Skip to main content
Log in

Universality of the Stochastic Bessel Operator

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We establish universality at the hard edge for general beta ensembles assuming that: the background potential V is a polynomial such that \(x \mapsto V(x^2)\) is strongly convex, \(\beta \ge 1\), and the “dimension-difference” parameter \(a\ge 0\). The method rests on the corresponding tridiagonal matrix models, showing that their appropriate continuum scaling limit is given by the Stochastic Bessel Operator. As conjectured in Edelman and Sutton (J Stat Phys 127:1121–1165, 2007) and rigorously established in Ramírez and Rider (Commun Math Phys 288:887–906, 2009), the latter characterizes the hard edge in the case of linear potential and all \(\beta \) (the classical “beta-Laguerre” ensembles).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Throughout we use the same notation for any integral operator and its corresponding kernel.

References

  1. Bekerman, F., Figalli, A., Guionnet, A.: Transport maps for \(\beta \)-matrix models and universality. Commun. Math. Phys. 338, 589–619 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bobkov, S.G., Ledoux, M.: From Brunn–Minkowski to Brascamp–Lieb and to logarithmic Sobolev inequalities. GAFA 10, 1028–1052 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Bourgade, P., Erdös, L., Yau, H.T.: Edge universality of \(\beta \)-ensembles. Commun. Math. Phys. 332, 261–353 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Billingsley, P.: Convergence of Probability Measures. Wiley Series in Probability and Statistics, 2nd edn. Wiley, Danvers (1999)

    Book  MATH  Google Scholar 

  5. Davis, C.: All convex invariant functions of Hermitian matrices. Arch. Math. 8, 276–278 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deift, P., Gioev, D.: Universality at the edge of the spectrum for unitary, orthogonal and symplectic ensembles of random matrices. Commun. Pure Appl. Math. 60(6), 867–910 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deift, P., Gioev, D., Kriecherbauer, T., Vanlessen, M.: Universality for orthogonal and symplectic Laguerre-type ensembles. J. Stat. Phys. 129, 949–1053 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dudley, R.M.: The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Funct. Anal. 1(290–330), 290–330 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dumitriu, I., Edelman, A.: Matrix models for beta ensembles. J. Math. Phys. 43, 5830–5847 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Edelman, A., Sutton, B.: From random matrices to stochastic operators. J. Stat. Phys. 127, 1121–1165 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ercolani, N.M., McLaughlin, K.D.T.-R., Pierce, V.U.: Random matrices, graphical enumeration, and the continuum limit of Toda lattices. Commun. Math. Phys. 278, 31–81 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Forrester, P.J.: Exact results and universal aysmptotics in the Laguerre random matrix ensemble. J. Math. Phys. 35, 2519–2551 (1994)

    Google Scholar 

  13. Forrester, P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton-Oxford (2010)

    Book  MATH  Google Scholar 

  14. Krishnapur, M., Rider, B., Virág, B.: Universality of the Stochastic Airy Operator. Commun. Pure Appl. Math. 69, 145–199 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kuiljaars, A., Vanlessen, M.: Universality for eigenvalue correlations at the origin of the spectrum. Commun. Math. Phys. 243, 163–191 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ledoux, M.: The concentration of measure phenomenon. Math. Surveys and Monograph 89 AMS (2001)

  17. Ramírez, J., Rider, B., Virág, B.: Beta ensembles, stochastic Airy spectrum and a diffusion. J. Am. Math. Soc. 24, 919–944 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ramírez, J., Rider, B.: Diffusion at the random matrix hard edge. Commun. Math. Phys.288, 887–906 (2009). (Erratum: Commun. Math. Phys.307, 561–563 (2011))

  19. Ramírez, J., Rider, B.: Spiking the random matrix hard edge. Probab. Theor. Rel. Fields 169, 425–467 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Talagrand, M.: Upper and Lower Bounds for Stochastic Processes. Ergebnisse der Mathematik und ihrer Grenzgebiete, p. 60. Springer (2014)

  21. Tracy, C., Widom, H.: Level spacing distributions and the Bessel kernel. Commun. Math. Phys. 161, 289–309 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tracy, C., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177, 727–754 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Brian Rider was supported in part by NSF Grants DMS-1406107 and DMS-1712729. It is a pleasure to thank Manjunath Krishnapur and Michel Ledoux for several helpful discussions. Thanks as well to the anonymous referees whose many insightful comments led to vast improvements over an earlier version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Rider.

Appendix

Appendix

We include here the derivation that our matrix model \(B(X,Y) B(X,Y)^{T}\) [with (XY) sampled from the measure P] realizes the joint eigenvalue density (1.1). To simplify notation a bit we take \(c \prod _{i < j} |\lambda _i - \lambda _j |^{\beta } \prod _{i=1}^n \lambda _i^{\gamma } e^{-V(\lambda _i)}\) as the target density, with any \(\gamma > -1\) and polynomial V.

Also, to make a more direct connection with the derivation of the \(\beta \)-Laguerre ensemble one finds in the literature (in say [9]) consider first an upper bidiagonal matrix M with coordinates labeled in decreasing order: \(M_{i,i} = x_{n-i+1}\) for \(i=1, \dots , n\) and \(M_{i, i+1} = y_{n-i}\) for \(i =1,\dots , n-1\), with all \(x_i\), \(y_i\) positive. Also introduce the tridiagonal coordinates through a Jacobi matrix \(T = T(a, b)\) with \(T_{i,i} = a_{n-i+1}\) for \(i=1, \dots , n\) and \(T_{i, i+1} = T_{i+1, i} = b_{n-i}\) for \(i = 1, \dots , n-1\). Here each \(a_i \in {\mathbb {R}}\) and each \(b_i \in {\mathbb {R}}_+\). We track the calculation from eigenvalue/eigenvector coordinates to (xy) coordinates via \( Q \Lambda Q^{\dagger } = T = M M^T\). Here Q is the eigenvector matrix, of which we only need the first components. These can be chosen to be real positive, and are denoted \((q_1, \dots , q_{n-1})\), noting that \(q_n\) is specified by \(\sum _{i=1}^n q_i^2 = 1\).

Next, we have that the Jacobians for the maps from \((\lambda , q)\) to (ab), and then from (ab) to (xy) are given by

$$\begin{aligned} J = q_n \frac{\prod _{i=1}^n q_i}{\prod _{i=1}^{n-1} b_i}, \quad J' = 2^n x_1 \prod _{i=2}^{n} x_i^2, \end{aligned}$$

respectively. See [13, Eq. 1.156] for the former. The latter is derived from the identities \(a_i = x_i^2 + y_{i}^2\) and \(b_i = x_{i+1} y_{i}\) (where \(y_n = 0\) is understood). We will also need the well-known relation,

$$\begin{aligned} \prod _{i <j} (\lambda _i -\lambda _j)^2 = \frac{\prod _{i=1}^{n-1} b_i^{2i} }{\prod _{i=1}^{n} q_i^2}, \end{aligned}$$

for which see [13, Eq. 1.148].

Since we obviously have that \(\sum _{i=1}^n V(\lambda _i) = \mathrm {tr}V(M M^T)\), the necessary computation is:

$$\begin{aligned}&\left( \prod _{i=1}^n \lambda _i \right) ^{\gamma } \prod _{i < j} |\lambda _i - \lambda _j |^{\beta } \left( q_n^{-1} \prod _{i=1}^n q_i^{\beta -1} \right) \, d q \wedge d \lambda \\&\quad = \left( \prod _{i=1}^n x_i^{2 \gamma } \right) \left( \frac{\prod _{i=1}^{n-1} (x_{i+1} y_i)^{\beta i}}{\prod _{i=1}^{n-1} q_i^{\beta }} \right) J J' \, dx \wedge dy \\&\quad = 2^n \prod _{i=1}^{n} x_i^{2 \gamma + \beta (i-1) +1} \prod _{i=1}^{n-1} y_i^{\beta i -1} dx \wedge dy. \end{aligned}$$

Putting in \(\gamma = \frac{\beta }{2}(a+1) - 1\) we recognize the factors in \(x_i^{ \beta (a+i) -1}\) and \(y_i^{\beta i -1}\) in the claimed bidiagonal matrix density (1.5). Here we have decided to work with \(B = S M S^{-1}\) where S is the antidiagonal matrix of alternating signs. This transformation does not effect the joint density of the individual coordinates, and the eigenvalues of \(B B^T\) and \(M M^T\) agree.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rider, B., Waters, P. Universality of the Stochastic Bessel Operator. Probab. Theory Relat. Fields 175, 97–140 (2019). https://doi.org/10.1007/s00440-018-0888-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-018-0888-z

Keywords

Mathematics Subject Classification

Navigation