Skip to main content

Advertisement

Log in

Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

High-resolution, stratigraphically ordered samples of the Udo tuff cone and lava shield offshore of Jeju Island, South Korea, show complex geochemical variation in the basaltic magmas that fed the eruption sequence. The eruption began explosively, producing phreatomagmatic deposits with relatively evolved alkali magma. The magma became more primitive over the course of the eruption, but the last magma to be explosively erupted had shifted back to a relatively evolved composition. A separate sub-alkali magma batch was subsequently effusively erupted to form a lava shield. Absence of weathering and only minor reworking between the tuff and overlying lava implies that there was no significant time break between the eruptions of the two magma batches. Modelling of the alkali magma suggests that it was generated from a parent melt in garnet peridotite at c. 3 to 3.5 GPa and underwent mainly clinopyroxene + olivine ± spinel fractionation at c. 1.5 to 2 GPa. The sub-alkali magma was, by contrast, generated from a chemically different peridotite with residual garnet at c. 2.5 GPa and evolved through olivine fractionation at a shallower level compared to its alkali contemporary. The continuous chemostratigraphic trend in the tuff cone, from relatively evolved to primitive and back to evolved, is interpreted to have resulted from a magma batch having risen through a single dyke and erupted the batch’s head, core and margins, respectively. The alkali magma acted as a path-opener for the sub-alkali magma. The occurrence of the two distinct batches suggests that different magmatic systems in the Jeju Island Volcanic Field have interacted throughout its history. The polymagmatic nature of this monogenetic eruption has important implications for hazard forecasting and for our understanding of basaltic field volcanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Albarède F (1995) Introduction to geochemical modeling. Cambridge University Press, Cambridge UK

    Book  Google Scholar 

  • Anderson TA Jr, Swihart GH, Artioli G, Geiger CA (1984) Segregation vesicles, gas filter-pressing, and igneous differentiation. J Geol 92(1):55–72

    Article  Google Scholar 

  • Beattie P, Ford C, Russell D (1991) Partition coefficients for olivine-melt and orthopyroxene-melt systems. Contrib Mineral Petrol 109(2):212–224

    Article  Google Scholar 

  • Blondes MS, Reiners PW, Ducea MN, Singer BS, Chesley J (2008) Temporal-compositional trends over short and long time-scales in basalts of the Big Pine Volcanic Field, California. Earth Planet Sci Lett 269(1–2):140–154

    Article  Google Scholar 

  • Bradshaw TK, Smith EI (1994) Polygenetic Quaternary volcanism at Crater Flat, Nevada. J Volcanol Geotherm Res 63(3–4):165–182

    Article  Google Scholar 

  • Carracedo JC, Rodriguez Badiola E (1993) Evolución geológica y magmática de la isla de Lanzarote (Islas Canarias). Rev Acad Canaria Cien 5(4):25–58

    Google Scholar 

  • Carracedo JC, Rodriguez Badiola E, Soler V (1992) The 1730–1736 eruption of Lanzarote, Canary Islands: a long, high-magnitude basaltic fissure eruption. J Volcanol Geotherm Res 53(1–4):239–250

    Article  Google Scholar 

  • Choi SH, Kwon S-T, Mukasa SB, Sagong H (2005) Sr–Nd–Pb isotope and trace element systematics of mantle xenoliths from Late Cenozoic alkaline lavas, South Korea. Chem Geol 221(1–2):40–64

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals. Longman, Harlow

    Google Scholar 

  • Demouchy S, Jacobsen SD, Gaillard F, Stern CR (2006) Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology 34(6):429–432

    Article  Google Scholar 

  • Diez M, Connor CB, Kruse SE, Connor L, Savov IP (2009) Evidence of small-volume igneous diapirism in the shallow crust of the Colorado Plateau, San Rafael Desert, Utah. Lithosphere 1(6):328–336

    Article  Google Scholar 

  • Duda A, Schmincke H-U (1985) Polybaric differentiation of alkali basaltic magmas: evidence from green-core clinopyroxenes (Eifel, FRG). Contrib Mineral Petrol 91:340–353

    Article  Google Scholar 

  • Elkins LJ, Gaetani GA, Sims KWW (2008) Partitioning of U and Th during garnet pyroxenite partial melting: Constraints on the source of alkaline ocean island basalts. Earth Planet Sci Lett 265(1–2):270–286

    Article  Google Scholar 

  • Elthon D, Scarfe CM (1984) High-pressure phase equilibria of high-magnesia basalt and the genesis of primary oceanic basalts. Am Mineral 69:1–15

    Google Scholar 

  • Eom Y, Yang K-H, Nam B, Hwang B-H, Kim J (2007) Gabbroic xenoliths in alkaline basalts from Jeju Island. J Mineral Soc Korea 20(2):103–114

    Google Scholar 

  • Erlund EJ, Cashman KV, Wallace PJ, Pioli L, Rosi M, Johnson E, Granados HD (2009) Compositional evolution of magma from Parícutin Volcano, Mexico: the tephra record. J Volcanol Geotherm Res In Press, Corrected Proof

  • Ferrucci M, Pertusati S, Sulpizio R, Zanchetta G, Pareschi MT, Santacroce R (2005) Volcaniclastic debris flows at La Fossa Volcano (Vulcano Island, southern Italy): Insights for erosion behavior of loose pyroclastic material on steep slopes. J Volcanol Geotherm Res 145:173–191

    Article  Google Scholar 

  • Fitton JG, Saunders AD, Norry MJ, Hardarson BS, Taylor RN (1997) Thermal and chemical structure of the Iceland plume. Earth Planet Sci Lett 153:197–208

    Article  Google Scholar 

  • Frey FA, Green DH, Roy SD (1978) Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data. J Petrol 19(3):463–513

    Google Scholar 

  • Fujimaki H, Tatsumoto M, Aoki K-I (1983) Partition coefficients of Hf, Zr, and REE between phenocrysts and groundmasses. J Geophys Res Supplement 89:B662–B672

    Google Scholar 

  • Halliday AN, Lee D-C, Tommasini S, Davies GR, Paslick CR, Fitton JG, James DE (1995) Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle. Earth Planet Sci Lett 133(3–4):379–395

    Article  Google Scholar 

  • Herzberg C (1995) Generation of plume magmas through time: an experimental perspective. Chem Geol 126(1):1–16

    Article  Google Scholar 

  • Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett 114(4):477–489

    Article  Google Scholar 

  • Holloway JR, Blank JG (1994) Application of experimental results to C-O-H species in natural melts. In: Carroll MR, Holloway JR (eds) Volatiles in magmas. Mineralogical Society of America, Washington DC, pp 187–230

    Google Scholar 

  • Houghton BF, Smith RT (1993) Recycling of magmatic clasts during explosive eruptions: estimating the true juvenile content of phreatomagmatic volcanic deposits. Bull Volcanol 55(6):414–420

    Article  Google Scholar 

  • Irving AJ (1980) Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implications for magmatic processes within the mantle. In: Irving AJ, Dungan MA (eds) The Jackson volume. American Journal of Science, vol 280-A, pp 389–426

  • Kang S (2003) Benthic foraminiferal biostratigraphy and paleoenvironments of the Seogwipo Formation, Jeju Island, Korea. J Paleontol Soc Korea 19(2):63–153

    Google Scholar 

  • Kil Y-W, Shin H-J, Yun S-H, Koh J-S, Ahn U-S (2008) Geochemical characteristics of mineral phases in the mantle xenoliths from Sunheul-ri, Jeju Island. J Mineral Soc Korea 21(4):373–382

    Google Scholar 

  • Kim I-S, Lee D (2000) Magnetostratigrphy and AMS of the Seoguipo formation and Seoguipo Trachyte of Jeju Island. J Geol Soc Korea 36:163–180

    Google Scholar 

  • Kim KH, Nagao K, Tanaka T, Sumino H, Nakamura T, Okuno M, Lock J-B, Youn JS, Song J (2005) He–Ar and Nd–Sr isotopic compositions of ultramafic xenoliths and host basalts from the Korean peninsula. Geochem J 39:341–356

    Article  Google Scholar 

  • Klemme S, Blundy JD, Wood BJ (2002) Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochim Cosmochim Ac 66(17):3109–3123

    Article  Google Scholar 

  • Koh J-S, Yun S-H, Hyeon G-B, Lee M-W, Gil Y-W (2005) Petrology of the basalt in the Udo monogenetic volcano, Jeju Island. J Petrol Soc Korea 14(1):45–60

    Google Scholar 

  • Koh G-W, Park J-B, Park Y-S (2008) The study on geology and volcanism in Jeju Island (I): petrochemistry and 40Ar/39Ar absolute ages of the subsurface volcanic rock cores from boreholes in the eastern lowland of Jeju Island. Econ Env Geol 41(1):93–113

    Google Scholar 

  • Kokelaar BP (1983) The mechanism of Surtseyan volcanism. J Geol Soc 140(6):939–944

    Article  Google Scholar 

  • Kubo A, Fukuyama E (2003) Stress field along the Ryukyu Arc and the Okinawa Trough inferred from moment tensors of shallow earthquakes. Earth Planet Sci Lett 210(1–2):305–316

    Article  Google Scholar 

  • Lee K, Yang W-S (2006) Historical Seismicity of Korea. Bull Seismol Soc Am 96(3):846–855

    Article  Google Scholar 

  • Luhr JF (2001) Glass inclusions and melt volatile contents at Parícutin Volcano, Mexico. Contrib Mineral Petrol 142:261–283

    Article  Google Scholar 

  • Luhr JF, Carmichael ISE (1985) Jorullo Volcano, Michoacán, Mexico (1759–1774): the earliest stage of fractionation in calc-alkaline magmas. Contrib Mineral Petrol 90(2):142–161

    Article  Google Scholar 

  • McBirney AR, Taylor HP, Armstrong RL (1987) Paricutin re-examined: a classic example of crustal assimilation in calc-alkaline magma. Contrib Mineral Petrol 95(1):4–20

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McKenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare Earth element concentrations. J Petrol 32(1):1021–1091

    Google Scholar 

  • Moore JG (1970) Water content of basalt erupted on the ocean floor. Contrib Mineral Petrol 28(4):272–279

    Article  Google Scholar 

  • Németh K, Cronin SJ (2007) Syn- and post-eruptive erosion, gully formation, and morphological evolution of a tephra ring in tropical climate erupted in 1913 in West Ambrym, Vanuatu. Geomorphology 86(1–2):115–130

    Article  Google Scholar 

  • Németh K, White JDL, Reay A, Martin U (2003) Compositional variation during monogenetic volcano growth and its implications for magma supply to continental volcanic fields. J Geol Soc 160:523–530

    Article  Google Scholar 

  • Németh K, Cronin SJ, Charley D, Harrison M, Garae E (2006) Exploding lakes in Vanuatu—“Surtseyan-style” eruptions witnessed on Ambae Island. Episodes 29(2):87–93

    Google Scholar 

  • Nicholson H, Condomines M, Fitton JG, Fallick AE, Grönvold K, Rogers G (1991) Geochemical and isotopic evidence for crustal assimilation beneath Krafla, Iceland. J Petrol 32(5):1005–1020

    Google Scholar 

  • Okada Y, Yamamoto E (1991) Dyke intrusion model for the 1989 seismovolcanic activity off Ito, central Japan. J Geophys Res 96(B6):10361–10376

    Article  Google Scholar 

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48

    Article  Google Scholar 

  • Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci 23:251–285

    Article  Google Scholar 

  • Petrelli M, Poli G, Perugini D, Peccerillo A (2005) PetroGraph: a new software to visualize, model, and present geochemical data in igneous petrology. Geochem Geophys Geosys 6(Q07011)

  • Reiners PW (2002) Temporal-compositional trends in intraplate basalt eruptions: implications for mantle heterogeneity and melting processes. Geochem Geophys Geosys 3(2)

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29(4):275–289

    Article  Google Scholar 

  • Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Longman Group, Singapore, p 352

    Google Scholar 

  • Rubin AM (1995) Propagation of magma-filled cracks. Annu Rev Earth Planet Sci 23:287–336

    Article  Google Scholar 

  • Rutherford MJ (2008) Magma ascent rates. Rev Mineral Geochem 69:241–271

    Article  Google Scholar 

  • Salters VJM, Longhi J (1999) Trace element partitioning during the initial stages of melting beneath mid-ocean ridges. Earth Planet Sci Lett 166(1–2):15–30

    Article  Google Scholar 

  • Siebe C, Rodríguez-Lara V, Schaaf P, Abrams M (2004) Geochemistry, Sr–Nd isotope composition, and tectonic setting of Holocene Pelado, Guespalapa and Chichinautzin scoria cones, south of Mexico City. J Volcanol Geotherm Res 130(3–4):197–226

    Article  Google Scholar 

  • Sinigoi S, Comin-Chiaramonti P, Demarchi G, Siena F (1983) Differentiation of partial melts in the mantle: evidence from the Balmuccia peridotite, Italy. Contrib Mineral Petrol 82(4):351–359

    Article  Google Scholar 

  • Smith IEM, Blake S, Wilson CJN, Houghton BF (2008) Deep-seated fractionation during the rise of a small-volume basalt magma batch: Crater Hill, Auckland, New Zealand. Contrib Mineral Petrol 155:511–527

    Article  Google Scholar 

  • Sohn Y-K (1996) Hydrovolcanic processes forming basaltic tuff rings and cones on Cheju Island, Korea. Geol Soc Am Bull 108:1199–1211

    Article  Google Scholar 

  • Sohn Y-K, Chough S-K (1992) The Ilchulbong tuff cone, Cheju Island, South Korea: depositional processes and evolution of an emergent, Surtseyan-type tuff cone. Sedimentology 39:523–544

    Article  Google Scholar 

  • Sohn Y-K, Chough SK (1993) The Udo tuff cone, Cheju Island, South Korea: transformation of pyroclastic fall into debris fall and grain flow on a steep volcanic cone slope. Sedimentology 40:769–786

    Article  Google Scholar 

  • Sohn Y-K, Park K-H (2005) Composite tuff ring/cone complexes in Jeju Island, Korea: possible consequence of substrate collapse and vent migration. J Volcanol Geotherm Res 141:157–175

    Article  Google Scholar 

  • Sohn Y-K, Park K-H, Yoon S-H (2008) Primary versus secondary and subaerial versus submarine hydrovolcanic deposits in the subsurface of Jeju Island, Korea. Sedimentology 55:899–924

    Article  Google Scholar 

  • Spera FJ (1984) Carbon dioxide in petrogenesis III: role of volatiles in the ascent of alkaline magma with special reference to xenolith-bearing mafic lavas. Contrib Mineral Petrol 88:217–232

    Article  Google Scholar 

  • Stormer JCJ, Nicholls J (1978) XLFRAC: a program for the interactive testing of magmatic differentiation models. Comput Geosci 4:143–159

    Article  Google Scholar 

  • Strong M, Wolff J (2003) Compositional variations within scoria cones. Geology 31(2):143–146

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geological Society, London, pp 313–345

    Google Scholar 

  • Takahashi E, Kushiro I (1983) Melting of a dry peridotite at high pressures and basalt magma genesis. Am Mineral 68:859–879

    Google Scholar 

  • Tatsumi Y, Shukuno H, Yoshikawa M, Chang Q, Sato K, Lee M-W (2005) The petrology and geochemistry of volcanic rocks on Jeju Island: plume magmatism along the Asian continental margin. J Petrol 46(3):523–553

    Article  Google Scholar 

  • Tiepolo M, Bottazzi P, Foley SF, Oberti R, Vannucci R, Zanetti A (2001) Fractionation of Nb and Ta from Zr and Hf at mantle depths: the role of titanian pargasite and kaersutite. J Petrol 42(1):221–232

    Article  Google Scholar 

  • Ukawa M, Tsukahara H (1996) Earthquake swarms and dike intrusions off the east coast of Izu Peninsula, central Japan. Tectonophysics 253(3–4):285–303

    Article  Google Scholar 

  • Ulmer P (1989) The dependence of the Fe2+-Mg cation-partitioning between olivine and basaltic liquid on pressure, temperature and composition. Contrib Mineral Petrol 101:261–273

    Article  Google Scholar 

  • Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes—Processes and problems. J Volcanol Geotherm Res 177:857–873

    Article  Google Scholar 

  • Valentine GA, Hirano N (2010) Mechanisms of low-flux intraplate volcanic fields—Basin and Range (North America) and northwest Pacific Ocean. Geology 38(1):55–58

    Article  Google Scholar 

  • Valentine GA, Krogh KEC (2006) Emplacement of shallow dikes and sills beneath a small basaltic volcanic center—the role of pre-existing structure (Paiute Ridge, southern Nevada, USA). Earth Planet Sci Lett 246:217–230

    Article  Google Scholar 

  • Valentine GA, Perry FV (2007) Tectonically controlled, time-predictable basaltic volcanism from a lithospheric mantle source (central Basin and Range Province, USA). Earth Planet Sci Lett 261:201–216

    Article  Google Scholar 

  • Valentine GA, Perry FV, Krier D, Keating GN, Kelley RE, Cogbill AH (2006) Small-volume basaltic volcanoes: Eruptive products and processes, and posteruptive geomorphic evolution in Crater Flat (Pleistocene), southern Nevada. Geol Soc Am Bull 118(11/12):1313–1330

    Article  Google Scholar 

  • Valentine GA, Krier DJ, Perry FV, Heiken G (2007) Eruptive and geomorphic processes at the Lathrop Wells scoria cone volcano. J Volcanol Geotherm Res 161(1–2):57–80

    Article  Google Scholar 

  • Verwoerd WJ, Chevallier L (1987) Contrasting types of surtseyan tuff cones on Marion and Prince Edward islands, southwest Indian Ocean. Bull Volcanol 49:399–417

    Article  Google Scholar 

  • Walker GPL (1993) Basaltic-volcano systems. In: Prichard HM, Alabaster T, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics. Geological Society, London, pp 3–38

    Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39(1):29–60

    Article  Google Scholar 

  • White JDL (1991) The depositional record of small, monogenetic volcanoes within terrestrial basins. In: Fisher RV, Smith GA (eds) Sedimentation in volcanic settings. Society for Sedimentary Geology, Tulsa, pp 155–171

    Google Scholar 

  • Wood CA (1979) Monogenetic volcanoes of the terrestrial planets. In: Proceedings of the 10th lunar planetary science conference, Pergamon Press, New York, pp 2815–2840

  • Wood BJ (2004) Melting of fertile peridotite with variable amounts of H2O. Geophys Monog Series 150:69–80

    Google Scholar 

  • Xu W-L, Gao S, Yang D-B, Pei F-P, Wang Q-H (2009) Geochemistry of eclogite xenoliths in Mesozoic adakitic rocks from Xuzhou-Suzhou area in central China and their tectonic implications. Lithos 107(3–4):269–280

    Article  Google Scholar 

  • Yang K-H (2004) Fluid inclusions trapped in xenoliths from the lower crust/upper mantle beneath Jeju Island (I): a preliminary study. J Petrol Soc Korea 13(1):34–45

    Google Scholar 

  • Yi S, Yun H, Yoon S (1998) Calcareous nannoplankton from the Seoguipo Formation of Cheju Island, Korea and its paleoceanographic implications. Paleontol Res 2:253–265

    Google Scholar 

  • Yoo HJ, Herrmann RB, Cho KH, Lee K (2007) Imaging the three-dimensional crust of the Korean Peninsula by joint inversion of surface-wave dispersion and teleseismic receiver functions. Bull Seismol Soc Am 97(3):1002–1011

    Article  Google Scholar 

  • Yu J, Yang K, Hwang B, Lee S (2009) Textural and geochemical implications of spinel-peridotite xenoliths(Type I) in basaltic rocks from Jeju Island, South Korea. In: Eos transactions AGU, fall meeting supplement, abstract V13A-1998, vol 90(52)

  • Zeng L, Liang F, Chen Z, Liu F, Xu Z (2009) Metamorphic garnet pyroxenite from the 540–600 m main borehole of the Chinese Continental Scientific Drilling (CCSD) project. Tectonophysics 475(2):396–412

    Article  Google Scholar 

  • Zhi X, Song Y, Frey FA, Feng J, Zhai M (1990) Geochemistry of Hannuoba basalts, eastern China: Constraints on the origin of continental alkalic and tholeiitic basalt. Chem Geol 88(1–2):1–33

    Article  Google Scholar 

Download references

Acknowledgments

Appreciation is expressed to Bob Stewart, Richard Price, Greg Valentine, Ting Wang and Mary Gee for constructive discussion and comments and to Chang Woo Kwon for able assistance in the field. Thorough review by Greg Valentine, Amanda Hintz and an anonymous reviewer greatly improved the manuscript. This project was supported by the Foundation for Research, Science and Technology International Investment Opportunities Fund Project MAUX0808 to SJC “Facing the challenge of Auckland volcanism”, by the Basic Science Research Program to YKS (2009-0079427) through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology and by a Massey University Vice-chancellor’s Scholarship to MB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Brenna.

Additional information

Communicated by G. Moore.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenna, M., Cronin, S.J., Smith, I.E.M. et al. Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contrib Mineral Petrol 160, 931–950 (2010). https://doi.org/10.1007/s00410-010-0515-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-010-0515-1

Keywords

Navigation