Skip to main content

Advertisement

Log in

Phenotypic subregions within the split-hand/foot malformation 1 locus

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Split-hand/foot malformation 1 (SHFM1) is caused by chromosomal aberrations involving the region 7q21.3, DLX5 mutation, and dysregulation of DLX5/DLX6 expression by long-range position effects. SHFM1 can be isolated or syndromic with incomplete penetrance and a highly variable clinical expression, possibly influenced by sex and imprinting. We report on a new family with five affected individuals with syndromic SHFM1 that includes split-hand/foot malformations, hearing loss, and craniofacial anomalies, and an inv(7)(q21.3q35) present both in the proband and her affected son. The proximal inversion breakpoint, identified by next generation mate-pair sequencing, truncates the SHFM1 locus within the regulatory region of DLX5/6 expression. Through genotype-phenotype correlations of 100 patients with molecularly characterized chromosomal aberrations from 32 SHFM1 families, our findings suggest three phenotypic subregions within the SHFM1 locus associated with (1) isolated SHFM, (2) SHFM and hearing loss, and (3) SHFM, hearing loss, and craniofacial anomalies, respectively (ranked for increasing proximity to DLX5/6), and encompassing previously reported tissue-specific enhancers for DLX5/6. This uniquely well-characterized cohort of SHFM1 patients allowed us to systematically analyze the recently suggested hypothesis of skewed transmission and to confirm a higher penetrance in males vs. females in a subgroup of patients with isolated SHFM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acampora D, Merlo GR, Paleari L, Zerega B, Postiglione MP, Mantero S, Bober E, Barbieri O, Simeone A, Levi G (1999) Craniofacial, vestibular and bone defects in mice lacking the Distal-less-related gene Dlx5. Development 126:3795–3809

    CAS  PubMed  Google Scholar 

  • Babak T, DeVeale B, Tsang EK, Zhou Y, Li X, Smith KS, Kukurba KR, Zhang R, Li JB, van der Kooy D, Montgomery SB, Fraser HB (2015) Genetic conflict reflected in tissue-specific maps of genomic imprinting in human and mouse. Nat Genet 47:544–549. doi:10.1038/ng.3274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baran Y, Subramaniam M, Biton A, Tukiainen T, Tsang EK, Rivas MA, Pirinen M, Gutierrez-Arcelus M, Smith KS, Kukurba KR, Zhang R, Eng C, Torgerson DG, Urbanek C, Li JB, Rodriguez-Santana JR, Burchard EG, Seibold MA, MacArthur DG, Montgomery SB, Zaitlen NA, Lappalainen T (2015) The landscape of genomic imprinting across diverse adult human tissues. Genome Res 25:927–936. doi:10.1101/gr.192278.115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Belloso JM, Bache I, Guitart M, Caballin MR, Halgren C, Kirchhoff M, Ropers HH, Tommerup N, Tumer Z (2007) Disruption of the CNTNAP2 gene in a t(7;15) translocation family without symptoms of Gilles de la Tourette syndrome. Eur J Hum Genet 15:711–713. doi:10.1038/sj.ejhg.5201824

    Article  CAS  PubMed  Google Scholar 

  • Bernardini L, Palka C, Ceccarini C, Capalbo A, Bottillo I, Mingarelli R, Novelli A, Dallapiccola B (2008) Complex rearrangement of chromosomes 7q21.13-q22.1 confirms the ectrodactyly-deafness locus and suggests new candidate genes. Am J Med Genet A 146a:238–244. doi:10.1002/ajmg.a.32093

    Article  CAS  PubMed  Google Scholar 

  • Birnbaum RY, Clowney EJ, Agamy O, Kim MJ, Zhao J, Yamanaka T, Pappalardo Z, Clarke SL, Wenger AM, Nguyen L, Gurrieri F, Everman DB, Schwartz CE, Birk OS, Bejerano G, Lomvardas S, Ahituv N (2012a) Coding exons function as tissue-specific enhancers of nearby genes. Genome Res 22:1059–1068. doi:10.1101/gr.133546.111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Birnbaum RY, Everman DB, Murphy KK, Gurrieri F, Schwartz CE, Ahituv N (2012b) Functional characterization of tissue-specific enhancers in the DLX5/6 locus. Hum Mol Genet 21:4930–4938. doi:10.1093/hmg/dds336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown KK, Reiss JA, Crow K, Ferguson HL, Kelly C, Fritzsch B, Morton CC (2010) Deletion of an enhancer near DLX5 and DLX6 in a family with hearing loss, craniofacial defects, and an inv(7)(q21.3q35). Hum Genet 127:19–31. doi:10.1007/s00439-009-0736-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cho KK, Hoch R, Lee AT, Patel T, Rubenstein JL, Sohal VS (2015) Gamma rhythms link prefrontal interneuron dysfunction with cognitive inflexibility in Dlx5/6(+/-) mice. Neuron 85:1332–1343. doi:10.1016/j.neuron.2015.02.019

    Article  CAS  PubMed  Google Scholar 

  • Cobben JM, Verheij JB, Eisma WH, Robinson PH, Zwierstra RP, Leegte B, Castedo S (1995) Bilateral split hand/foot malformation and inv(7)(p22q21.3). J Med Genet 32:375–378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crackower MA, Scherer SW, Rommens JM, Hui CC, Poorkaj P, Soder S, Cobben JM, Hudgins L, Evans JP, Tsui LC (1996) Characterization of the split hand/split foot malformation locus SHFM1 at 7q21.3-q22.1 and analysis of a candidate gene for its expression during limb development. Hum Mol Genet 5:571–579

    Article  CAS  PubMed  Google Scholar 

  • Delgado S, Velinov M (2015) 7q21.3 Deletion involving enhancer sequences within the gene DYNC1I1 presents with intellectual disability and split hand-split foot malformation with decreased penetrance. Mol Cytogenet 8:37. doi:10.1186/s13039-015-0139-2

    Article  PubMed Central  PubMed  Google Scholar 

  • Duijf PH, van Bokhoven H, Brunner HG (2003) Pathogenesis of split-hand/split-foot malformation. Hum Mol Genet 12(Spec No 1):R51–R60

    Article  CAS  PubMed  Google Scholar 

  • Elliott AM, Evans JA (2006) Genotype-phenotype correlations in mapped split hand foot malformation (SHFM) patients. Am J Med Genet A 140:1419–1427. doi:10.1002/ajmg.a.31244

    Article  PubMed  Google Scholar 

  • Everman D, Morgan C, Clarkson K, Gurrieri F, McAuliffe F, Chitayat D, Stevenson R, Schwartz C (2005) Submicroscopic rearrangements involving the SHFM1 locus on chromosome 7q21-22 are associated with split-hand/foot malformation and sensorineural hearing loss. In: Proceedings of the Greenwood Genetic Center 2005, pp 137

  • Fonseca AC, Bonaldi A, Bertola DR, Kim CA, Otto PA, Vianna-Morgante AM (2013) The clinical impact of chromosomal rearrangements with breakpoints upstream of the SOX9 gene: two novel de novo balanced translocations associated with acampomelic campomelic dysplasia. BMC Med Genet 14:50. doi:10.1186/1471-2350-14-50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Genuardi M, Pomponi MG, Sammito V, Bellussi A, Zollino M, Neri G (1993) Split hand/split foot anomaly in a family segregating a balanced translocation with breakpoint on 7q22.1. Am J Med Genet 47:823–831. doi:10.1002/ajmg.1320470606

    Article  CAS  PubMed  Google Scholar 

  • Ghanem N, Jarinova O, Amores A, Long Q, Hatch G, Park BK, Rubenstein JL, Ekker M (2003) Regulatory roles of conserved intergenic domains in vertebrate Dlx bigene clusters. Genome Res 13:533–543. doi:10.1101/gr.716103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gregor A, Albrecht B, Bader I, Bijlsma EK, Ekici AB, Engels H, Hackmann K, Horn D, Hoyer J, Klapecki J, Kohlhase J, Maystadt I, Nagl S, Prott E, Tinschert S, Ullmann R, Wohlleber E, Woods G, Reis A, Rauch A, Zweier C (2011) Expanding the clinical spectrum associated with defects in CNTNAP2 and NRXN1. BMC Med Genet 12:106. doi:10.1186/1471-2350-12-106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gurrieri F, Everman DB (2013) Clinical, genetic, and molecular aspects of split-hand/foot malformation: an update. Am J Med Genet A 161a:2860–2872. doi:10.1002/ajmg.a.36239

    Article  PubMed  Google Scholar 

  • Haberlandt E, Loffler J, Hirst-Stadlmann A, Stockl B, Judmaier W, Fischer H, Heinz-Erian P, Muller T, Utermann G, Smith RJ, Janecke AR (2001) Split hand/split foot malformation associated with sensorineural deafness, inner and middle ear malformation, hypodontia, congenital vertical talus, and deletion of eight microsatellite markers in 7q21.1-q21.3. J Med Genet 38:405–409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hasegawa T, Hasegawa Y, Asamura S, Nagai T, Tsuchiya Y, Ninomiya M, Fukushima Y (1991) EEC syndrome (ectrodactyly, ectodermal dysplasia and cleft lip/palate) with a balanced reciprocal translocation between 7q11.21 and 9p12 (or 7p11.2 and 9q12) in three generations. Clin Genet 40:202–206

    Article  CAS  PubMed  Google Scholar 

  • Hosmer DW Jr, Lemeshow Stanley, Sturdivant RX (2013) Applied logistic regression, 3rd edn. Wiley, New York

    Book  Google Scholar 

  • Jarvik GP, Patton MA, Homfray T, Evans JP (1994) Non-Mendelian transmission in a human developmental disorder: split hand/split foot. Am J Hum Genet 55:710–713

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kouwenhoven EN, van Heeringen SJ, Tena JJ, Oti M, Dutilh BE, Alonso ME, de la Calle-Mustienes E, Smeenk L, Rinne T, Parsaulian L, Bolat E, Jurgelenaite R, Huynen MA, Hoischen A, Veltman JA, Brunner HG, Roscioli T, Oates E, Wilson M, Manzanares M, Gomez-Skarmeta JL, Stunnenberg HG, Lohrum M, van Bokhoven H, Zhou H (2010) Genome-wide profiling of p63 DNA-binding sites identifies an element that regulates gene expression during limb development in the 7q21 SHFM1 locus. PLoS Genet 6:e1001065. doi:10.1371/journal.pgen.1001065

    Article  PubMed Central  PubMed  Google Scholar 

  • Lango Allen H, Caswell R, Xie W, Xu X, Wragg C, Turnpenny PD, Turner CL, Weedon MN, Ellard S (2014) Next generation sequencing of chromosomal rearrangements in patients with split-hand/split-foot malformation provides evidence for DYNC1I1 exonic enhancers of DLX5/6 expression in humans. J Med Genet 51:264–267. doi:10.1136/jmedgenet-2013-102142

    Article  PubMed Central  PubMed  Google Scholar 

  • Lo Iacono N, Mantero S, Chiarelli A, Garcia E, Mills AA, Morasso MI, Costanzo A, Levi G, Guerrini L, Merlo GR (2008) Regulation of Dlx5 and Dlx6 gene expression by p63 is involved in EEC and SHFM congenital limb defects. Development 135:1377–1388. doi:10.1242/dev.011759

    Article  CAS  PubMed  Google Scholar 

  • Lupianez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, Horn D, Kayserili H, Opitz JM, Laxova R, Santos-Simarro F, Gilbert-Dussardier B, Wittler L, Borschiwer M, Haas SA, Osterwalder M, Franke M, Timmermann B, Hecht J, Spielmann M, Visel A, Mundlos S (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:1012–1025. doi:10.1016/j.cell.2015.04.004

    Article  CAS  PubMed  Google Scholar 

  • Marinoni JC, Stevenson RE, Evans JP, Geshuri D, Phelan MC, Schwartz CE (1995) Split foot and developmental retardation associated with a deletion of three microsatellite markers in 7q21.2-q22.1. Clin Genet 47:90–95

    Article  CAS  PubMed  Google Scholar 

  • Merlo GR, Paleari L, Mantero S, Genova F, Beverdam A, Palmisano GL, Barbieri O, Levi G (2002) Mouse model of split hand/foot malformation type I. Genesis 33:97–101. doi:10.1002/gene.10098

    Article  CAS  PubMed  Google Scholar 

  • Morison IM, Paton CJ, Cleverley SD (2001) The imprinted gene and parent-of-origin effect database. Nucleic Acids Res 29:275–276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Naritomi K, Izumikawa Y, Tohma T, Hirayama K (1993) Inverted insertion of chromosome 7q and ectrodactyly. Am J Med Genet 46:492–493. doi:10.1002/ajmg.1320460505

    Article  CAS  PubMed  Google Scholar 

  • Nazaryan L, Stefanou EG, Hansen C, Kosyakova N, Bak M, Sharkey FH, Mantziou T, Papanastasiou AD, Velissariou V, Liehr T, Syrrou M, Tommerup N (2014) The strength of combined cytogenetic and mate-pair sequencing techniques illustrated by a germline chromothripsis rearrangement involving FOXP2. Eur J Hum Genet 22:338–343. doi:10.1038/ejhg.2013.147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Obenauf AC, Schwarzbraun T, Auer M, Hoffmann EM, Waldispuehl-Geigl J, Ulz P, Gunther B, Duba HC, Speicher MR, Geigl JB (2010) Mapping of balanced chromosome translocation breakpoints to the basepair level from microdissected chromosomes. J Cell Mol Med 14:2078–2084. doi:10.1111/j.1582-4934.2010.01116.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M, Minovitsky S, Dubchak I, Holt A, Lewis KD, Plajzer-Frick I, Akiyama J, De Val S, Afzal V, Black BL, Couronne O, Eisen MB, Visel A, Rubin EM (2006) In vivo enhancer analysis of human conserved non-coding sequences. Nature 444:499–502. doi:10.1038/nature05295

    Article  CAS  PubMed  Google Scholar 

  • Rattanasopha S, Tongkobpetch S, Srichomthong C, Kitidumrongsook P, Suphapeetiporn K, Shotelersuk V (2014) Absent expression of the osteoblast-specific maternally imprinted genes, DLX5 and DLX6, causes split hand/split foot malformation type I. J Med Genet. doi:10.1136/jmedgenet-2014-102576

    PubMed  Google Scholar 

  • Robledo RF, Rajan L, Li X, Lufkin T (2002) The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev 16:1089–1101. doi:10.1101/gad.988402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodenas-Cuadrado P, Ho J, Vernes SC (2013) Shining a light on CNTNAP2: complex functions to complex disorders. Eur J Hum Genet. doi:10.1038/ejhg.2013.100

    PubMed Central  PubMed  Google Scholar 

  • Saitsu H, Kurosawa K, Kawara H, Eguchi M, Mizuguchi T, Harada N, Kaname T, Kano H, Miyake N, Toda T, Matsumoto N (2009) Characterization of the complex 7q21.3 rearrangement in a patient with bilateral split-foot malformation and hearing loss. Am J Med Genet A 149a:1224–1230. doi:10.1002/ajmg.a.32877

    Article  CAS  PubMed  Google Scholar 

  • Scherer SW, Poorkaj P, Allen T, Kim J, Geshuri D, Nunes M, Soder S, Stephens K, Pagon RA, Patton MA et al (1994a) Fine mapping of the autosomal dominant split hand/split foot locus on chromosome 7, band q21.3-q22.1. Am J Hum Genet 55:12–20

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scherer SW, Poorkaj P, Massa H, Soder S, Allen T, Nunes M, Geshuri D, Wong E, Belloni E, Little S et al (1994b) Physical mapping of the split hand/split foot locus on chromosome 7 and implication in syndromic ectrodactyly. Hum Mol Genet 3:1345–1354

    Article  CAS  PubMed  Google Scholar 

  • Shamseldin HE, Faden MA, Alashram W, Alkuraya FS (2012) Identification of a novel DLX5 mutation in a family with autosomal recessive split hand and foot malformation. J Med Genet 49:16–20. doi:10.1136/jmedgenet-2011-100556

    Article  PubMed  Google Scholar 

  • Sharland M, Patton MA, Hill L (1991) Ectrodactyly of hands and feet in a child with a complex translocation including 7q21.2. Am J Med Genet 39:413–414. doi:10.1002/ajmg.1320390410

    Article  CAS  PubMed  Google Scholar 

  • Sowinska-Seidler A, Badura-Stronka M, Latos-Bielenska A, Stronka M, Jamsheer A (2014a) Heterozygous DLX5 nonsense mutation associated with isolated split-hand/foot malformation with reduced penetrance and variable expressivity in two unrelated families. Birth Defects Res A Clin Mol Teratol. doi:10.1002/bdra.23298

    PubMed  Google Scholar 

  • Sowinska-Seidler A, Socha M, Jamsheer A (2014b) Split-hand/foot malformation - molecular cause and implications in genetic counseling. J Appl Genet 55:105–115. doi:10.1007/s13353-013-0178-5

    Article  PubMed Central  PubMed  Google Scholar 

  • Tackels-Horne D, Toburen A, Sangiorgi E, Gurrieri F, de Mollerat X, Fischetto R, Causio F, Clarkson K, Stevenson RE, Schwartz CE (2001) Split hand/split foot malformation with hearing loss: first report of families linked to the SHFM1 locus in 7q21. Clin Genet 59:28–36

    Article  CAS  PubMed  Google Scholar 

  • Tayebi N, Jamsheer A, Flottmann R, Sowinska-Seidler A, Doelken SC, Oehl-Jaschkowitz B, Hulsemann W, Habenicht R, Klopocki E, Mundlos S, Spielmann M (2014) Deletions of exons with regulatory activity at the DYNC1I1 locus are associated with split-hand/split-foot malformation: array CGH screening of 134 unrelated families. Orphanet J Rare Dis 9:108. doi:10.1186/s13023-014-0108-6

    Article  PubMed Central  PubMed  Google Scholar 

  • Tzschach A, Menzel C, Erdogan F, Schubert M, Hoeltzenbein M, Barbi G, Petzenhauser C, Ropers HH, Ullmann R, Kalscheuer V (2007) Characterization of a 16 Mb interstitial chromosome 7q21 deletion by tiling path array CGH. Am J Med Genet A 143:333–337. doi:10.1002/ajmg.a.31601

    Article  PubMed  Google Scholar 

  • van Silfhout AT, van den Akker PC, Dijkhuizen T, Verheij JB, Olderode-Berends MJ, Kok K, Sikkema-Raddatz B, van Ravenswaaij-Arts CM (2009) Split hand/foot malformation due to chromosome 7q aberrations(SHFM1): additional support for functional haploinsufficiency as the causative mechanism. Eur J Hum Genet 17:1432–1438. doi:10.1038/ejhg.2009.72

    Article  PubMed Central  PubMed  Google Scholar 

  • Velinov M, Ahmad A, Brown-Kipphut B, Shafiq M, Blau J, Cooma R, Roth P, Iqbal MA (2012) A 0.7 Mb de novo duplication at 7q21.3 including the genes DLX5 and DLX6 in a patient with split-hand/split-foot malformation. Am J Med Genet A 158a:3201–3206. doi:10.1002/ajmg.a.35644

    Article  PubMed  Google Scholar 

  • Vera-Carbonell A, Moya-Quiles MR, Ballesta-Martinez M, Lopez-Gonzalez V, Bafalliu JA, Guillen-Navarro E, Lopez-Exposito I (2012) Rapp–Hodgkin syndrome and SHFM1 patients: delineating the p63-Dlx5/Dlx6 pathway. Gene 497:292–297. doi:10.1016/j.gene.2012.01.088

    Article  CAS  PubMed  Google Scholar 

  • Verzi MP, Agarwal P, Brown C, McCulley DJ, Schwarz JJ, Black BL (2007) The transcription factor MEF2C is required for craniofacial development. Dev Cell 12:645–652. doi:10.1016/j.devcel.2007.03.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Xin Q, Li L, Li J, Zhang C, Qiu R, Qian C, Zhao H, Liu Y, Shan S, Dang J, Bian X, Shao C, Gong Y, Liu Q (2014) Exome sequencing reveals a heterozygous DLX5 mutation in a Chinese family with autosomal-dominant split-hand/foot malformation. Eur J Hum Genet 22:1105–1110. doi:10.1038/ejhg.2014.7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wieland I, Muschke P, Jakubiczka S, Volleth M, Freigang B, Wieacker PF (2004) Refinement of the deletion in 7q21.3 associated with split hand/foot malformation type 1 and Mondini dysplasia. J Med Genet 41:e54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zerucha T, Stuhmer T, Hatch G, Park BK, Long Q, Yu G, Gambarotta A, Schultz JR, Rubenstein JL, Ekker M (2000) A highly conserved enhancer in the Dlx5/Dlx6 intergenic region is the site of cross-regulatory interactions between Dlx genes in the embryonic forebrain. J Neurosci 20:709–721

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the patients who participated in the study. The project was hosted by Wilhelm Johannsen Centre for Functional Genome Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanna D. Rendtorff.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Funding

This study was funded by the Oticon Foundation, and Widex AS, to LT, The Danish Medical Association Research Fund (2011-3271/480853-62), The Lundbeck Foundation (2013-14290), the UCPH Programme for Interdisciplinary Research (Global Genes, Local Concerns) and The Danish Council for Independent Research - Medical Sciences (4183-00482B) to NT.

Informed consent

Informed consent was obtained from all individual participants included in the study. Additional informed consent was obtained from all individual participants for whom identifying information is included in this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

439_2016_1635_MOESM1_ESM.pdf

Supplementary Clinical data: Detailed clinical description of individual III:2 and IV:1 in the present family, including audiogram for both individuals. (PDF 103 kb)

439_2016_1635_MOESM2_ESM.pdf

Supplementary Fig. S1 Inversion breakpoint-junctions in the present family Sequences of inversion breakpoint junctions at 7q21.3 and 7q35, respectively, compared with reference sequence. a) 7q21.3 breakpoint spanning sequences from III:2 (middle line). b) 7q35 breakpoint spanning sequences from III:2 (middle line). Microhomology regions at the junctions are boxed. The position of a SNP (rs12673393) present in III:2 is underlined. (PDF 73 kb)

439_2016_1635_MOESM3_ESM.pdf

Supplementary Table S1 Genotype–phenotype data on a total of 36 SHFM1 families with molecularly characterized chromosomal aberrations and point mutations Genotype–phenotype data on the present family and 35 previously reported SHFM1 families with molecularly characterized chromosomal aberrations and point mutations presented chronologically. (PDF 101 kb)

439_2016_1635_MOESM4_ESM.xlsx

Supplementary Table S2 Data on sex and transmission pattern in 100 patients from 32 SHFM1 families with molecularly characterized chromosomal aberrations (XLSX 120 kb)

439_2016_1635_MOESM5_ESM.xlsx

Supplementary Table S3 Enhancers and DNA Markers within the SHFM1 locus S3a) Previously reported tissue-specific enhancers within the SHFM1 locus including: Human genomic position of the enhancers (hg19); Nature of functional study; Tissue-specific expression; Additional functional studies including proximity mapping; References. S3b) DNA Markers used for mapping of breakpoints on chromosome 7q21.3 in SHFM1 patients. (XLSX 128 kb)

439_2016_1635_MOESM6_ESM.pdf

Supplementary Fig. S2 Schematic illustration of physical interactions between previously identified regulatory elements and genes at the SHFM1 locus on chromosome 7q21.3 Previously reported tissue-specific enhancers are shown in the same color as in Fig. 3b. Above the line: Black arrows indicate physical interaction between enhancers and genes, or between enhancers, identified by three-dimensional proximity-mapping such as chromatin conformation capture (3C) or DNA fluorescent in situ hybridization (FISH). The red P illustrates the promotor region of DLX5 and DLX6. Below the line: Gray arrows indicate genetic interaction as described by Verzi et al. (Verzi et al. 2007) including a feed-forward transcriptional circuit between MEF2C and Dlx5/6, and the synergistically activation of the Mef2-BA enhancer by MEF2C and Dlx5. (PDF 329 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasmussen, M.B., Kreiborg, S., Jensen, P. et al. Phenotypic subregions within the split-hand/foot malformation 1 locus. Hum Genet 135, 345–357 (2016). https://doi.org/10.1007/s00439-016-1635-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-016-1635-0

Keywords

Navigation