Skip to main content

Advertisement

Log in

The Al-Du’aythah volcanic cones, Al-Madinah City: implications for volcanic hazards in northern Harrat Rahat, Kingdom of Saudi Arabia

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The basaltic Al-Du’aythah volcanic cones lie in the northern part of the extensive lava field of Harrat Rahat, and only 13 km from the centre of Al-Madinah City, in the Kingdom of Saudi Arabia. Historical records indicate they may have erupted in AD 641. The four cones are formed by deposits that record a transition from phreatomagmatic to magmatic explosions followed by minor lava effusion. Three cones display elongated tuff rings at the base, and two produced late-stage lava flows. The cones themselves are symmetrical and constructed mostly by the accumulation of ballistically ejected pyroclasts. Spherical bombs and lapilli (cannonball bombs/lapilli), occasionally with country-rock fragments inside (both cored and loaded bombs/lapilli) are common within the tuff ring deposits. LiDAR data show a total volume of 1,664 × 10−6 km3 for the four cones (418 × 10−6 km3 DRE). Whole-rock chemical analyses indicate alkali-basalt compositions (SiO2 44.7–45.9 wt%), with little compositional variation and no relationship between chemistry and eruptive styles. Small differences in composition may reflect variations in fractional crystallisation of clinopyroxene and olivine. A magnetotelluric 2D cross-section shows that the cones are located adjacent to a buried sediment-filled alluvial channel along a NNW-SSE fault dipping to the east. The Al-Du’aythah eruption was related to the ascent of magma through this structure, with the first phase of the eruption triggered by the interaction of the magma with water from the northern Harrat Rahat aquifer that exists in the Al-Madinah basin. This initial water source was rapidly exhausted, while the eruption progressed roughly from north to south and from west to east, the latter motion probably along the fault-controlled feeding dyke. Our work draws attention to the existence of recent explosive phreatomagmatic eruptions in the Al-Madinah basin, which, despite the hyperarid climate of the area, must be considered a potential future eruption hazard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Al-Mishwat AT, Nasir SJ (2004) Composition of the lower crust of the Arabian Plate: a xenolith perspective. Lithos 72:45–72

    Article  Google Scholar 

  • Al-Sayari S S, Zötl J G (1978) Quaternary period in Saudi Arabia. 1. Sedimentological, hydrogeological, hydrochemical, geomorphological, and climatological investigations in central and eastern Saudi Arabia. Springer Verlag, p 346

  • Al-Shaibani A, Lloyd JW, Abokhodair AA, Al-Ahmari A (2007) Hydrogeological and quantitative groundwater assessment of the basaltic aquifer, northern Harrat Rahat, Saudi Arabia. Arab Gulf J Sci Res 25:39–49

    Google Scholar 

  • Alvarado GE, Wendy P, Vogel TA, Gröger H, Patiño L (2011) The Cerro Chopo basaltic cone (Costa Rica): an unusual completely reversed graded pyroclastic cone with abundant low vesiculated cannonball juvenile fragments. J Volcanol Geotherm Res 201:163–177

    Article  Google Scholar 

  • Ambraseys NN, Melville CP, Adams RD (1994) The seismicity of Egypt, Arabia and the Red Sea: a historical review. King Abdulaziz City for Science and Technology and Cambridge University Press, Cambridge, p 181

    Book  Google Scholar 

  • Bamousa AO, Matar SS, Daoudi M, Al-Doaan MI (2013) Structural and geomorphic features accommodating groundwater of Al-Madinah City, Saudi Arabia. Arab J Geosci 6:3127–3132

    Article  Google Scholar 

  • Blaikie TN, Ailleres L, Betts GP, Cas RAF (2014) Interpreting subsurface volcanic structures using geologically constrained 3‐D gravity inversions: examples of maar‐diatremes, Newer Volcanics Province, southeastern Australia. J Geophys Res Solid Earth 119:3857–3878

    Article  Google Scholar 

  • Brenna M, Cronin SJ, Smith IE, Sohn YK, Németh K (2010) Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contrib Mineral Petrol 160:931–950

    Article  Google Scholar 

  • Brenna M, Cronin SJ, Nemeth K, Smith IEM, Sohn Y-K (2011) The influence of magma plumbing complexity on monogenetic eruptions, Jeju Island, Korea. Terra Nov. 23:70–75

  • Camp VE, Roobol MJ (1989) The Arabian continental alkali basalt province. Part I. Evolution of Harrat Rahat, Kingdom of Saudi Arabia. Geol Soc Am Bull 101:71–95

    Article  Google Scholar 

  • Camp VE, Hooper PR, Roobol MJ, White DL (1987) The Madinah eruption, Saudi Arabia: magma mixing and simultaneous extrusion of three basaltic chemical types. Bull Volcanol 49:489–508

    Article  Google Scholar 

  • Carracedo Sánchez M, Sarrionandia F, Arostegui J, Larrondo E, Ibarguchi JIG (2009) Development of spheroidal composite bombs by welding of juvenile spinning and isotropic droplets inside a mafic eruption column. J Volcanol Geotherm Res 186:265–279

    Article  Google Scholar 

  • Carrasco-Núñez G, Ort MH, Romero C (2007) Evolution and hydrological conditions of a maar volcano (Atexcac crater, Eastern Mexico). J Volcanol Geotherm Res 159:179–197

    Article  Google Scholar 

  • Cas RA, Wright JV (1987) Volcanic successions, modern and ancient: a geological approach to processes, products, and successions. Chapman & Hall, UK, p 528

    Book  Google Scholar 

  • Cox K, Bell J, Pankhurst R (1979) The interpretation of igneous rocks. George Allen and Unwin Ltd, London, p 450

    Book  Google Scholar 

  • Del Bello E, Llewellin E, Taddeucci J, Scarlato P, Lane S, James M (2012) Exploring separated gas-magma flows in basaltic volcanoes using analogue experiments at a range of scales. American Geophysical Union, Fall Meeting 2012

  • Doniz J, Romero C, Coello E, Guillen C, Sanchez N, Garcia-Cacho L, Garcia A (2008) Morphological and statistical characterisation of recent mafic volcanism on Tenerife (Canary Islands, Spain). J Volcanol Geotherm Res 173:185–195

    Article  Google Scholar 

  • El Maghraby M (2014) Groundwater chemistry in an area covered by lava flows, Aqool area, eastern Al Madinah Al Munawarah City, Saudi Arabia. Eur Acad Res 1:4436–4463

    Google Scholar 

  • El-Masry NN, Moufti MRH, Németh K, Murcia H, Qaddah AA, Abdelwahed MF (2013) Historical accounts of the AD 1256 eruption near Al-Madinah. VORiSA Scientific meeting, November 17–18. King Abdulaziz University, Jeddah

    Google Scholar 

  • Favalli M, Karatson D, Mazzarini F, Pareschi MT, Boschi E (2009) Morphometry of scoria cones located on a volcano flank: a case study from Mt. Etna (Italy), based on high-resolution LiDAR data. J Volcanol Geotherm Res 186:320–330

    Article  Google Scholar 

  • Fornaciai A, Favalli M, Karatson D, Tarquini S, Boschi E (2012) Morphometry of scoria cones, and their relation to geodynamic setting; a DEM-based analysis. J Volcanol Geotherm Res 217–218:56–72

    Article  Google Scholar 

  • Francis PW (1973) Cannonball bombs, a new kind of volcanic bomb from the Pacaya Volcano, Guatemala. Bull Geol Soc Am 84:2791–2794

    Article  Google Scholar 

  • Gaffney ES, Damjanac B, Valentine GA (2007) Localization of volcanic activity: 2. Effects of pre-existing structure. Earth Planet Sci Lett 263:323–338

    Article  Google Scholar 

  • Guilbaud M, Siebe C, Agustín-Flores J (2009) Eruptive style of the young high-Mg basaltic-andesite Pelagatos scoria cone, southeast of México City. Bull Volcanol 71:859–880

    Article  Google Scholar 

  • Head JW, Wilson L (1989) Basaltic pyroclastic eruptions: influence of gas-release patterns and volume fluxes on fountain structure, and the formation of cinder cones, spatter cones, rootless flows, lava ponds and lava flows. J Volcanol Geotherm Res 37:261–271

    Article  Google Scholar 

  • Hooper DM, Sheridan MF (1998) Computer-simulation models of scoria cone degradation. J Volcanol Geotherm Res 83:241–267

    Article  Google Scholar 

  • Houghton B, Smith R (1993) Recycling of magmatic clasts during explosive eruptions: estimating the true juvenile content of phreatomagmatic volcanic deposits. Bull Volcanol 55:414–420

    Article  Google Scholar 

  • Ilani S, Harlavan Y, Tarawneh K, Rabba I, Weinberger R, Ibrahim K, Peltz S, Steinitz G (2001) New K-Ar ages of basalts from the Harrat Ash Shaam volcanic field in Jordan: implications for the span and duration of the upper-mantle upwelling beneath the western Arabian plate. Geology 29:171–174

    Article  Google Scholar 

  • Inbar M, Gilichinsky M, Melekestsev I, Melnikov D, Zaretskaya N (2011) Morphometric and morphological development of Holocene cinder cones: a field and remote sensing study in the Tolbachik volcanic field, Kamchatka. J Volcanol Geotherm Res 201:301–311

    Article  Google Scholar 

  • Juynboll GH (1989) The History of al-Tabari Vol. 13: the conquest of Iraq, Southwestern Persia, and Egypt: the Middle Years of'Umar's Caliphate AD 636-642/AH 15–21. State University of New York, USA, p 251

    Google Scholar 

  • Kawabata E, Cronin SJ, Bebbington MS, Moufti MR, El-Masry N, Wang T (2015) Identifying multiple eruption phases from a compound tephra blanket: an example of the AD 1256 Al-Madinah eruption, Saudi Arabia. Bull Volcanol 77:6, Erratum in: 77, 26

    Article  Google Scholar 

  • Kereszturi G, Németh K (2012a) Structural and morphometric irregularities of eroded Pliocene scoria cones at the Bakony-Balaton Highland Volcanic Field, Hungary. Geomorphology 136:45–58

    Article  Google Scholar 

  • Kereszturi G, Németh K (2012b) Monogenetic Basaltic Volcanoes: genetic classification, growth, geomorphology and degradation. In: Németh K (ed) Updates in volcanology—new advances in understanding volcanic systems. InTech, pp 3–88. doi:10.5772/51387

  • Kereszturi G, Jordan G, Németh K, Doniz-Paez JF (2012) Syn-eruptive morphometric variability of monogenetic scoria cones. Bull Volcanol 74:2171–2185

    Article  Google Scholar 

  • Kereszturi G, Németh K, Cronin SJ, Agustín-Flores J, Smith IE, Lindsay J (2013) A model for calculating eruptive volumes for monogenetic volcanoes—implication for the Quaternary Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 266:16–33

    Article  Google Scholar 

  • Khashogji MS, El Maghraby MM (2013) Evaluation of groundwater resources for drinking and agricultural purposes, Abar Al Mashi area, south Al Madinah Al Munawarah City, Saudi Arabia. Arab J Geosci 6:3929–3942

    Article  Google Scholar 

  • Kuo L, Essene EJ (1986) Petrology of spinel harzburgite xenoliths from the Kishb Plateau, Saudi Arabia. Contrib Mineral Petrol 93:335–346

    Article  Google Scholar 

  • Matsah MI, Hossain D (1993) Ground conditions in Al-Madinah Al-Munawarah, Saudi Arabia. J King Abdulaziz Univ Earth Sci 6:47–77

    Article  Google Scholar 

  • McGee LE, Millet M, Smith IE, Németh K, Lindsay JM (2012) The inception and progression of melting in a monogenetic eruption: motukorea volcano, the Auckland Volcanic Field, New Zealand. Lithos 155:360–374

  • McGuire AV, Bohannon RG (1989) Timing of mantle upwelling: evidence for a passive origin for the Red Sea Rift. J Geophys Res Solid Earth 94:1677–1682

    Article  Google Scholar 

  • Moufti M R (1985) The geology of Harrat Al-Madinah Volcanic Field Harrat Rahat, Saudi Arabia. University of Lancaster, England PhD dissertation 465 p

  • Moufti M, Hashad M (2005) Volcanic hazards assessment of Saudi Arabian Harrats: geochemical and isotopic studies of selected areas of active Makkah-Madinah-Nafud (MMN) volcanic rocks. King Abdulaziz City for Science and Technology, Saudi Arabia, Final project Report (LGP-5-27) 401 p

  • Moufti M, Németh K (2013) The intra-continental Al Madinah Volcanic Field, Western Saudi Arabia: a proposal to establish Harrat Al Madinah as the first volcanic geopark in the Kingdom of Saudi Arabia. Geoheritage 5:185–206

    Article  Google Scholar 

  • Moufti M R, Matsah M I, Soliman M A, Moghazi A M (2010) Arabian plume dynamics beneath Al-Madinah Al-Munawwarah region and its related geohazards. King Abdulaziz City for Science and Technology, Saudi Arabia, Final project report. (ARP-26-79) 382 p

  • Moufti MR, Moghazi AM, Ali KA (2012) Geochemistry and Sr–Nd–Pb isotopic composition of the Harrat Al-Madinah Volcanic Field, Saudi Arabia. Gondwana Res 21:670–689

    Article  Google Scholar 

  • Moufti MR, Németh K, Murcia H, Al-Gorrry SF, Shawali J (2013a) Scientific basis of the geoheritage and geotouristic values of the 641 AD Al Madinah eruption site in the Al Madinah volcanic field, Kingdom of Saudi Arabia. Open Geol J 7:31–44

    Article  Google Scholar 

  • Moufti MR, Moghazi AM, Ali KA (2013b) 40Ar/39Ar geochronology of the Neogene-Quaternary Harrat Al-Madinah intercontinental volcanic field, Saudi Arabia: implications for duration and migration of volcanic activity. J Asian Earth Sci 62:253–268

    Article  Google Scholar 

  • Mrlina J, Kämpf H, Kroner C, Mingram J, Stebich M, Brauer A, Geissler W, Kallmeyer J, Matthes H, Seidl M (2009) Discovery of the first Quaternary maar in the Bohemian Massif, Central Europe, based on combined geophysical and geological surveys. J Volcanol Geotherm Res 182:97–112

    Article  Google Scholar 

  • Murcia H, Németh K, Lindsay J, Moufti M R, El-Masry N, Cronin S J, Smith I E M (2013a) Complex isolated-to-nested pyroclastic cones and cone rafting in the AD 1256 Al-Madinah fissure eruption in the Kingdom of Saudi Arabia. In: Büchner J, Rapprich V, Tietz O (eds) Basalt 2013 - Senckenberg Scientific Conference: abstracts & excursion guide. Görlitz pp 174–175

  • Murcia H, Borrero CA, Pardo N, Alvarado GE, Arnosio M, Scolamacchia T (2013b) Depósitos volcaniclásticos: Términos y conceptos para una clasificación en español. Rev Geol Am Central 48:15–39

    Google Scholar 

  • Murcia H, Németh K, Moufti MR, Lindsay JM, El-Masry N, Cronin SJ, Qaddah A, Smith IEM (2014) Late Holocene lava flow morphotypes of northern Harrat Rahat, Kingdom of Saudi Arabia: implications for the description of continental lava fields. J Asian Earth Sci 84:131–145

    Article  Google Scholar 

  • Nasir S, Safarjalani A (2000) Lithospheric petrology beneath the northern part of the Arabian Plate in Syria: evidence from xenoliths in alkali basalts. J Afr Earth Sci 30:149–168

    Article  Google Scholar 

  • Németh K, Risso C, Nullo F, Kereszturi G (2011) The role of collapsing and cone rafting on eruption style changes and final cone morphology: Los Morados scoria cone, Mendoza, Argentina. Cent Eur J Geosci 3:102–118

    Google Scholar 

  • Németh K, Cronin SJ, Smith IEM, Agustín-Flores J (2012) Amplified hazard of small-volume monogenetic eruptions due to environmental controls, Orakei Basin, Auckland Volcanic Field, New Zealand. Bull Volcanol 74:2121–2137

    Article  Google Scholar 

  • Patrick MR (2007) Dynamics of Strombolian ash plumes from thermal video: motion, morphology, and air entrainment. J Geophys Res Solid Earth 112, B06202

    Article  Google Scholar 

  • Patrick M, Harris R, Ripepe A, Dehn J, Rothery L, Calvari M, Calvari J, Calvari D, Calvari A, Calvari S (2007) Strombolian explosive styles and source conditions: insights from thermal (FLIR) video. Bull Volcanol 69:769–784

    Article  Google Scholar 

  • Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Mineral Petrol 69:33–47

    Article  Google Scholar 

  • Pellaton C (1981) Geological map of the Al Madinah quadrangle, Sheet 24D, Kingdom of Saudi Arabia: Saudi Arabian Deputy Ministry for Mineral Resources Geoscience Map GM-52 (with text), scale 1: 250,000, 1–19

  • Petronis M, Delcamp A, de Vries, B van Wyk (2013) Magma emplacement into the Lemptégy scoria cone (Chaîne Des Puys, France) explored with structural, anisotropy of magnetic susceptibility, and Paleomagnetic data. Bulletin of volcanology 75:1–22

  • Porter SC (1973) Stratigraphy and chronology of Late Quaternary tephra along south rift-zone of Mauna-Kea-volcano, Hawaii. Bull Geol Soc Am 84:1923–1939

    Article  Google Scholar 

  • Rodi W, Mackie RL (2001) Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics 66:174–187

    Article  Google Scholar 

  • Rosseel J, White JDL, Houghton B (2006) Complex bombs of phreatomagmatic eruptions: role of agglomeration and welding in vents of the 1886 Rotomahana eruption, Tarawera, New Zealand. J Geophys Res Solid Earth 111, B12205

    Article  Google Scholar 

  • Runge MG, Bebbington MS, Cronin SJ, Lindsay JM, Kenedi CL, Moufti MRH (2014) Vents to events: determining an eruption event record from volcanic vent structures for the Harrat Rahat, Saudi Arabia. Bull Volcanol 76:1–16

    Article  Google Scholar 

  • Settle M (1979) Structure and emplacement of cinder cone fields. Am J Sci 279:1089–1107

    Article  Google Scholar 

  • Siebe C, Rodríguez-Lara V, Schaaf P, Abrams M (2004) Geochemistry, Sr–Nd isotope composition, and tectonic setting of Holocene Pelado, Guespalapa and Chichinautzin scoria cones, south of Mexico City. J Volcanol Geotherm Res 130:197–226

    Article  Google Scholar 

  • Simkin T, Siebert L (1994) Volcanoes of the World, 349 pp. Geoscience Press, Tucson, p 349

    Google Scholar 

  • Smith IEM, Blake S, Wilson CJN, Houghton BF (2008) Deep seated fractionation during the rise of a small-volume basalt magma batch: Crater Hill, Auckland, New Zealand. Contrib Mineral Petrol 155:511–527

    Article  Google Scholar 

  • Sottili G, Tadeucci J, Palladino DM (2010) Constraints on magma-wall rock thermal interaction during explosive eruptions from textural analysis of cored bombs. J Volcanol Geotherm Res 192:27–34

    Article  Google Scholar 

  • Spera FJ, Fowler SJ (2009) Conceptual model for small-volume alkali basalt petrogenesis: implications for volcanic hazards at the proposed Yucca Mountain nuclear waste repository. In: Connor CB, Chapman NA, Connor LJ (eds) Volcanic and tectonic hazard assessment for nuclear facilities. Cambridge, University Press, Cambridge, pp 195–228

    Chapter  Google Scholar 

  • Sumner JM (1998) Formation of clastogenic lava flows during fissure eruption and scoria cone collapse: the 1986 eruption of Izu-Oshima Volcano, eastern Japan. Bull Volcanol 60:195–212

    Article  Google Scholar 

  • Sumner JM, Blake S, Matela RJ, Wolff JA (2005) Spatter. J Volcanol Geotherm Res 142:49–65

    Article  Google Scholar 

  • Valentine GA, Fisher RV (2000) Pyroclastic surges and blasts. In: Sigurdsson H, Houghton B, McNutt SR, Stix J (eds) Encyclopedia of volcanoes. Academy Press, San Diego, pp 571–580

    Google Scholar 

  • Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes—processes and problems. J Volcanol Geotherm Res 177:857–873

    Article  Google Scholar 

  • Vergniolle S, Mangan M (2000) Hawaiian and Strombolian eruptions. In: Sigurdsson H, Houghton B, McNutt SR, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 447–461

    Google Scholar 

  • Vespermann D, Schmincke H (2000) Scoria cones and tuff rings. In: Sigurdsson H, Houghton B, McNutt SR, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 683–694

    Google Scholar 

  • Wameyo P, Aboud E, Abdelwahed MF, Cherrington J, Hoeberechts J, Kenedi CL, Lindsay JM, Moufti MRH (2013) Magnetotelluric imaging of the northern Harrat Rahat Volcanic Field. VORISA Scientific Meeting, November 17–18. King Abdulaziz University, Jeddah

    Google Scholar 

  • White JDL, Houghton B (2006) Primary volcaniclastic rocks. Geology 34:677–680

    Article  Google Scholar 

  • White JDL, Ross PS (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201:1–29

    Article  Google Scholar 

  • Wolff JA, Sumner JM (2000) Lava fountain and their products. In: Sigurdsson H, Houghton B, McNutt SR, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 321–329

    Google Scholar 

  • Wood CA (1980a) Morphometric analysis of cinder-cone degradation. J Volcanol Geotherm Res 8:137–160

    Article  Google Scholar 

  • Wood CA (1980b) Morphometric evolution of cinder cones. J Volcanol Geotherm Res 7:387–413

    Article  Google Scholar 

  • Zimanowski B, Büttner R, Lorenz V, Häfele H (1997) Fragmentation of basaltic melt in the course of explosive volcanism. J Geophys Res Solid Earth 102:803–814

    Article  Google Scholar 

Download references

Acknowledgments

This study is part of a collaborative project “Volcanic Risk in Saudi Arabia” (VORiSA) between The University of Auckland (UoA), New Zealand, and King Abdulaziz University (KAU), Kingdom of Saudi Arabia. The study is part of HM’s PhD thesis. We thank all members of the VORiSA team for fruitful discussions, and John Wilmshurst for assisting with XRF analyses. Comments from Javier Agustín-Flores and Carlos Borrero are greatly appreciated. We thank the Journal Editors J. Taddeucci and J.D.L. White, as well as B. van Wyk de Vries and an anonymous reviewer for constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Murcia.

Additional information

Editorial responsibility: J. Taddeucci

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix A

(DOCX 21 kb)

Appendix B

(DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murcia, H., Németh, K., El-Masry, N.N. et al. The Al-Du’aythah volcanic cones, Al-Madinah City: implications for volcanic hazards in northern Harrat Rahat, Kingdom of Saudi Arabia. Bull Volcanol 77, 54 (2015). https://doi.org/10.1007/s00445-015-0936-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-015-0936-9

Keywords

Navigation