Skip to main content
Log in

QTL Analysis of Behavioral and Morphological Differentiation Between Wild and Laboratory Zebrafish (Danio rerio)

  • Published:
Behavior Genetics Aims and scope Submit manuscript

The zebrafish is an important model organism for neuro-anatomy and developmental genetics. It also offers opportunities for investigating the functional and evolutionary genetics of behaviour but these have yet to be exploited. The ecology of anti-predator behaviour has been widely studied in fish and has been shown to vary among populations and between wild and domesticated (laboratory) fish. Here, we utilise the strong behavioural differences present between a wild-derived strain of fish from Bangladesh and the laboratory strain AB. In total, 184 F2 fish were generated and tested for shoaling tendency and willingness to approach an unfamiliar object (‘boldness’). Our results indicate the existence of QTL for boldness on chromosomes 9 and 16 and suggest another genomic region that influences anti-predator behaviour on chromosome 21. QTL for growth rate, weight and fat content, all of which are elevated in laboratory fish, were detected on chromosome 23. These initial results confirm the potential for QTL mapping of behavioural traits in zebrafish and also for dissecting the consequences of selection during domestication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Akaike H. (1974). A new look at the statistical model identification. IEEE Trans. Autom. Contr. AC-19:716–723

    Article  Google Scholar 

  • Baird T. A., Ryer C. H., Olla B. L. (1991). Social enhancement of foraging on an ephemeral food source in juvenile Wall-eye Pollock, Theragra chalcogramma. Environ. Biol. Fishes 31:307–311

    Article  Google Scholar 

  • Berejikian B. A. (1995). The effects of hatchery and wild ancestry and experience on the relative ability of steelhead trout fry (Oncorhynchus mykiss) to avoid a benthic predator. Can. J. Fish. Aquat. Sci. 52:2476–2482

    Article  Google Scholar 

  • Berejikian B. A., Mathews S. B., Quinn T. P. (1996). Effects of hatchery and wild ancestry and rearing environments on the development of agonistic behaviour in steelhead trout (Oncorhynchus mykiss) fry. Can. J. Fish. Aquat. Sci. 53:2004–2014

    Article  Google Scholar 

  • Budaev S. V. (1997). Personality in the guppy (Poecilia reticluata) : A correlational study of exploratory behaviour and social tendency. J. Comp. Psych. 111:399–411

    Article  Google Scholar 

  • Budaev S. V., Zhuikov A. Y. (1998). Avoidance learning and personality in the guppy (Poecilia reticulata). J. Comp. Psych. 112:92–94

    Article  Google Scholar 

  • Carlborg Ö., Kerje S., Schutz K., Jacobsson L., Jensen P., Andersson L. (2003). A global search revals epistatic interaction between QTL for early growth in the chicken. Genome Res. 13:413–421

    Article  PubMed  CAS  Google Scholar 

  • Churchill G. A., Doerge R. W. (1994). Empirical threshold values for quantitative trait mapping. Genetics 138:964–971

    Google Scholar 

  • Coleman K., Wilson D. S. (1998). Shyness and boldness in pumpkinseed sunfish: Individual differences are context-specific. Anim. Behav. 56:927–936

    Article  PubMed  Google Scholar 

  • Csanyi V. (1985). Ethological analysis of predator avoidance by the paradise fish (Macropodus opercularis L.) I. Recognition and learning of predators. Behaviour 92:227–240

    Google Scholar 

  • Darvasi A. (1998). Experimental strategies for the genetic dissection of complex traits in animal models. Nat. Genet. 18:19–24

    Article  PubMed  CAS  Google Scholar 

  • de Bono M., Bargmann C. I. (1998). Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell 94:679–689

    Article  PubMed  Google Scholar 

  • DeFries J. C., Gervais M. C., Thomas E. A. (1978). Response to 30 generations of selection for open field activity in laboratory mice. Behav. Genet. 8:3–13

    Article  PubMed  CAS  Google Scholar 

  • deVicente M. C., Tanksley S. D. (1993). QTL Analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596

    PubMed  CAS  Google Scholar 

  • Doerge R. W., Churchill G. A. (1996). Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    PubMed  CAS  Google Scholar 

  • Falconer, D. S. and Mackay, T. F. C. (1996). Introduction to quantitative genetics. Prentice Hall

  • Fleming I. A., Einum S. (1997). Experimental tests of genetic divergence of farmed from wild atlantic Salmon due to domestication. ICES J. Marine Sci. 54:1051–1063

    Google Scholar 

  • Flint J. (2003). Analysis of quantitative trait loci that influence animal behaviour. J. Neurobiol. 54:46–77

    Article  PubMed  CAS  Google Scholar 

  • Flint J., Corley J. C., DeFries J. C., Fulker D. W., Gray J. A., Miller S., Collins A. C. (1995). A simple genetic basis for a complex psychological trait in laboratory mice. Science 269:1432–1435

    Article  PubMed  CAS  Google Scholar 

  • Gjedrem T. (2000). Genetic improvement of cold-water fish species. Aquac. Res. 31(1):25–35

    Article  Google Scholar 

  • Hall C. S. (1951). The genetics of behavior handbook of experimental psychology. S. S. Stevens. New York, Wiley

    Google Scholar 

  • Henderson N. D., Turri M. G., DeFries J. C., Flint J. (2004). QTL analysis of multiple behavioral measures of anxiety in mice. Behav. Genet. 34:267–293

    Article  PubMed  Google Scholar 

  • Johnsson J., Petersson E., Jonsson E., Bjornsson B., Jarvi T. (1996). Domestication and growth hormone alter antipredator behaviour and growth patterns in juvenile brown trout, Salmo trutta. Can. J. Fish. Aquat. Sci. 53:1546–1554

    Article  CAS  Google Scholar 

  • Johnsson J. I., Abrahams M. V. (1991). Interbreeding with domestic strain increases foraging under threat of predation in juvenile steelhead trout (Oncorhynchus mykiss): An experimental study. Can. J. Fish. Aquat. Sci. 48:243–247

    Article  Google Scholar 

  • Koide T., Moriwaka K., Ikeda K., Niki H., Shiroishi T. (2000). Multi-phenotype behavioral characterization of inbred strains derived from wild stocks of Mus musculus. Mamm. Gen. 11:664–670

    Article  CAS  Google Scholar 

  • Krause J., Ruxton G. (2002). Living In Groups. Oxford, Oxford University Press

    Google Scholar 

  • Landeau L., Terborgh J. (1986). Oddity and the confusion effect in predation. Anim. Behav. 34:1372–1380

    Article  Google Scholar 

  • Lander E.S., Botstein D. (1989). Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lander E., Kruglyak L. (1995). Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat. Genet. 11:241–247

    Article  PubMed  CAS  Google Scholar 

  • Lankford T. E., Billerbeck J. M., Conover D. O. (2001). Evolution of intrinsic growth and energy acquistion rates ii. Trade-off with vulnerability to predation in Menidia menidia. Evolution 53(9):1873–1881

    Article  Google Scholar 

  • Lincoln S., Daly M., Lander E. S. (1992). Mapping genes controlling quantitative traits with MAPMAKER/QTL 1.1. Whitehead Institute Technical Report, Cambridge, MA

    Google Scholar 

  • Lucas M. D., Drew R. E., Wheeler P. A., Verrell P. A., Thorgaard G. H. (2004). Behavioral differences among rainbow trout clonal lines. Behav. Genet. 34:355–365

    Article  PubMed  Google Scholar 

  • Lynch M., Walsh B. (1998). Genetics and analysis of quantitative traits. Sunderland, MA, Sinauer Associates

    Google Scholar 

  • Magurran A. E. (1990). The inheritance and development of minnow antipredator behavior. Anim. Behav. 39:834–842

    Article  Google Scholar 

  • Magurran A. E., Seghers B. H., Shaw P. W., Carvalho G. R. (1995). The behavioural diversity and evolution of guppy, Poecilia reticulata, populations in Trinidad. Advances in the Study of Behavior. San Diego, Academic Press Inc, pp. 363–439

    Google Scholar 

  • Mather K., Jinks J. L. (1982). Biometrical genetics. Cambridge, Chapman and Hall

    Google Scholar 

  • Nakamichi R., Ukai Y., Kishino H. (2001). Detection of closely linked multiple quantitative trait loci using a genetic algorithm. Genetics 158:463–475

    PubMed  CAS  Google Scholar 

  • Orr H. A. (1998). Testing natural selection vs. genetic drift in phenotypic evolution using quantitative trait locus data. Genetics 149(4):2099–2104

    PubMed  CAS  Google Scholar 

  • Osborne K. A., Robichon A., Burgess E., Butland S., Shaw R. A., Coulthard A., Pereira H. S., Greenspan R. J., Sokolowski M. B. (1997). Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila. Science 277:834–836

    Article  PubMed  CAS  Google Scholar 

  • Pattinson S. (1996). Genetic selection for extensive condition. Appl. Anim. Behav. Sci. 49(1):47–59

    Article  Google Scholar 

  • Pavlov D. S., Kasumyan A. O. (2000). Patterns and mechanisms of schooling behavior in fish: A review. J. Ichthyol. 40:163–231

    Google Scholar 

  • Petersson E., Jarvi T., Steffner N. G., Ragnarsson B. (1996). The effect of domestication on some life history traits of sea trout and atlantic salmon. J. Fish Biol. 48:776–791

    Article  Google Scholar 

  • Pitcher T. J. (1992). Who dares wins: The function and evolution of predator inspection behaviour in fish shoals. Neth. J. Zool. 42:371–391

    Article  Google Scholar 

  • Pitcher T. J., Parrish J. K. (1993). Functions of shoaling behaviour in teleosts Behaviour Of Teleost Fishes TJ Pitcher. London, Chapman and Hall, pp. 363–439

    Google Scholar 

  • Planes S., Romans P. (2004). Evidence of genetic selection for growth in new recruits in marine fish. Mol. Ecol. 13(7):2049–2060

    Article  PubMed  CAS  Google Scholar 

  • Price E. O. (1999). Behavioral development in animals undergoing domestication. Applied Anim. Behav. Sci. 65:245–271

    Article  Google Scholar 

  • Ranta E., Kaitala V. (1991). School size affects individual feeding success in three-spined sticklebacks (Gasterosteus aculeatus). J. Fish Biol. 39:733–737

    Article  Google Scholar 

  • Robison B. D., Wheeler P. A., Sundin K., Sikka P., Thorgaard G. H. (2001). Composite interval mapping reveals a major locus influencing embryonic development rate in rainbow trout (Oncorhyncu mykiss). J. Hered. 92:16–21

    Article  PubMed  CAS  Google Scholar 

  • Robison, B. D., and Rowland. W. (2005). A potential model system for studying the genetics of domestication: behavioral variation among wild and domesticated strains of zebrafish (Danio rerio). Can. J. Fish. Aquat. Sci. 62: 2046–2054

    Article  Google Scholar 

  • Ruzzante D. E., Doyle R. W. (1991). Rapid behavioral changes in medaka (Oryzias–Latipes) caused by selection for competitive and noncompetitive growth. Evolution 45:1936–1946

    Article  Google Scholar 

  • Ruzzante D. E., Doyle R. W. (1993). Evolution of social-behavior in a resource-rich, structured environment – Selection experiments with medaka (Oryzias–Latipes). Evolution 47:456–470

    Article  Google Scholar 

  • Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular cloning: A laboratory manual. Cold Spring Harbour Laboratory Press

  • Sawyer L. A., Hennessy J. M., Pexioto A. A., Kyriacou P. (1997). Natural variation in a drosophila clock gene and temperature compensation. Science 278:2117–2120

    Article  PubMed  CAS  Google Scholar 

  • Shin J. T., Fishman M. C. (2002). From zebrafish to human: Molecular medical models. Ann. Rev. Genom. Hum. Genet. 3:311–340

    Article  CAS  Google Scholar 

  • Tully T. (1996). Discovery of genes involved in learning and memory: An experimental synthesis of Hirschian and Benzerian perspectives. PNAS USA. 93(24):13460–13467

    Article  PubMed  CAS  Google Scholar 

  • Turri M. G., Henderson N. D., DeFries J. C., Flint J. (2001). Quantitative trait locus mapping in laboratory mice derived from a replicated selection experiment for open-field activity. Genetics 158:1217–1226

    PubMed  CAS  Google Scholar 

  • Wright D., Rimmer L., Pritchard V. L., Krause J., Butlin R. K. (2003). Inter and intra-population variation in shoaling and boldness in the zebrafish (Danio rerio). Naturwiss 90:374–377

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Wright.

Appendix

Appendix

 

Appendix A. List of Markers Used for QTL Mapping

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, D., Nakamichi, R., Krause, J. et al. QTL Analysis of Behavioral and Morphological Differentiation Between Wild and Laboratory Zebrafish (Danio rerio). Behav Genet 36, 271–284 (2006). https://doi.org/10.1007/s10519-005-9029-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-005-9029-4

Keywords

Navigation