Skip to main content

Advertisement

Log in

Pathomechanisms of renal Fabry disease

  • At-a-glance article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Abaoui M, Boutin M, Lavoie P, Auray-Blais C (2016) Tandem mass spectrometry multiplex analysis of methylated and non-methylated urinary Gb3 isoforms in Fabry disease patients. Clin Chim Acta 452:191–198

    Article  CAS  PubMed  Google Scholar 

  • Alroy J, Sabnis S, Kopp JB (2002) Renal pathology in Fabry disease. J Am Soc Nephrol 13(Suppl 2):S134–138

    PubMed  Google Scholar 

  • Altarescu G, Moore DF, Pursley R, Campia U, Goldstein S, Bryant M, Panza JA, Schiffmann R (2001) Enhanced endothelium-dependent vasodilation in Fabry disease. Stroke 32:1559–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson W (1898) A case of “angeiokeratoma”. Br J Dermatol 10:113–117

    Article  Google Scholar 

  • Auray-Blais C, Ntwari A, Clarke JT, Warnock DG, Oliveira JP, Young SP, Millington DS, Bichet DG, Sirrs S, West ML, Casey R, Hwu WL, Keutzer JM, Zhang XK, Gagnon R (2010) How well does urinary lyso-Gb3 function as a biomarker in Fabry disease? Clin Chim Acta 411:1906–1914

    Article  CAS  PubMed  Google Scholar 

  • Biancini GB, Jacques CE, Hammerschmidt T, de Souza HM, Donida B, Deon M, Vairo FP, Lourenco CM, Giugliani R, Vargas CR (2016) Biomolecules damage and redox status abnormalities in Fabry patients before and during enzyme replacement therapy. Clin Chim Acta 461:41–46

    Article  CAS  PubMed  Google Scholar 

  • Biancini GB, Moura DJ, Manini PR, Faverzani JL, Netto CB, Deon M, Giugliani R, Saffi J, Vargas CR (2015) DNA damage in Fabry patients: An investigation of oxidative damage and repair. Mutat Res Genet Toxicol Environ Mutagen 784–785:31–36

    Article  PubMed  Google Scholar 

  • Bishop DF, Calhoun DH, Bernstein HS, Hantzopoulos P, Quinn M, Desnick RJ (1986) Human alpha-galactosidase A: nucleotide sequence of a cDNA clone encoding the mature enzyme. Proc Natl Acad Sci U S A 83:4859–4863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady RO, Gal AE, Bradley RM, Martensson E, Warshaw AL, Laster L (1967) Enzymatic defect in Fabry’s disease. Ceramidetrihexosidase deficiency. N Engl J Med 276:1163–1167

    Article  CAS  PubMed  Google Scholar 

  • Branton M, Schiffmann R, Kopp JB (2002a) Natural history and treatment of renal involvement in Fabry disease. J Am Soc Nephrol 13(Suppl 2):S139–143

    PubMed  Google Scholar 

  • Branton MH, Schiffmann R, Sabnis SG, Murray GJ, Quirk JM, Altarescu G, Goldfarb L, Brady RO, Balow JE, Austin Iii HA, Kopp JB (2002b) Natural history of Fabry renal disease: influence of alpha-galactosidase A activity and genetic mutations on clinical course. Medicine (Baltimore) 81:122–138

    Article  CAS  Google Scholar 

  • Chevrier M, Brakch N, Celine L, Genty D, Ramdani Y, Moll S, Djavaheri-Mergny M, Brasse-Lagnel C, Annie Laquerriere AL, Barbey F, Bekri S (2010) Autophagosome maturation is impaired in Fabry disease. Autophagy 6:589–599

    Article  CAS  PubMed  Google Scholar 

  • Christensen EI, Zhou Q, Sorensen SS, Rasmussen AK, Jacobsen C, Feldt-Rasmussen U, Nielsen R (2007) Distribution of alpha-galactosidase A in normal human kidney and renal accumulation and distribution of recombinant alpha-galactosidase A in Fabry mice. J Am Soc Nephrol 18:698–706

    Article  CAS  PubMed  Google Scholar 

  • Das AM, Naim HY (2009) Biochemical basis of Fabry disease with emphasis on mitochondrial function and protein trafficking. Adv Clin Chem 49:57–71

    Article  CAS  PubMed  Google Scholar 

  • Deegan PB, Baehner AF, Barba Romero MA, Hughes DA, Kampmann C, Beck M, European FOSI (2006) Natural history of Fabry disease in females in the Fabry Outcome Survey. J Med Genet 43:347–352

    Article  CAS  PubMed  Google Scholar 

  • Desnick RJ IY, Eng CM (2001) α-Galactosidase A deficiency: Fabry disease, The metabolic and molecular bases of inherited disease. McGraw Hill, New York

    Google Scholar 

  • Donati D, Novario R, Gastaldi L (1987) Natural history and treatment of uremia secondary to Fabry’s disease: an European experience. Nephron 46:353–359

    Article  CAS  PubMed  Google Scholar 

  • Echevarria L, Benistan K, Toussaint A, Dubourg O, Hagege AA, Eladari D, Jabbour F, Beldjord C, De Mazancourt P, Germain DP (2016) X-chromosome inactivation in female patients with Fabry disease. Clin Genet 89:44–54

    Article  CAS  PubMed  Google Scholar 

  • Eng CM, Banikazemi M, Gordon RE, Goldman M, Phelps R, Kim L, Gass A, Winston J, Dikman S, Fallon JT, Brodie S, Stacy CB, Mehta D, Parsons R, Norton K, O’Callaghan M, Desnick RJ (2001) A phase 1/2 clinical trial of enzyme replacement in fabry disease: pharmacokinetic, substrate clearance, and safety studies. Am J Hum Genet 68:711–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabry J (1898) Ein Beitrag zur Kenntnis der Purpura haemorrhagica nodularis (Purpura papulosa haemorrhagica Hebrae). Arch Dermatol Syph 43:187–200

    Article  Google Scholar 

  • Fellgiebel A, Keller I, Marin D, Muller MJ, Schermuly I, Yakushev I, Albrecht J, Bellhauser H, Kinateder M, Beck M, Stoeter P (2009) Diagnostic utility of different MRI and MR angiography measures in Fabry disease. Neurology 72:63–68

    Article  CAS  PubMed  Google Scholar 

  • Fogo A, Bostad L, Bostad L, Svarstad E, Cook WJ, Moll S, Barbey F, Geldenhuys L, West M, Ferluga D, Vujkovac B, Howie AJ, Burns A, Reeve R, Waldek S, Noel LH, Grunfeld JP, Valbuena C, Oliveira JP, Muller J, Breunig F, Zhang X, Warnock DG (2010) Scoring system for renal pathology in Fabry disease: report of the International Study Group of Fabry Nephropathy (ISGFN). Nephrol Dial Transplant 25:2168–2177

    Article  PubMed  Google Scholar 

  • Gal A, Schafer E, Rohard I (2006) The genetic basis of Fabry disease. Chapter 33 in. Mehta A, Beck M, Sunder-Plassmann G (eds) Fabry Disease: Perspectives from 5 Years of FOS. Oxford University Press, Oxford

  • Germain DP (2010) Fabry disease. Orphanet J Rare Dis 5:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Germain DP, Hughes DA, Nicholls K, Bichet DG, Giugliani R, Wilcox WR, Feliciani C, Shankar SP, Ezgu F, Amartino H, Bratkovic D, Feldt-Rasmussen U, Nedd K, Sharaf El Din U, Lourenco CM, Banikazemi M, Charrow J, Dasouki M, Finegold D, Giraldo P, Goker-Alpan O, Longo N, Scott CR, Torra R, Tuffaha A, Jovanovic A, Waldek S, Packman S, Ludington E, Viereck C, Kirk J, Yu J, Benjamin ER, Johnson F, Lockhart DJ, Skuban N, Castelli J, Barth J, Barlow C, Schiffmann R (2016) Treatment of Fabry’s Disease with the Pharmacologic Chaperone Migalastat. N Engl J Med 375:545–555

    Article  CAS  PubMed  Google Scholar 

  • Germain DP, Waldek S, Banikazemi M, Bushinsky DA, Charrow J, Desnick RJ, Lee P, Loew T, Vedder AC, Abichandani R, Wilcox WR, Guffon N (2007) Sustained, long-term renal stabilization after 54 months of agalsidase beta therapy in patients with Fabry disease. J Am Soc Nephrol 18:1547–1557

    Article  CAS  PubMed  Google Scholar 

  • Gubler MC, Lenoir G, Grunfeld JP, Ulmann A, Droz D, Habib R (1978) Early renal changes in hemizygous and heterozygous patients with Fabry’s disease. Kidney Int 13:223–235

    Article  CAS  PubMed  Google Scholar 

  • Hopkin RJ, Bissler J, Banikazemi M, Clarke L, Eng CM, Germain DP, Lemay R, Tylki-Szymanska A, Wilcox WR (2008) Characterization of Fabry disease in 352 pediatric patients in the Fabry Registry. Pediatr Res 64:550–555

    Article  PubMed  Google Scholar 

  • Jeon YJ, Jung N, Park JW, Park HY, Jung SC (2015) Epithelial-Mesenchymal Transition in Kidney Tubular Epithelial Cells Induced by Globotriaosylsphingosine and Globotriaosylceramide. PLoS ONE 10:e0136442

    Article  PubMed  PubMed Central  Google Scholar 

  • Joly DA, Grunfeld JP (2014) 3-Nitrotyrosine as a biomarker for vascular involvement in Fabry disease. Kidney Int 86:5–7

    Article  CAS  PubMed  Google Scholar 

  • Lee HS (2012) Mechanisms and consequences of TGF-ß overexpression by podocytes in progressive podocyte disease. Cell Tissue Res 347:129–140

    Article  CAS  PubMed  Google Scholar 

  • Liebau MC, Braun F, Hopker K, Weitbrecht C, Bartels V, Muller RU, Brodesser S, Saleem MA, Benzing T, Schermer B, Cybulla M, Kurschat CE (2013) Dysregulated autophagy contributes to podocyte damage in Fabry’s disease. PLoS ONE 8:e63506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubanda et al. (2009) Evaluation of a low dose, after a standard therapeutic dose, of agalsidase beta during enzyme replacement therapy in patients with Fabry disease. Genet Med 11:256–264

  • Lucke T, Hoppner W, Schmidt E, Illsinger S, Das AM (2004) Fabry disease: reduced activities of respiratory chain enzymes with decreased levels of energy-rich phosphates in fibroblasts. Mol Genet Metab 82:93–97

    Article  CAS  PubMed  Google Scholar 

  • MacDermot KD, Holmes A, Miners AH (2001) Anderson-Fabry disease: clinical manifestations and impact of disease in a cohort of 98 hemizygous males. J Med Genet 38:750–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najafian B, Svarstad E, Bostad L, Gubler MC, Tøndel C, Whitley C, Mauer M (2011) Progressive podocyte injury and globotriaosylceramide (GL-3) accumulation in young patients with Fabry disease. Kidney Int 79:663–670

    Article  CAS  PubMed  Google Scholar 

  • Najafian B, Tøndel C, Svarstad E, Sokolovkiy A, Smith K, Mauer M (2016) One Year of Enzyme Replacement Therapy Reduces Globotriaosylceramide Inclusions in Podocytes in Male Adult Patients with Fabry Disease. PLoS ONE 11:e0152812

    Article  PubMed  PubMed Central  Google Scholar 

  • Namdar M, Gebhard C, Studiger R, Shi Y, Mocharla P, Schmied C, Brugada P, Luscher TF, Camici GG (2012) Globotriaosylsphingosine accumulation and not alpha-galactosidase-A deficiency causes endothelial dysfunction in Fabry disease. PLoS ONE 7:e36373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohshima T, Murray GJ, Swaim WD, Longenecker G, Quirk JM, Cardarelli CO, Sugimoto Y, Pastan I, Gottesman MM, Brady RO, Kulkarni AB (1997) alpha-Galactosidase A deficient mice: a model of Fabry disease. Proc Natl Acad Sci U S A 94:2540–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JL, Shu L, Shayman JA (2009) Differential involvement of COX1 and COX2 in the vasculopathy associated with the alpha-galactosidase A-knockout mouse. Am J Physiol Heart Circ Physiol 296:H1133–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira EM, Labilloy A, Eshbach ML, Roy A, Subramanya AR, Monte S, Labilloy G, Weisz OA (2016a) Characterization and Phosphoproteomic Analysis of a Human Immortalized Podocyte Model of Fabry Disease Generated Using the CRISPR/Cas9 Technology. Am J Physiol Renal Physiol Ajprenal 00283:02016

    Google Scholar 

  • Pereira EM, Silva AS, Labilloy A, Monte Neto JT, Monte SJ (2016b) Podocyturia in Fabry disease. J Bras Nefrol 38:49–53

    PubMed  Google Scholar 

  • Pisani A, Sabbatini M, Duro G, Colomba P, Riccio E (2015) Antiproteinuric effect of add-on paricalcitol in Fabry disease patients: a prospective observational study. Nephrol Dial Transplant 30:661–666

    Article  PubMed  Google Scholar 

  • Pisani A, Visciano B, Imbriaco M, Di Nuzzi A, Mancini A, Marchetiello C, Riccio E (2014) The kidney in Fabry’s disease. Clin Genet 86:301–309

    Article  CAS  PubMed  Google Scholar 

  • Prabakaran T, Birn H, Bibby BM, Regeniter A, Sorensen SS, Feldt-Rasmussen U, Nielsen R, Christensen EI (2014) Long-term enzyme replacement therapy is associated with reduced proteinuria and preserved proximal tubular function in women with Fabry disease. Nephrol Dial Transplant 29:619–625

    Article  CAS  PubMed  Google Scholar 

  • Rockey DC, Bell PD, Hill JA (2015) Fibrosis--A Common Pathway to Organ Injury and Failure. N Engl J Med 373:96

    Article  PubMed  Google Scholar 

  • Rombach SM, Smid BE, Bouwman MG, Linthorst GE, Dijkgraaf MG, Hollak CE (2013) Long term enzyme replacement therapy for Fabry disease: effectiveness on kidney, heart and brain. Orphanet J Rare Dis 8:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Nino MD, Carpio D, Sanz AB, Ruiz-Ortega M, Mezzano S, Ortiz A (2015) Lyso-Gb3 activates Notch1 in human podocytes. Hum Mol Genet 24:5720–5732

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Nino MD, Sanz AB, Carrasco S, Saleem MA, Mathieson PW, Valdivielso JM, Ruiz-Ortega M, Egido J, Ortiz A (2011) Globotriaosylsphingosine actions on human glomerular podocytes: implications for Fabry nephropathy. Nephrol Dial Transplant 26:1797–1802

    Article  CAS  PubMed  Google Scholar 

  • Schiffmann R (2015) Fabry disease. Handb Clin Neurol 132:231–248

    Article  PubMed  Google Scholar 

  • Schiffmann R, Kopp JB, Austin HA 3rd, Sabnis S, Moore DF, Weibel T, Balow JE, Brady RO (2001) Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 285:2743–2749

    Article  CAS  PubMed  Google Scholar 

  • Schiffmann R, Warnock DG, Banikazemi M, Bultas J, Linthorst GE, Packman S, Sorensen SA, Wilcox WR, Desnick RJ (2009) Fabry disease: progression of nephropathy, and prevalence of cardiac and cerebrovascular events before enzyme replacement therapy. Nephrol Dial Transplant 24:2102–2111

  • Shayman JA (2016) Targeting Glycosphingolipid Metabolism to Treat Kidney Disease. Nephron 134:37–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen JS, Meng XL, Moore DF, Quirk JM, Shayman JA, Schiffmann R, Kaneski CR (2008) Globotriaosylceramide induces oxidative stress and up-regulates cell adhesion molecule expression in Fabry disease endothelial cells. Mol Genet Metab 95:163–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu L, Vivekanandan-Giri A, Pennathur S, Smid BE, Aerts JM, Hollak CE, Shayman JA (2014) Establishing 3-nitrotyrosine as a biomarker for the vasculopathy of Fabry disease. Kidney Int 86:58–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skrunes R, Svarstad E, Kampevold Larsen K, Leh S, Tøndel C (2016) Reaccumulation of globotriaosylceramide in podocytes after agalsidase dose reduction in young Fabry patients. Nephrol Dial Transplant. doi:10.1093/ndt/gfw094

  • Sunder-Plassmann G (2006) Renal manifestations of Fabry disease. In: Mehta A, Beck M, Sunder-Plassmann G (eds) Fabry Disease: Perspectives from 5 Years of FOS. Oxford University Press, Oxford

  • Sweeley CC, Klionsky B (1963) Fabry’s Disease: Classification as a Sphingolipidosis and Partial Characterization of a Novel Glycolipid. J Biol Chem 238:3148–3150

    CAS  PubMed  Google Scholar 

  • Taguchi A, Maruyama H, Nameta M, Yamamoto T, Matsuda J, Kulkarni AB, Yoshioka H, Ishii S (2013) A symptomatic Fabry disease mouse model generated by inducing globotriaosylceramide synthesis. Biochem J 456:373–383

  • Thomaidis T, Relle M, Golbas M, Brochhausen C, Galle PR, Beck M, Schwarting A (2009) Downregulation of alpha-galactosidase A upregulates CD77: functional impact for Fabry nephropathy. Kidney Int 75:399–407

    Article  CAS  PubMed  Google Scholar 

  • Thurberg BL, Rennke H, Colvin RB, Dikman S, Gordon RE, Collins AB, Desnick RJ, O’Callaghan M (2002) Globotriaosylceramide accumulation in the Fabry kidney is cleared from multiple cell types after enzyme replacement therapy. Kidney Int 62:1933–1946

    Article  CAS  PubMed  Google Scholar 

  • Tøndel C, Bostad L, Hirth A, Svarstad E (2008) Renal biopsy findings in children and adolescents with Fabry disease and minimal albuminuria. Am J Kidney Dis 51:767–776

    Article  PubMed  Google Scholar 

  • Tøndel C, Bostad L, Larsen KK, Hirth A, Vikse BE, Houge G, Svarstad E (2013) Agalsidase benefits renal histology in young patients with Fabry disease. J Am Soc Nephrol 24:137–148

    Article  PubMed  Google Scholar 

  • Tøndel C, Kanai T, Larsen KK, Ito S, Politei JM, Warnock DG, Svarstad E (2015) Foot process effacement is an early marker of nephropathy in young classic Fabry patients without albuminuria. Nephron 129:16–21

    Article  PubMed  Google Scholar 

  • Tøndel C, Vikse BE, Bostad L, Svarstad E (2012) Safety and complications of percutaneous kidney biopsies in 715 children and 8573 adults in Norway 1988–2010. Clin J Am Soc Nephrol 7:1591–1597

    Article  PubMed  PubMed Central  Google Scholar 

  • Torra R (2008) Renal manifestations in Fabry disease and therapeutic options. Kidney Int Suppl 74:S29–S32

    Article  Google Scholar 

  • Trimarchi H, Canzonieri R, Schiel A, Costales-Collaguazo C, Politei J, Stern A, Paulero M, Rengel T, Andrews J, Forrester M, Lombi M, Pomeranz V, Iriarte R, Muryan A, Zotta E, Sanchez-Nino MD, Ortiz A (2016) Increased urinary CD80 excretion and podocyturia in Fabry disease. J Transl Med 14:289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vedder AC, Linthorst GE, van Breemen MJ, Groener JE, Bemelman FJ, Strijland A, Mannens MM, Aerts JM, Hollak CE (2007) The Dutch Fabry cohort: diversity of clinical manifestations and Gb3 levels. J Inherit Metab Dis 30:68–78

    Article  CAS  PubMed  Google Scholar 

  • Vedder AC, Strijland A, vd Bergh Weerman MA, Florquin S, Aerts JM, Hollak CE (2006) Manifestations of Fabry disease in placental tissue. J Inherit Metab Dis 29:106–111

    Article  CAS  PubMed  Google Scholar 

  • Waldek S, Patel MR, Banikazemi M, Lemay R, Lee P (2009) Life expectancy and cause of death in males and females with Fabry disease: findings from the Fabry Registry. Genet Med 11:790–796

    Article  PubMed  Google Scholar 

  • Weidemann F, Sanchez-Nino MD, Politei J, Oliveira JP, Wanner C, Warnock DG, Ortiz A (2013) Fibrosis: a key feature of Fabry disease with potential therapeutic implications. Orphanet J Rare Dis 8:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Wijburg FA, Benichou B, Bichet DG, Clarke LA, Dostalova G, Fainboim A, Fellgiebel A, Forcelini C, An Haack K, Hopkin RJ, Mauer M, Najafian B, Scott CR, Shankar SP, Thurberg BL, Tøndel C, Tylki-Szymanska A, Ramaswami U (2015) Characterization of early disease status in treatment-naive male paediatric patients with Fabry disease enrolled in a randomized clinical trial. PLoS ONE 10:e0124987

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilcox WR, Banikazemi M, Guffon N, Waldek S, Lee P, Linthorst GE, Desnick RJ, Germain DP, International Fabry Disease Study G (2004) Long-term safety and efficacy of enzyme replacement therapy for Fabry disease. Am J Hum Genet 75:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilcox WR, Oliveira JP, Hopkin RJ, Ortiz A, Banikazemi M, Feldt-Rasmussen U, Sims K, Waldek S, Pastores GM, Lee P, Eng CM, Marodi L, Stanford KE, Breunig F, Wanner C, Warnock DG, Lemay RM, Germain DP, Fabry R (2008) Females with Fabry disease frequently have major organ involvement: lessons from the Fabry Registry. Mol Genet Metab 93:112–128

    Article  CAS  PubMed  Google Scholar 

  • Wise D, Wallace HJ, Jellinek EH (1962) Angiokeratoma corporis diffusum. A clinical study of eight affected families. Q J Med 31:177–206

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Arjun Ahluwalia, MA Graphic Design, Graphic- & UX-Designer, for preparation of Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Øystein Eikrem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eikrem, Ø., Skrunes, R., Tøndel, C. et al. Pathomechanisms of renal Fabry disease. Cell Tissue Res 369, 53–62 (2017). https://doi.org/10.1007/s00441-017-2609-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2609-9

Keywords

Navigation