation properties of volcanic ash from Eyjafjallajökull. Atmos Chem Phys Discuss 11:9911–9926

    Google Scholar 

  • Inbar M, Ostera HA, Parica CA, Remesal MB, Salani FM (1995) Environmental assessment of 1991 Hudson volcano eruption ashfall effects on southern Patagonia region, Argentina. Environ Geol 25(2):119–125

    Google Scholar 

  • Isono K, Komabayasi M, Ono A (1959) Volcanoes as a source of atmospheric ice nuclei. Nature 183:317–318

    Google Scholar 

  • Jacobson MZ (2005) Fundamentals of atmospheric modeling. Cambridge University Press, Cambridge, p 813

    Google Scholar 

  • Jones MT, Gislason SR (2008) Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments. Geochim Cosmochim Acta 72(15):3661–3680

    Google Scholar 

  • Jones A, Siebert L, Kimberly P, Luhr JF (2006) Earthquakes and eruptions, v. 3.0 (CD-ROM). Smithsonian Institution, Global Volcanism Program, Digital Information Series, GVP-2

  • Jones MT, Sparks RSJ, Vades PJ (2007) The climatic impact of supervolcanic ash blankets. Clim Dyn 29(6):553–564

    Google Scholar 

  • Jones S (2010) Palaeoenvironmental response to the 74 ka Toba ash-fall in the Jurreru and Middle Son valleys in southern and north-central India. Quat Res 73(2):336–350

    Google Scholar 

  • Karlsdóttir S et al (2012) The 2010 Eyjafjallajokul eruption, Iceland. International Volcanic Ash Task Force IVATF/4-IP/3. Available at http://www.icao.int/safety/meteorology/ivatf/Pages/Information-papers.aspx?meeting=IVATF/4. Accessed 12 Aug 2012

  • Kärcher B (2012) Atmospheric ice formation processes. In: Atmospheric physics: background—methods—trends research topics in aerospace. Springer, Berlin, pp 151–167

  • Kawaratani RK, Fujita S (1990) Wet deposition of volcanic gases and ash in the vicinity of Mount Sakurajima. Atmos Environ A Gen Top 24(6):1487–1492

    Google Scholar 

  • Kellerer-Pirklbauer A, Farbrot H, Etzelmüller B (2007) Permafrost aggradation caused by tephra accumulation over snow-covered surfaces: examples from the Hekla-2000 eruption in Iceland. Permafr Periglac Process 18(3):269–284

    Google Scholar 

  • Kellman M, Hudson J, Sanmugadas K (1982) Temporal variability in atmospheric nutrient influx to a tropical ecosystem. Biotropica 14(1):1–9

    Google Scholar 

  • Kennedy RA (1980) Ash from Mt St Helens. Nature 287:581

    Google Scholar 

  • Kent M, Owen NW, Dale P, Newnham RM, Giles TM (2001) Studies of vegetation burial: a focus for biogeography and biogeomorphology? Prog Phys Geogr 25(4):455–482

    Google Scholar 

  • Kilian R, Biester H, Behrmann J, Baeza O, Fesq-Martin M, Hohner M, Schimpf D, Friedmann A, Mangini A (2006) Millennium-scale volcanic impact on a superhumid and pristine ecosystem. Geology 34(8):609–612

    Google Scholar 

  • Kirk, W (1808) The fiery museum, or, The burning mountains : containing authentic accounts of those dreadful eruptions which have so frequently broke out at mounts Vesuvius and Aetna : with a circumstantial narrative of their eruptions in one of which, (at Vesuvius) the town of Ottaiano was nearly reduced to ashes : with every particular relative to those great volcanoes which have so astonished the surrounding nations, and the world. Sussex Press, Lewes. 40 pp.

  • Kirkbride MP, Dugmore AJ (2003) Glaciological response to distal tephra fallout from the 1947 eruption of Hekla, south Iceland. J Glaciol 49(166):420–428

    Google Scholar 

  • Klein JM (1984) Some chemical effects of the Mount St. Helens eruption on selected streams in the State of Washington. US Geological Survey Circular 850-E, p 15

  • Koenderink GH, Brzesowsky RH, Balkenende AR (2000) Effect of the initial stages of leaching on the surface of alkaline earth sodium silicate glasses. J Non-Cryst Solids 262(1–3):80–98

    Google Scholar 

  • Kumar P, Sokolik IN, Nenes A (2011) Measurements of cloud condensation nuclei activity and droplet activation kinetics of fresh unprocessed regional dust samples and minerals. Atmos Chem Phys 11(7):3527–3541

    Google Scholar 

  • Kurenkov II (1966) The influence of volcanic ashfall on biological processes in a lake. Limnol Oceanogr 11(3):426–429

    Google Scholar 

  • Kyle PR, Jezek PA (1978) Compositions of three tephra layers from the Byrd Station ice core, Antarctica. J Volcanol Geotherm Res 4(3–4):225–232

    Google Scholar 

  • Lamparski LL, Nestrick TJ, Cutie SS (1990) The impact on the environment of airborne particulate matter from the eruption of Mount Saint Helens in May 1980. In: Clement R, Kogel R (eds) Emissions from combustion processes: origin, measurement, control. Lewis, Chelsea, p 491

    Google Scholar 

  • Lane SJ, Gilbert JS, Hilton M (1993) The aerodynamic behaviour of volcanic aggregates. Bull Volcanol 55(7):481–488

    Google Scholar 

  • Langmann B, Kaksěk Z, Hort M, Duggen S (2010) Volcanic ash as fertiliser for the surface ocean. Atmospheric Chemistry and Physics 10:3891–3899

    Google Scholar 

  • Lathem TL, Kumar P, Nenes A, Dufek J, Sokolik IN, Trail M, Russell A (2011) Hygroscopic properties of volcanic ash. Geophys Res Lett 38(L11802). doi:10.1029/2011GL047298

  • Le Blond J, Horwell C, Baxter P, Michnowicz S, Tomatis M, Fubini B, Delmelle P, Dunster C, Herman P (2010) Mineralogical analyses and in vitro screening tests for the rapid evaluation of the health hazard of volcanic ash at Rabaul volcano, Papua New Guinea. B Volcanol 72(9):1077–1092

    Google Scholar 

  • Le Guern F, Bernard A, Chevrier RM (1980) Soufriere of Guadeloupe, 1976–1977 eruption mass and energy transfer and volcanic health hazards. Bull Volcanol 43(3):577–593

    Google Scholar 

  • Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S, Keller J, Lamere J, Sabine PA, Schmid R, Sorensen H, Woolley AR (2002) Igneous rocks: a classification and glossary of terms, recommendations of the International Union of Geological Sciences Subcommission of the Systematics of Igneous Rocks. Cambridge University Press, Cambridge, p 256

    Google Scholar 

  • Lee DB (1996) Effects of the eruptions of Mount St. Helens on physical, chemical and biological characteristics of surface water, ground water, and precipitation in the Western United States. In: US Geological Survey Water-Supply Paper 2438

  • Lotter AF, Birks HJB, Zolitschka B (1995) Late-Glacial pollen and diatomchanges in response to two different environmental perturbations: volcanic eruption and Younger Dryas cooling. J Paleolimnol 14(1):23–47

    Google Scholar 

  • Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of porous solids and powders: surface area, pore size, and density. Kluwer Academic, Dordrecht, p 347

    Google Scholar 

  • Luhr JF, Carmichael ISE, Varekamp JC (1984) The 1982 eruptions of El Chichón volcano, Chiapas, Mexico: mineralogy and petrology of the anhydrite-bearing pumices. J Volcanol Geotherm Res 23(1–2):69–108

    Google Scholar 

  • Lyles L (1988) Basic wind erosion processes. Agric Ecosyst Environ 22–23:91–101

    Google Scholar 

  • Macedonio G, Dobran F, Neri A (1994) Erosion processes in volcanic conduits and application to the AD 79 eruption of Vesuvius. Earth Planet Sci Lett 121(1–2):137–152

    Google Scholar 

  • Mack RN (1981) Initial effects of ashfall from Mount St. Helens on vegetation in Eastern Washington and adjacent Idaho. Science 213(4507):537–539

    Google Scholar 

  • Mackowiak CL, Grossl PR, Bugbee BG (2003) Plant and environmental interactions: biogeochemistry of fluoride in a plant–solution system. J Environ Qual 32:2230–2237

    Google Scholar 

  • Mahler RL (1984) Influence of Mount St. Helens volcanic ash on alfalfa growth and nutrient uptake. Commun Soil Sci Plant Anal 15(4):449–460

    Google Scholar 

  • Major JJ, Yamakoshi T (2005) Decadal-scale change of infiltration characteristics of a tephra-mantled hillslope at Mt. St. Helens, Washington. Hydrol Processes 19(18):3621–3630

    Google Scholar 

  • Malmer N (1993) Mineral nutrients in vegetation and surface layers of Sphagnum-dominated peat-forming systems. Adv Bryol 5:223–248

    Google Scholar 

  • Mandeville CW, Langstaff M (2007) Geochemistry of apatite in climactic and pre-climactic tephra from Mt. Mazama, Crater Lake, Oregon. American Geophysical Union, Fall Meeting, 2007, San Francisco, V32C-01

  • Manville V, Hodgson KA, Houghton BF, Keys JRH, White JDL (2000) Tephra, snow and water: complex sedimentary responses at an active snow-capped stratovolcano, Ruapehu, New Zealand. Bull Volcanol 62(4–5):278–293

    Google Scholar 

  • Manville V, Németh K, Kano K (2009) Source to sink: a review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards. Sediment Geol 220(3–4):136–161

    Google Scholar 

  • Manville V, Newton EH, White JDL (2005) Fluvial responses to volcanism: resedimentation of the 1800a Taupo ignimbrite eruption in the Rangitaiki River catchment, North Island, New Zealand. Geomorphology 65(1–2):49–70

    Google Scholar 

  • Martin GA, Watt SFL, Pyle D, Mather TA, Matthews NE, Georg RB, Day JA, Fairhead T, Witt MLI, Quayle BM (2009) Environmental effects of ashfall in Argentina from the 2008 Chaitén volcanic eruption. J Volcanol Geotherm Res 184(3–4):462–472

    Google Scholar 

  • Mason BJ, Maybank J (1958) Ice-nucleating properties of some natural mineral dusts. Q J R Meteorol Soc 84(361):235–241

    Google Scholar 

  • Mass C, Robock A (1982) The short-term influence of the Mount St. Helens volcanic eruption on surface temperature in the Northwest United States. Mon Weather Rev 110:614–619

    Google Scholar 

  • McCormick MP, Thomason LW, Trepete CR (1995) Atmospheric effects of the Mt. Pinatubo eruption. Nature 373:399–404

    Google Scholar 

  • McDaniel PA, Wilson MA (2007) Physical and chemical characteristics of ash-influenced soils of inland northwest forests. USDA For Serv Proc RMRS-P-44:31–45

    Google Scholar 

  • McGuire WJ (2003) Volcano instability and lateral collapse. Revista 1:33–45

    Google Scholar 

  • McKnight DM, Feder GL, Stiles EA (1981) Toxicity of volcanic-ash leachate to a blue-green alga. Results of a preliminary bioassay experiment. Environ Sci Technol 15(3):362–364

    Google Scholar 

  • Michel AE, Usher CR, Grassian VH (2003) Reactive uptake of ozone on mineral oxides and mineral dusts. Atmos Environ 37(23):3201–3211

    Google Scholar 

  • Miller CF, Hong L (1966) Operation Ceniza-Arena: the retention of fallout particles from Volcan Irazu (Costa Rica) by plants and people. Part 1. Stanford Research Institute, Menlo Park, p 374

    Google Scholar 

  • Miserendino ML, Archangelsky M, Brand C, Epele LB (2012) Environmental changes and macroinvertebrate responses in Patagonian streams (Argentina) to ashfall from the Chaitén Volcano (May 2008). Sci Total Environ 424:202–212

    Google Scholar 

  • Morrissey M, Zimanowski B, Wohletz K, Buettner R (2000) Phreatomagmatic fragmentation. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 431–445

    Google Scholar 

  • Murata KJ, Dondoli C, Saenez R (1966) The 1963–65 eruption of Irazú Volcano, Costa Rica (the period of March 1963 to October 1964). Bull Volcanol 29(1):765–793

    Google Scholar 

  • Nayar S, Goh BPL, Chou LM (2004) Environmental impact of heavy metals from dredged and resuspended sediments on phytoplankton and bacteria assessed in in-situ mesocosms. Ecotoxicol Environ Saf 59(3):349–369

    Google Scholar 

  • Nogami K, Hirabayashi J, Ohba T, Ossaka J, Yammamoto M, Akagi S, Ozawa T, Yoshida M (2001) Temporal variations in the constitutents of volcanic ash and adherent water-soluble components in the Unzen Fugendake eruption during 1990-1991. Earth Planets Space 53(7):723–730

    Google Scholar 

  • Ohba T, Kitade Y (2005) Subvolcanic hydrothermal systems: Implications from hydrothermal minerals in hydrovolcanic ash. J Volcanol Geotherm Res 145(3–4):249–262

    Google Scholar 

  • Olgun N, Duggen S, Croot PL, Delmelle P, Dietze H, Schacht U, Óskarsson N, Siebe C, Auer A, Garbe-Schönberg D (2011) Surface ocean iron fertilization: The role of airborne volcanic ash from subduction zone and hot spot volcanoes and related iron fluxes into the Pacific Ocean. Global Biogeochem Cycles 25(4):GB4001

    Google Scholar 

  • Ort MH, Elson MD, Anderson KC, Duffield WA, Hooten JA, Champion DE, Waring G (2008) Effects of scoria-cone eruptions upon nearby human communities. Geol Soc Am Bull 120(3–4):476–486

    Google Scholar 

  • Óskarsson N (1980) The interaction between volcanic gases and tephra: fluorine adhering to tephra of the 1970 Hekla eruption. J Volcanol Geotherm Res 8(2–4):251–266

    Google Scholar 

  • Parfitt EA (1998) A study of clast size distribution, ash deposition and fragmentation in a Hawaiian-style volcanic eruption. J Volcanol Geotherm Res 84(3–4):197–208

    Google Scholar 

  • Paul A (1982) Chemistry of Glasses. Chapman and Hall, London, p 367

    Google Scholar 

  • Paytan A, Mackey KRM, Chen Y, Lima ID, Doney SC, Mahowald N, Labiosa R, Post AF (2009) Toxicity of atmospheric aerosols on marine phytoplankton. Proc Natl Acad Sci 106(12):4601–4605

    Google Scholar 

  • Pearson CL, Dale DS, Brewer PW, Kuniholm PI, Lipton J, Manning SW (2009) Dendrochemical analysis of a tree-ring growth anomaly associated with the Late Bronze Age eruption of Thera. J Archaeol Sci 36(6):1206–1214

    Google Scholar 

  • Percy KE, Baker EA (1988) Effects of simulated acid rain on leaf wettability, rain retention and uptake of some inorganic ions. New Phytol 108(1):75–82

    Google Scholar 

  • Pereira WE, Rostad CE, Taylor HE, Klein JM (1982) Characterization of organic contaminants in environmental samples associated with Mount St. Helens 1980 volcanic eruption. Environ Sci Technol 16(7):387–396

    Google Scholar 

  • Peters LN, Witherspoon JP (1972) Retention of 44-88 μ simulated fallout particles by grasses. Heal Phys 22:261–266

    Google Scholar 

  • Piccoli PM, Candela PA (2002) Apatite in Igneous Systems. Rev Mineral Geochem 48(1):255–292

    Google Scholar 

  • Pickering WF (1985) The mobility of soluble fluoride in soils. Environ Pollut Ser B Chem Phys 9(4):281–308

    Google Scholar 

  • Pye KT, Tsoar H (2009) Aeolian sand and sand dunes. Springer-Verlag, Berlin, p 458

    Google Scholar 

  • Quigg A, Reinfelder JR, Fisher NS (2006) Copper Uptake Kinetics in Diverse Marine Phytoplankton. Limnol Oceanogr 51(2):893–899

    Google Scholar 

  • Rammlmair D (2002) Hardpan formation on mining residuals. In: Merkel BJ, Planer-Friedrich B, Wolkersdorfer C (eds) Uranium in the Aquatic Environment. Springer-Verlag, Berlin, pp 177–186

    Google Scholar 

  • Rhodes JJ, Armstrong RL, Warren SG (1987) Mode of formation of "ablation hollows" controlled by dirt content of snow. J Glaciol 33(114):135–139

    Google Scholar 

  • Rigg GB (1914) The effects of the Katmai eruption on marine vegetation. Science 40(1032):509–513

    Google Scholar 

  • Risacher F, Alonso H (2001) Geochemistry of ash leachates from the 1993 Lascar eruption. Northern Chile. Implication for recycling of ancient evaporites. J Volcanol Geotherm Res 109:319–337

    Google Scholar 

  • Rogers N, Hawkesworth C (2000) Composition of magmas. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of Volcanoes. Academic Press, London, pp 115–131

    Google Scholar 

  • Rose W, Bonis S, Stoiber R, Keller M, Bickford T (1973) Studies of volcanic ash from two recent Central American eruptions. Bull Volcanol 37(3):338–364

    Google Scholar 

  • Rose WI (1977) Scavenging of volcanic aerosol by ash: atmospheric and volcanological implications. Geology 5(10):621–624

    Google Scholar 

  • Rose WI, Bluth GJS, Schneider DJ, Ernst GGJ, Riley CM, Henderson LJ, McGimsey RG (2001) Observations of volcanic clouds in their first few days of atmospheric residence: The 1992 eruptions of Crater Peak, Mount Spurr Volcano, Alaska. J Geol 109(6):677–694

    Google Scholar 

  • Rose WI, Delene DJ, Schneider DJ, Bluth GJS, Krueger AJ, Sprod IE, McKee C, Davies HL, Ernst GGJ (1995) Ice in the 1994 Rabaul eruption cloud: implications for volcano hazard and atmospheric effects. Nature 375:477–479

    Google Scholar 

  • Rose WI, Durant AJ (2009) Fine ash content of explosive eruptions. J Volcanol Geotherm Res 186(1–2):32–39

    Google Scholar 

  • Rosen CJ, Eliason R (2005) Nutrient management for commercial fruit & vegetable crops in Minnesota. http://www.extension.umn.edu/distribution/cropsystems/dc5886.html. Accessed 1 July 2010

  • Rossi MJ (2003) Heterogeneous reactions on salts. Chem Rev 103(12):4823–4882

    Google Scholar 

  • Rubasinghege G, Elzey S, Baltrusaitis J, Jayaweera PM, Grassian VH (2010) Reactions on Atmospheric Dust Particles: Surface Photochemistry and Size-Dependent Nanoscale Redox Chemistry. J Phys Chem Lett 1(11):1729–1737

    Google Scholar 

  • Ruggieri F, Fernandez-Turiel JL, Saavedra J, Gimeno D, Polanco E, Amigo A, Galindo G, Caselli A (2012) Contribution of volcanic ashes to the regional geochemical balance: The 2008 eruption of Chaitén volcano, Southern Chile. Sci Total Environ 425:75–88

    Google Scholar 

  • Sarmiento JL (1993) CO2 stalled. Nature 365:697–698

    Google Scholar 

  • Scherbatskoy T, Tyree MT (1990) Kinetics of exchange of ions between artificial precipitation and maple leaf surfaces. New Phytol 114(4):703–712

    Google Scholar 

  • Scholze H (1990) Glass. Nature, Structure, and Properties. Springer-Verlag, London, p 454

    Google Scholar 

  • Schön JH (2011) Physical Properties of Rocks: A Workbook. Elsevier, Oxford, p 481

    Google Scholar 

  • Schulte PJ, Teskey RO, Hinckley TM, Stevens RG, Leslie DA (1985) The effect of tephra deposition and planting treatment on soil oxygen levels and water relations of newly planted seedlings. Forest Sci 31(1):109–116

    Google Scholar 

  • Schumm SA, Rea DK (1995) Sediment yield from disturbed earth systems. Geology 23(5):391–394

    Google Scholar 

  • Seifert P, Ansmann A, Groß S, Freudenthaler V, Heinold B, Hiebsch A, Mattis I, Schmidt J, Schnell F, Tesche M, Wandinger U, Wiegner M (2011) Ice formation in ash-influenced clouds after the eruption of the Eyjafjallajökull volcano in April 2010. J Geophys Res 116. doi:10.1029/2011JD015702

  • Self S (2006) The effects and consequences of very large explosive volcanic eruptions. Philos Trans R Soc A 364(1845):2073–2097

    Google Scholar 

  • Seymour VA, Hinckley TM, Morikawa Y, Franklin JF (1983) Foliage damage in coniferous trees following volcanic ashfall from Mt. St. Helens. Oecologia 59(2–3):339–343

    Google Scholar 

  • Sharp B (1890) An Account of the Vincelonian Volcano. Proc Acad Nat Sci Phila 42:289–295

    Google Scholar 

  • Shepherd T, Wynne Griffiths D (2006) The effects of stress on plant cuticular waxes. New Phytol 171(3):469–499

    Google Scholar 

  • Shipley S, Sarna-Wojciki AM (1982) Distribution, thickness, and mass of late Pleistocene and Holocene tephra from major volcanoes in the northwestern United States: a preliminary assessment of hazards from volcanic ejecta to nuclear reactors in the Pacific Northwest. United States Geological Survey Miscellaneous Field Studies Map MF-1435

  • Shoji S, Nanzyo M, Dahlgren RA (1993) Volcanic ash soils. Genesis, Properties and Utilization. Elsevier, Amsterdam, p 288

    Google Scholar 

  • Siebert L, Simkin T (2002) Volcanoes of the World: an Illustrated Catalog of Holocene Volcanoes and their Eruptions. Smithsonian Institution, Global Volcanism Program Digital Information Series, GVP-3, (http://www.volcano.si.edu/world/). Accessed 6 Aug 2012

  • Siegel BZ, Siegel SM (1982) Mercury content of Equisetum plants around Mount St. Helens one year after the major eruption. Science 216(4543):292–293

    Google Scholar 

  • Skidmore EL, Hagen LJ, Armbrust DV, Durar AA, Fryrear DW, Potter KN, Wagner LE, Zobeck TM (1994) Methods for investigating basic processes and conditions affecting wind erosion. In: Lal R (ed) Soil Erosion Research Methods. Soil and Water Conservation Society, AnkenyIA, pp 295–330

    Google Scholar 

  • Skille JM, Falter CM, Kendra WR, Schuchard KM (1983) The fate, distribution and limnological effects of volcanic tephra in the St. Joe and Coeur D'Alene river deltas of Lake Coeur D'Alene, Idaho. In: Idaho Water and Energy Resources Research Institute Completion Report. Moscow, p 156

  • Smith DB, Zielinski RA, Taylor HE, Sawyer MB (1983) Leaching characteristics of ash from the May 18, 1980, eruption of Mount St. Helens volcano, Washington. Bull Volcanol 46(2):103–124

    Google Scholar 

  • Smith DB, Zielinski RA, Rose WI Jr (1982a) Leachability of uranium and other elements from freshly erupted volcanic ash. J Volcanol Geotherm Res 13(1–2):1–30

    Google Scholar 

  • Smith DL, Zielinski RA, Rose WI, Huebert BJ (1982b) Water-soluble material on aerosols collected within volcanic eruption clouds. J Geophys Res 87(C7):4963–4972

    Google Scholar 

  • Smith WH, Staskawicz BJ (1977) Removal of atmospheric particles by leaves and twigs of urban trees: some preliminary observations and assessment of research needs. Environ Manag 1(4):317–330

    Google Scholar 

  • Sneva F (1982) Mt. St. Helens ash: considerations on its fallout on rangelands. Special Report 650. Oregon State University Agricultural Station, Corvallis, pp 1–29

    Google Scholar 

  • Sparks RSJ, Bursik MI, Ablay GJ, Thomas RME, Carey SN (1992) Sedimentation of tephra by volcanic plumes. Part 2: controls on thickness and grain-size variations of tephra fall deposits. Bull Volcanol 54(8):685–695

    Google Scholar 

  • Spence R, Kelman I, Brown A, Toyos G, Purser D, Baxter P (2007) Residential building and occupant vulnerability to pyroclastic density currents in explosive eruptions. Nat Hazard Earth Sys 7:219–230

    Google Scholar 

  • Spirakis CS (1989) Possible effect of readily available iron in volcanic ash on the carbon to sulfur ratio in lower Paleozoic normal marine sediments and implications for atmospheric oxygen. Geology 17(7):599–601

    Google Scholar 

  • Steinke I, Möhler OM, Kiselev A, Niemand M, Saathoff H, Schnaiter M, Skrotzki J, Hoose C, Leisner T (2011) Ice nucleation properties of fine ash particles from the Eyjafjallajökull eruption in April 2010. Atmos Chem Phys Discuss 11:17665–17698

    Google Scholar 

  • Stevens DP, McLaughlin MJ, Alston AM (1997) Phytotoxicity of aluminium-fluoride complexes and their uptake from solution culture by Avena sativa and Lycopersicon esculentum. Plant Soil 192(1):81–93

    Google Scholar 

  • Stout JE (2004) A method for establishing the critical threshold for aeolian transport in the field. Earth Surf Process Landforms 29(10):1195–1207

    Google Scholar 

  • Stracquadanio M, Dinelli E, Trombini C (2003) Role of volcanic dust in the atmospheric transport and deposition of polycyclic aromatic hydrocarbons and mercury. J Environ Monit 5(6):984–988

    Google Scholar 

  • Sunda WG (1989) Trace metal interactions with marine phytoplankton. Biol Oceanogr 6(5–6):411–442

    Google Scholar 

  • Swiader JM (2002) Micronutrient Fertilizer Recommendations for Commercial and Home-Garden Vegetables. http://www.nres.uiuc.edu/. Accessed 01 Dec 2010

  • Tagata S, Yamakoshi T, Doi Y, Sasahara K, Nishimoto H, Nagura H (2005) Post-eruption sediment budget of a small catchment on the Miyakejima volcano, Japan. Sediment Budg 291:37–45

    Google Scholar 

  • Takizawa Y, Muto H, Asada S (1994) Dioxins in dust fall and volcanic ash samples from the active volcanoes Fugendake and Sakurajima. Organohalogen Compd 20:359–362

    Google Scholar 

  • Takmaz-Nisancioglu S, Davison AW (1988) Effects of aluminium on fluoride uptake by plants. New Phytol 109(2):149–155

    Google Scholar 

  • Taylor PS, Stoiber RE (1973) Soluble material on ash from active Central American volcanoes. Geol Soc Am Bull 84(3):1031–1042

    Google Scholar 

  • Tejedor M, Jiménez C, Díaz F (2003) Volcanic materials as mulches for water conservation. Geoderma 117(3–4):283–295

    Google Scholar 

  • Telford R, Barker P, Metcalfe S, Newton A (2004) Lacustrine responses to tephra deposition: examples from Mexico. Quat Sci Rev 23(23–24):2337–2353

    Google Scholar 

  • Textor C, Graf H-F, Herzog M (2003) Injection of gases into the stratosphere by explosive volcanic eruptions. J Geophys Res 108(D19). doi:10.1029/2002JD002987

  • Thorarinsson S (1979) On the damage caused by volcanic eruptions with special reference to tephra and gases. In: Sheets PD, Grayson DK (eds) Volcanic activity and human ecology. Academic Press, pp 125–159

  • Thorarinsson S, Sigvaldason G (1972) The Hekla Eruption of 1970. Bull Volcanol 36(2):269–288

    Google Scholar 

  • Thorsteinsson T, Jóhannsson T, Stohl A, Kristianset NI (2012) High levels of particulate matter in Iceland due to direct ash emissions by the Eyjafjallajökull eruption and re-suspension of deposited ash. J Geophys Res. doi:10.1029/2011JB008756

  • Tsuyuzaki S (1995) Vegetation Recovery Patterns in Early Volcanic Succession. J Plant Res 108(2):241–248

    Google Scholar 

  • Usher CR, Michel AE, Grassian VH (2003) Reactions on mineral dust. Chem Rev 103(12):4883–4939

    Google Scholar 

  • Vallance JW (2000) Lahars. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of Volcanoes. Academic Press, London, pp 601–616

    Google Scholar 

  • Varekamp JC, Luhr JF, Prestegaard KL (1984) The 1982 eruptions of El Chichón volcano (Chiapas, Mexico): Character of the eruptions, ash-fall deposits and gas phase. J Volcanol Geotherm Res 23(1–2):39–68

    Google Scholar 

  • Veneklaas EJ (1990) Nutrient fluxes in bulk precipitation and throughfall in two montane tropical rain forests, Colombia. J Ecol 78:974–992

    Google Scholar 

  • Viramonte J (1987) Lascar. Scientific Event Alert Network (SEAN) Bull 12(5)

  • Vogt K, Antos JA, Zobel DB, Dahlgren RA, Hinckley TM, Erickson H, Hemstrom M (1989) Effects of tephra on ecosystems in the airfall area of the Montane Forest Zone. In: Swanson FJ (ed) Response of Ecosystems to the 1980 Eruptions of Mount St. Helens. Princeton University Press, In press

  • Wall-Palmer D, Jones MT, Hart MB, Fisher JK, Smart CW, Hembury DJ, Palmer MR, Fones GR (2011) Explosive volcanism as a cause for mass mortality of pteropods. Mar Geol 282(3–4):231–239

    Google Scholar 

  • Wang B, Michaelson G, Ping C-L, Plumlee G, Hageman P (2010) Characterization of Pyroclastic Deposits and Pre-eruptive Soils following the 2008 Eruption of Kasatochi Island Volcano, Alaska. Arct Antarct Alp Res 42(3):276–284

    Google Scholar 

  • Warren PM (1984) Archaeology: Absolute dating on the Bronze age eruption of Thera (Santorini). Nature 308:492–493

    Google Scholar 

  • Watson A (1997) Volcanic Fe, CO2, ocean productivity and climate. Nature 385(6617):587–588

    Google Scholar 

  • Watt SFL, Pyle DM, Mather TA, Martin RS, Matthews NE (2009) Fallout and distribution of volcanic ash over Argentina following the May 2008 explosive eruption of Chaitén, Chile. J Geophys Res 114(B04207):10.1029/2008JB006219

    Google Scholar 

  • Weinstein LH, Davison A (2004) Fluorides in the Environment: Effects on Plants and Animals. CABI Publishing, Wallingford, p 287

    Google Scholar 

  • Wells C, Huckerby E, Hall V (1997) Mid- and late-Holocene vegetation history and tephra studies at Fenton Cottage, Lancashire, U.K. Veg Hist Archaeobotany 6(3):153–166

    Google Scholar 

  • White AF, Peterson ML, Hochella MF Jr (1994) Electrochemistry and dissolution kinetics of magnetite and ilmenite. Geochim Cosmochim Acta 58(8):1859–1875

    Google Scholar 

  • White JDL, Houghton B (2006) Primary volcaniclastic rocks. Geology 34(8). doi:10.1130/G22346.22341

  • Wiesner MG, Wang Y, Zheng L (1995) Fallout of volcanic ash to the deep South China Sea induced by the 1991 eruption of Mount Pinatubo (Philippines). Geology 23(10):885–888

    Google Scholar 

  • Wilcox RE (1959) Some effects of recent volcanic ash falls: with especial reference to Alaska. U.S. Geol Surv Bull 24(9):409–476

    Google Scholar 

  • Wilson TM, Cole JW, Stewart C, Cronin SJ, Johnston DM (2011a) Ash storms: impacts of wind-remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile. Bull Volcanol 73(3):223–239

    Google Scholar 

  • Wilson T, Cole J, Cronin S, Stewart C, Johnston D (2011b) Impacts on agriculture following the 1991 eruption of Volcan Hudson, Patagonia: lessons for recovery. Nat Hazard 57:185–212

    Google Scholar 

  • Wilson TM, Stewart C, Sword-Daniels V, Leonard GS, Johnston DM, Cole JW, Wardman J, Wilson G, Barnard ST (2012) Volcanic ash impacts on critical infrastructure. Phys Chem Earth A B C. doi:10.1016/j.pce.2011.06.006

  • Witham CS, Oppenheimer C, Horwell CJ (2005) Volcanic ash-leachates: a review and recommendations for sampling methods. J Volcanol Geotherm Res 141:299–326

    Google Scholar 

  • Witherspoon JP, Taylor FGJ (1969) Retention of a fallout simulant containing 134Cs by Pine and Oak trees. Heal Phys 17(6):825–829

    Google Scholar 

  • Wohletz K (1986) Explosive magma-water interactions: Thermodynamics, explosion mechanisms, and field studies. Bull Volcanol 48(5):245–264

    Google Scholar 

  • Wolejko L, Ito K (1986) Mires of Japan in relation to mire zones, volcanic activity and water chemistry. Japan J Ecol 35(5):575–586

    Google Scholar 

  • Wong HKT, Gauthier A, Nriagu JO (1999) Dispersion and toxicity of metals from abandoned gold mine tailings at Goldenville, Nova Scotia, Canada. Sci Total Environ 228(1):35–47

    Google Scholar 

  • Worcester DC (1912) Taal Volcano and its recent destructive eruption. Natl Geogr Mag 23(4):313–367

    Google Scholar 

  • Yanagi T (2000) Coastal Oceanography. Kluwer Academic Publishers, Dordrecht, p 172

    Google Scholar 

  • Zielinski GA, Mayewski PA, Meeker LD, Whitlow S, Twickler MS, Morrison M, Meese DA, Gow AJ, Alley RB (1994) Record of Volcanism Since 7000 B.C. from the GISP2 Greenland Ice Core and Implications for the Volcano-Climate System. Science 264(5161):948–952

    Google Scholar 

  • Zimanowski B, Wohletz K, Dellino P, Büttner R (2003) The volcanic ash problem. J Volcanol Geotherm Res 122(1–2):1–5

    Google Scholar 

  • Zobel DB, Antos JA (1987) Composition of rhizomes of forest herbaceous plants in relation to morphology, ecology and burial by tephra. Bot Gaz 148(4):490–500

    Google Scholar 

  • Zobel DB, Antos JA (1992) Survival of plants buried for eight growing seasons by volcanic tephra. Ecology 73(2):698–701

    Google Scholar 

Download references

Acknowledgements

P.D. acknowledges the support by the Natural Environment Research Council (Urgency Grant NE/I007636/1) and Fonds de la Recherche Scientifique (MIS-Ulysse F.6001.11). P.A. was funded by a Natural Environment Research Council Blue Skies Ph.D. studentship grant. We gratefully acknowledge the careful, constructive and thorough comments of Professor S. Self, Dr. T. Wilson, Dr. C. Stewart and Professor C. Connor in their respective roles as editor and reviewers. We have benefited from stimulating discussions with M. Rosi, E. Weingartner, S. Opfergelt, J-T. Cornelis, E. Maters, B. Pereira and D. Macgregor. We thank the International Association of Volcanology and Chemistry of the Earth’s Interior Tephra Commission for supplying the tephra particle size distribution data. We are also indebted to all those who generously granted permission to reproduce their photographs within this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Martin Ayris.

Additional information

Editorial responsibility: S. Self

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayris, P.M., Delmelle, P. The immediate environmental effects of tephra emission. Bull Volcanol 74, 1905–1936 (2012). https://doi.org/10.1007/s00445-012-0654-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-012-0654-5

Keywords

Navigation