Skip to main content
Log in

Comparative mapping for bighead carp (Aristichthys nobilis) against model and non-model fishes provides insights into the genomic evolution of cyprinids

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Comparative mapping provides an efficient method to connect genomes of non-model and model fishes. In this study, we used flanking sequences of the 659 microsatellites on a genetic map of bighead carp (Aristichthys nobilis) to comprehensively study syntenic relationships between bighead carp and nine model and non-model fishes. Of the five model and two food fishes with whole genome data, Cyprinus carpio showed the highest rate of positive BLAST hits (95.3 %) with bighead carp map, followed by Danio rerio (70.9 %), Oreochromis niloticus (21.7 %), Tetraodon nigroviridis (6.4 %), Gasterosteus aculeatus (5.2 %), Oryzias latipes (4.7 %) and Fugu rubripes (3.5 %). Chromosomal syntenic analyses showed that inversion was the basic chromosomal rearrangement during genomic evolution of cyprinids, and the extent of inversions and translocations was found to be positively correlated with evolutionary relationships among fishes studied. Among the five investigated cyprinids, linkage groups (LGs) of bighead carp, Hypophthalmichthys molitrix and Ctenopharyngodon idella exhibited a one-to-one relationship. Besides, LG 9 of bighead carp and homologous LGs of silver carp and grass carp all corresponded to the chromosomes 10 and 22 of zebrafish, suggesting that chromosomal fission may have occurred in the ancestor of zebrafish. On the other hand, LGs of bighead carp and common carp showed an approximate one-to-two relationship with extensive translocations, confirming the occurrence of a 4th whole genome duplication in common carp. This study provides insights into the understanding of genome evolution among cyprinids and would aid in transferring positional and functional information of genes from model fish like zebrafish to non-model fish like bighead carp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allendorf FW, Thorgaard GH (1984) Tetraploidy and the evolution of salmonid fishes. In: Turner BJ (ed) Evolutionary genetics of fishes. Springer, US, pp 1–53

    Chapter  Google Scholar 

  • Araneda C, Diaz NF, Gomez G, Lopez ME, Iturra P (2012) Comparative mapping reveals quantitative trait loci that affect spawning time in coho salmon (Oncorhynchus kisutch). Genet Mol Biol 35(2):515–521. doi:10.1590/S1415-47572012000300019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brenna-Hansen S, Li J, Kent MP, Boulding EG, Dominik S, Davidson WS, Lien S (2012) Chromosomal differences between European and North American Atlantic salmon discovered by linkage mapping and supported by fluorescence in situ hybridization analysis. BMC Genomics 13:432. doi:10.1186/1471-2164-13-432

    Article  PubMed Central  PubMed  Google Scholar 

  • Brunet FG, Roest Crollius H, Paris M, Aury JM, Gibert P, Jaillon O, Laudet V, Robinson-Rechavi M (2006) Gene loss and evolutionary rates following whole-genome duplication in teleost fishes. Mol Biol Evol 23(9):1808–1816. doi:10.1093/molbev/msl049

    Article  CAS  PubMed  Google Scholar 

  • David L, Blum S, Feldman MW, Lavi U, Hillel J (2003) Recent duplication of the common carp (Cyprinus carpio L.) genome as revealed by analyses of microsatellite loci. Mol Biol Evol 20(9):1425–1434. doi:10.1093/molbev/msg173

    Article  CAS  PubMed  Google Scholar 

  • Friedman R, Hughes AL (2001) Pattern and timing of gene duplication in animal genomes. Genome Res 11(11):1842–1847. doi:10.1101/gr.200601

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gates MA, Kim L, Egan ES, Cardozo T, Sirotkin HI, Dougan ST, Lashkari D, Abagyan R, Schier AF, Talbot WS (1999) A genetic linkage map for zebrafish: comparative analysis and localization of genes and expressed sequences. Genome Res 9(4):334–347

    CAS  PubMed  Google Scholar 

  • Guo W, Tong J, Yu X, Zhu C, Feng X, Fu B, He S, Zeng F, Wang X, Liu H, Liu L (2013) A second generation genetic linkage map for silver carp (Hypophthalmichthys molitrix) using microsatellite markers. Aquaculture 412–413:97–106

    Article  Google Scholar 

  • Guyomard R, Boussaha M, Krieg F, Hervet C, Quillet E (2012) A synthetic rainbow trout linkage map provides new insights into the salmonid whole genome duplication and the conservation of synteny among teleosts. BMC Genet 13:15. doi:10.1186/1471-2156-13-15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biemont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigo R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quetier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431(7011):946–957. doi:10.1038/nature03025

    Article  PubMed  Google Scholar 

  • Kai W, Kikuchi K, Fujita M, Suetake H, Fujiwara A, Yoshiura Y, Ototake M, Venkatesh B, Miyaki K, Suzuki Y (2005) A genetic linkage map for the tiger pufferfish, Takifugu rubripes. Genetics 171(1):227–238. doi:10.1534/genetics.105.042051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, Hashimoto S, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin IT, Takeda H, Morishita S, Kohara Y (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447(7145):714–719. doi:10.1038/nature05846

    Article  CAS  PubMed  Google Scholar 

  • Katagiri T, Kidd C, Tomasino E, Davis JT, Wishon C, Stern JE, Carleton KL, Howe AE, Kocher TD (2005) A BAC-based physical map of the Nile tilapia genome. BMC Genomics 6:89. doi:10.1186/1471-2164-6-89

    Article  PubMed Central  PubMed  Google Scholar 

  • Kuhl H, Beck A, Wozniak G, Canario AV, Volckaert FA, Reinhardt R (2010) The European sea bass Dicentrarchus labrax genome puzzle: comparative BAC-mapping and low coverage shotgun sequencing. BMC Genomics 11:68. doi:10.1186/1471-2164-11-68

    Article  PubMed Central  PubMed  Google Scholar 

  • Larhammar D, Risinger C (1994) Molecular genetic aspects of tetraploidy in the common carp Cyprinus carpio. Mol Phylogenet Evol 3(1):59–68. doi:10.1006/mpev.1994.1007

    Article  CAS  PubMed  Google Scholar 

  • Li J, Boroevich KA, Koop BF, Davidson WS (2011) Comparative genomics identifies candidate genes for infectious salmon anemia (ISA) resistance in Atlantic salmon (Salmo salar). Mar Biotechnol 13(2):232–241. doi:10.1007/s10126-010-9284-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lien S, Gidskehaug L, Moen T, Hayes BJ, Berg PR, Davidson WS, Omholt SW, Kent MP (2011) A dense SNP-based linkage map for Atlantic salmon (Salmo salar) reveals extended chromosome homeologies and striking differences in sex-specific recombination patterns. BMC Genomics 12:615. doi:10.1186/1471-2164-12-615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu JH, Zhang Y, Chang YM, Liang LQ, Lu CY, Zhang XF, Xu MJ, Sun XW (2009) Mapping QTLs related to head length, eye diameter and eye cross of common carp (Cyprinus carpio L.). Hereditas 31(5):508–514

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290(5494):1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Nakatani Y, Takeda H, Kohara Y, Morishita S (2007) Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 17(9):1254–1265. doi:10.1101/gr.6316407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Naruse K, Tanaka M, Mita K, Shima A, Postlethwait J, Mitani H (2004) A medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res 14(5):820–828. doi:10.1101/gr.2004004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Postlethwait JH, Yan YL, Gates MA, Horne S, Amores A, Brownlie A, Donovan A, Egan ES, Force A, Gong Z, Goutel C, Fritz A, Kelsh R, Knapik E, Liao E, Paw B, Ransom D, Singer A, Thomson M, Abduljabbar TS, Yelick P, Beier D, Joly JS, Larhammar D, Rosa F, Westerfield M, Zon LI, Johnson SL, Talbot WS (1998) Vertebrate genome evolution and the zebrafish gene map. Nat Genet 18(4):345–349. doi:10.1038/ng0498-345

    Article  CAS  PubMed  Google Scholar 

  • Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS (2000) Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10(12):1890–1902

    Article  CAS  PubMed  Google Scholar 

  • Quiniou SM, Waldbieser GC, Duke MV (2007) A first generation BAC-based physical map of the channel catfish genome. BMC Genome 8:40. doi:10.1186/1471-2164-8-40

    Article  Google Scholar 

  • Rexroad CE 3rd, Palti Y, Gahr SA, Vallejo RL (2008) A second generation genetic map for rainbow trout (Oncorhynchus mykiss). BMC Genet 9:74. doi:10.1186/1471-2156-9-74

    Article  PubMed Central  PubMed  Google Scholar 

  • Saitoh K, Sado T, Mayden RL, Hanzawa N, Nakamura K, Nishida M, Miya M (2006) Mitogenomic evolution and interrelationships of the Cypriniformes (Actinopterygii: Ostariophysi): the first evidence toward resolution of higher-level relationships of the world’s largest freshwater fish clade based on 59 whole mitogenome sequences. J Mol Evol 63(6):826–841. doi:10.1007/s00239-005-0293-y

    Article  CAS  PubMed  Google Scholar 

  • Sarropoulou E, Fernandes JM (2011) Comparative genomics in teleost species: knowledge transfer by linking the genomes of model and non-model fish species. Comp Biochem Physiol Part D Genomics Proteomics 6(1):92–102. doi:10.1016/j.cbd.2010.09.003

    Article  PubMed  Google Scholar 

  • Sarropoulou E, Franch R, Louro B, Power DM, Bargelloni L, Magoulas A, Senger F, Tsalavouta M, Patarnello T, Galibert F, Kotoulas G, Geisler R (2007) A gene-based radiation hybrid map of the gilthead sea bream Sparus aurata refines and exploits conserved synteny with Tetraodon nigroviridis. BMC Genomics 8:44. doi:10.1186/1471-2164-8-44

    Article  PubMed Central  PubMed  Google Scholar 

  • Sarropoulou E, Nousdili D, Magoulas A, Kotoulas G (2008) Linking the genomes of nonmodel teleosts through comparative genomics. Mar Biotechnol 10(3):227–233. doi:10.1007/s10126-007-9066-5

    Article  CAS  PubMed  Google Scholar 

  • Song W, Li Y, Zhao Y, Liu Y, Niu Y, Pang R, Miao G, Liao X, Shao C, Gao F, Chen S (2012a) Construction of a high-density microsatellite genetic linkage map and mapping of sexual and growth-related traits in half-smooth tongue sole (Cynoglossus semilaevis). PLoS One 7(12):e52097. doi:10.1371/journal.pone.0052097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song W, Pang R, Niu Y, Gao F, Zhao Y, Zhang J, Sun J, Shao C, Liao X, Wang L, Tian Y, Chen S (2012b) Construction of high-density genetic linkage maps and mapping of growth-related quantitative trail loci in the Japanese flounder (Paralichthys olivaceus). PLoS One 7(11):e50404. doi:10.1371/journal.pone.0050404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steinke D, Salzburger W, Meyer A (2006) Novel relationships among ten fish model species revealed based on a phylogenomic analysis using ESTs. J Mol Evol 62(6):772–784. doi:10.1007/s00239-005-0170-8

    Article  CAS  PubMed  Google Scholar 

  • Waits ER, Nebert DW (2011) Genetic architecture of susceptibility to PCB126-induced developmental cardiotoxicity in zebrafish. Toxicol Sci 122(2):466–475. doi:10.1093/toxsci/kfr136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Li J, He S (2007) Molecular evidence for the monophyly of East Asian groups of Cyprinidae (Teleostei: Cypriniformes) derived from the nuclear recombination activating gene 2 sequences. Mol Phylogenet Evol 42(1):157–170. doi:10.1016/j.ympev.2006.06.014

    Article  CAS  PubMed  Google Scholar 

  • Wang JT, Li JT, Zhang XF, Sun XW (2012a) Transcriptome analysis reveals the time of the fourth round of genome duplication in common carp (Cyprinus carpio). BMC Genomics 13:96. doi:10.1186/1471-2164-13-96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Gan X, Li J, Mayden RL, He S (2012b) Cyprinid phylogeny based on Bayesian and maximum likelihood analyses of partitioned data: implications for Cyprinidae systematics. Sci China Life Sci 55(9):761–773. doi:10.1007/s11427-012-4366-z

    Article  PubMed  Google Scholar 

  • Woods IG, Kelly PD, Chu F, Ngo-Hazelett P, Yan YL, Huang H, Postlethwait JH, Talbot WS (2000) A comparative map of the zebrafish genome. Genome Res 10(12):1903–1914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woods IG, Wilson C, Friedlander B, Chang P, Reyes DK, Nix R, Kelly PD, Chu F, Postlethwait JH, Talbot WS (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res 15(9):1307–1314. doi:10.1101/gr.4134305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wright D, Nakamichi R, Krause J, Butlin RK (2006) QTL analysis of behavioral and morphological differentiation between wild and laboratory zebrafish (Danio rerio). Behav Genet 36(2):271–284. doi:10.1007/s10519-005-9029-4

    Article  PubMed  Google Scholar 

  • Xia JH, Liu F, Zhu ZY, Fu J, Feng J, Li J, Yue GH (2010) A consensus linkage map of the grass carp (Ctenopharyngodon idella) based on microsatellites and SNPs. BMC Genomics 11:135. doi:10.1186/1471-2164-11-135

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Liang LQ, Chang YM, Hou N, Lu CY, Sun XW (2007) Mapping and genetic effect analysis of quantitative trait loci related to body size in common carp (Cyprinus carpio L.). Hereditas 29(10):1243–1248

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Xu P, Lu C, Kuang Y, Zhang X, Cao D, Li C, Chang Y, Hou N, Li H, Wang S, Sun X (2011) Genetic linkage mapping and analysis of muscle fiber-related QTLs in common carp (Cyprinus carpio L.). Mar Biotechnol 13(3):376–392. doi:10.1007/s10126-010-9307-x

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang Y, Zheng X, Kuang Y, Zhao Z, Zhao L, Li C, Jiang L, Cao D, Lu C, Xu P, Sun X (2013) A consensus linkage map provides insights on genome character and evolution in common carp (Cyprinus carpio L.). Mar Biotechnol 15(3):275–312. doi:10.1007/s10126-012-9485-9

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Kuang Y, Zhang X, Lu C, Cao D, Li C, Sun X (2011) A genetic linkage map and comparative genome analysis of common carp (Cyprinus carpio L.) using microsatellites and SNPs. Mol Genet Genomics 286:261–277. doi:10.1007/s00438-011-0644-x

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Tong J, Yu X, Guo W, Wang X, Liu H, Feng X, Sun Y, Liu L, Fu B (2014) A second generation genetic linkage map for bighead carp (Aristichthys nobilis) based on microsatellite markers. Anim Genet 45:699–708. doi:10.1111/age.12194

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Shunping He, Beide Fu, Yanhong Sun, Xiu Feng, Xinhua Wang and Haiyang Liu for laboratory technical assistance. This work was supported by NSFC (31272647, 31472268), FEBL (2011FBZ20), and MOST 973 (2010CB126305) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingou Tong.

Additional information

Communicated by J. Cerdá.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Supplementary material 1 (XLS 101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Tong, J., Yu, X. et al. Comparative mapping for bighead carp (Aristichthys nobilis) against model and non-model fishes provides insights into the genomic evolution of cyprinids. Mol Genet Genomics 290, 1313–1326 (2015). https://doi.org/10.1007/s00438-015-0992-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-0992-z

Keywords

Navigation