Skip to main content
Log in

Universality for Orthogonal and Symplectic Laguerre-Type Ensembles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

We give a proof of the Universality Conjecture for orthogonal (β=1) and symplectic (β=4) random matrix ensembles of Laguerre-type in the bulk of the spectrum as well as at the hard and soft spectral edges. Our results are stated precisely in the Introduction (Theorems 1.1, 1.4, 1.6 and Corollaries 1.2, 1.5, 1.7). They concern the appropriately rescaled kernels K n, β, correlation and cluster functions, gap probabilities and the distributions of the largest and smallest eigenvalues. Corresponding results for unitary (β=2) Laguerre-type ensembles have been proved by the fourth author in Ref. 23. The varying weight case at the hard spectral edge was analyzed in Ref. 13 for β=2: In this paper we do not consider varying weights.

Our proof follows closely the work of the first two authors who showed in Refs. 7, 8 analogous results for Hermite-type ensembles. As in Refs. 7, 8 we use the version of the orthogonal polynomial method presented in Refs. 22, 25, to analyze the local eigenvalue statistics. The necessary asymptotic information on the Laguerre-type orthogonal polynomials is taken from Ref. 23.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, 1968.

    Google Scholar 

  2. M. Adler and P. van Moerbeke, Toda versus Pfaff lattice and related polynomials, Duke Math. J. 112:1–58 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  3. G. Akemann, P. H. Damgaard, U. Magnea and S. Nishigaki, Universality of random matrices in the microscopic limit and the Dirac operator spectrum, Nuclear Physics B 487(3):721–738 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. A. Altland, and M. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-/superconducting hybrid structures, Phys. Rev. B 55(2):1142–1161 (1997).

    Article  ADS  Google Scholar 

  5. O. Costin, P. Deift, and D. Gioev, On the proof of universality for orthogonal and symplectic ensembles in random matrix theory, J. Statist. Phys. (in press),math-ph/0610063.

  6. P. Deift, Universality for mathematical and physical systems, in: Proceedings of the International Congress of Mathematicians, Madrid, 2006 (in press), math-ph/0603038.

  7. P. Deift and D. Gioev, Universality in random matrix theory for orthogonal and symplectic ensembles, IMRP Int. Math. Res. Pap. (in press), math-ph/0411057.

  8. P. Deift and D. Gioev, Universality at the edge of the spectrum for unitary, orthogonal and symplectic ensembles of random matrices, Comm. Pure Appl. Math. 60:867–910 (2007), math-ph/0507023.

    Google Scholar 

  9. A. S. Fokas, A. R. Its, and A. V. Kitaev, The isomonodromy approach to matrix models in 2D quantum gravity, Commun. Math. Phys. 147(2):395–430 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. P. J. Forrester, The spectrum edge of random matrix ensembles, Nuclear Physics B 402:709–728 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. P. J. Forrester, Painlevé transcendent evaluation of the scaled distribution of the smallest eigenvalue in the Laguerre orthogonal and symplectic ensembles, nlin.SI/0005064.

  12. A. B. J. Kuijlaars and M. Vanlessen, Universality for eigenvalue correlations at the origin of the spectrum, Commun. Math. Phys. 243(1):163–191 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. A. B. J. Kuijlaars and M. Vanlessen, Universality for eigenvalue correlations at the origin of the spectrum,Commun. Math.Phys. 243(1):163–191 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. M. L. Mehta, Random Matrices, 2nd Ed., Academic Press, San Diego, 1991.

  15. R. J. Muirhead, Aspects of multivariable statistical theory, Wiley, New York, 1982.

    Google Scholar 

  16. T. Nagao and P. J. Forrester, Asymptotic correlations at the spectrum edge of random matrices, Nuclear Physics B 435:401–420 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. T. Nagao and M. Wadati, Correlation Functions of random matrix ensembles related to classical orthogonal polynomials, J. Phys. Soc. Japan 60:3298–3322 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  18. M. K. Sener and J. J. M. Verbaarschot, Universality in Chiral Random Matrix Theory at β = 1 and β = 4, Physical Review Letters 81(2):248–251 (1998).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. B. Simon, Trace Ideals and Their Applications, London Mathematical Society Lecture Notes Series, 35. Cambridge University Press, Cambridge-New York, 1979.

  20. G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., New York, 1939.

  21. C. A. Tracy and H. Widom, Level-spacing distributions and the Bessel kernel, Commun. Math. Phys. 161(2):289–309 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. C. A. Tracy and H. Widom, Correlation functions, cluster functions, and spacing distributions for random matrices, J. Statist. Phys. 92(5–6):809–835 (1998).

    Google Scholar 

  23. M. Vanlessen, Strong asymptotics of Laguerre-type orthogonal polynomials and applications in random matrix theory, Constr. Approx. 25:125–175 (2007),math.CA/0504604.

  24. J. Verbaarschot, The spectrum of the QCD Dirac operator and chiral random matrix theory: the threefold way, Phys. Rev. Lett. 72:2531–2533.

  25. H. Widom, On the relation between orthogonal, symplectic and unitary matrix ensembles, J. Stat. Phys. 94(3–4):347–363 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Deift.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deift, P., Gioev, D., Kriecherbauer, T. et al. Universality for Orthogonal and Symplectic Laguerre-Type Ensembles. J Stat Phys 129, 949–1053 (2007). https://doi.org/10.1007/s10955-007-9325-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9325-x

KEY WORDS

Navigation