Skip to main content
Log in

Comparative mapping, genomic structure, and expression analysis of eight pseudo-response regulator genes in Brassica rapa

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Circadian clocks regulate plant growth and development in response to environmental factors. In this function, clocks influence the adaptation of species to changes in location or climate. Circadian-clock genes have been subject of intense study in models such as Arabidopsis thaliana but the results may not necessarily reflect clock functions in species with polyploid genomes, such as Brassica species, that include multiple copies of clock-related genes. The triplicate genome of Brassica rapa retains high sequence-level co-linearity with Arabidopsis genomes. In B. rapa we had previously identified five orthologs of the five known Arabidopsis pseudo-response regulator (PRR) genes that are key regulators of the circadian clock in this species. Three of these B. rapa genes, BrPRR1, BrPPR5, and BrPPR7, are present in two copies each in the B. rapa genome, for a total of eight B. rapa PRR (BrPRR) orthologs. We have now determined sequences and expression characteristics of the eight BrPRR genes and mapped their positions in the B. rapa genome. Although both members of each paralogous pair exhibited the same expression pattern, some variation in their gene structures was apparent. The BrPRR genes are tightly linked to several flowering genes. The knowledge about genome location, copy number variation and structural diversity of these B. rapa clock genes will improve our understanding of clock-related functions in this important crop. This will facilitate the development of Brassica crops for optimal growth in new environments and under changing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acarkan A, Rossberg M, Koch M, Schmidt R (2000) Comparative genome analysis reveals extensive conservation of genome organisation for Arabidopsis thaliana and Capsella rubella. Plant J 23(1):55–62

    Article  PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815

    Article  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16(7):1679–1691

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Barakat A, Guyot R, Cooke R, Delseny M (2000) Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12(7):1093–1101

    Article  PubMed  CAS  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422(6930):433–438

    Article  PubMed  CAS  Google Scholar 

  • Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9:938–950

    Google Scholar 

  • Conner JA, Conner P, Nasrallah ME, Nasrallah JB (1998) Comparative mapping of the Brassica S locus region and its homeolog in Arabidopsis: implications for the evolution of mating systems in the Brassicaceae. Plant Cell 10(5):801–812

    Article  PubMed  CAS  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, Hibberd JM, Millar AJ, Webb AA (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309(5734):630–633

    Article  PubMed  CAS  Google Scholar 

  • Edger PP, Pires JC (2009) Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes. Chromosom Res 17(5):699–717

    Article  CAS  Google Scholar 

  • Edwards KD, Anderson PE, Hall A, Salathia NS, Locke JCW, Lynn JR et al (2006) FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell 18(3):639–650

    Article  PubMed  CAS  Google Scholar 

  • Eriksson ME, Millar AJ (2003) The circadian clock: a plant’s best friend in a spinning world. Plant Physiol 132(2):732–738

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred: II Error probabilities. Genome Res 8(3):186–194

    PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred: I Accuracy assessment. Genome Res 8(3):175–185

    PubMed  CAS  Google Scholar 

  • Gebhardt C, Walkemeier B, Henselewski H, Barakat A, Delseny M, Stüber K (2003) Comparative mapping between potato (Solanum tuberosum) and Arabidopsis thaliana reveals structurally conserved domains and ancient duplications in the potato genome. Plant J 34(4):529–541

    Article  PubMed  CAS  Google Scholar 

  • Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11(5):725–736

    PubMed  CAS  Google Scholar 

  • Gómez-Campo C (1999) Biology of Brassica coenospecies. Elsevier, Amsterdam

    Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8(3):195–202

    PubMed  CAS  Google Scholar 

  • Grant D, Cregan P, Shoemaker RC (2000) Genome organization in dicots: genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. Proc Natl Acad Sci USA 97(8):4168–4173

    Article  PubMed  CAS  Google Scholar 

  • Harmer SL (2009) The circadian system in higher plants. Annu Rev Plant Biol 60:357–377

    Article  PubMed  CAS  Google Scholar 

  • Kim HR, Yang TJ, Kudrna DA, Wing RA (2004) Construction and application of genomic DNA libraries. In: Christou P, Klee H (eds) Handbook of plant biotechnology, vol 1. Wiley, Chichester, pp 71–80

    Google Scholar 

  • Kim JS, Chung TY, King GJ, Jin M, Yang TJ, Jin YM et al (2006) A sequence-tagged linkage map of Brassica rapa. Genetics 174(1):29–39

    Article  PubMed  CAS  Google Scholar 

  • Kim JA, Yang TJ, Kim JS, Park JY, Kwon SJ, Lim MH et al (2007) Isolation of circadian-associated genes in Brassica rapa by comparative genomics with Arabidopsis thaliana. Mol Cells 23:145–153

    PubMed  CAS  Google Scholar 

  • Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17(10):1483–1498

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev Plant Biol 55:141–172

    Article  PubMed  CAS  Google Scholar 

  • Kosambi DD (1943) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kowalski SP, Lan TH, Feldmann KA, Paterson AH (1994) Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization. Genetics 138(2):499–510

    PubMed  CAS  Google Scholar 

  • Ku HM, Vision T, Liu J, Tanksley SD (2000) Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. Proc Natl Acad Sci USA 97(16):9121–9126

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5(2):150–163

    Article  PubMed  CAS  Google Scholar 

  • Lagercrantz U, Lydiate DJ (1996) Comparative genome mapping in Brassica. Genetics 144(4):1903–1910

    PubMed  CAS  Google Scholar 

  • Locke JC, Kozma-Bognár L, Gould PD, Fehér B, Kevei E, Nagy F et al (2006) Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Mol Syst Biol 2:59

    Article  PubMed  Google Scholar 

  • Lou P, Zhao J, Kim JS, Shen S et al (2007) Quantitative loci for flowering time and morphological traits in multiple populations of Brassica rapa. J Exp Bot 58(14):4005–4016

    Article  PubMed  CAS  Google Scholar 

  • Lou P, Xie Q, Xu X, Edwards CE, Brock MT, Weinig C, McClung CR (2011) Genetic architecture of the circadian clock and flowering time in Brassica rapa. Theor Appl Genet 123(3):397–409

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290(5494):1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassicaceae. Genome Res 15(4):516–525

    Article  PubMed  CAS  Google Scholar 

  • Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M et al (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102(15):5454–5459

    Article  PubMed  CAS  Google Scholar 

  • Matsushika A, Makino S, Kojima M, Mizuno T (2000) Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol 41(9):1002–1012

    Article  PubMed  CAS  Google Scholar 

  • McClung CR (2010) A modern circadian clock in the common angiosperm ancestor of monocots and eudicots. BMC Biol 8:55

    Article  PubMed  Google Scholar 

  • Michaels SD, Himelblau E, Kim SY, Schomburg FM, Amasino RM (2005) Integration of flowering signals in winter-annual Arabidopsis. Plant Physiol 137(1):149–156

    Article  PubMed  CAS  Google Scholar 

  • Millar AJ (2004) Input signals to the plant circadian clock. J Exp Bot 55(395):277–283

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452(7190):991–996

    Article  PubMed  CAS  Google Scholar 

  • Mun JH, Kwon SJ, Yang TJ, Seol YJ, Jin M, Kim JA et al (2009) Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 10(10):R111

    Article  PubMed  Google Scholar 

  • Mun JH, Kwon SJ, Seol YJ, Kim JA, Jin M, Kim JS et al (2010) Sequence and structure of Brassica rapa chromosome A3. Genome Biol 11(9):R94

    Article  PubMed  Google Scholar 

  • Murakami M, Ashikari M, Miura K, Yamashino T, Mizuno T (2003) The evolutionarily conserved OsPRR quintet: rice pseudo-response regulators implicated in circadian rhythm. Plant Cell Physiol 44(11):1229–1236

    Article  PubMed  CAS  Google Scholar 

  • Murakami M, Matsushika A, Ashikari M, Yamashino T, Mizuno T (2005) Circadian-associated rice pseudo response regulators (OsPRRs): insight into the control of flowering time. Biosci Biotechnol Biochem 69(2):410–414

    Article  PubMed  CAS  Google Scholar 

  • Murakami M, Tago Y, Yamashino T, Mizuno T (2007) Comparative overviews of clock-associated genes of Arabidopsis thaliana and Oryza sativa. Plant Cell Physiol 48(1):110–121

    Article  PubMed  CAS  Google Scholar 

  • O’Neill CM, Bancroft I (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J 23(2):233–243

    Article  PubMed  Google Scholar 

  • Oh DH, Dassanayake M, Haas JS, Kropornika A, Wright C, d’Urzo MP et al (2010) Genome structures and halophyte-specific gene expression of the extremophile Thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis. Plant Physiol 154(3):1040–1052

    Article  PubMed  CAS  Google Scholar 

  • Park JY, Koo DH, Park JY, Koo DH, Hong CP, Lee SJ et al (2005) Physical mapping and microsynteny of Brassica rapa ssp. pekinensis genome corresponding to a 222 kbp gene-rich region of Arabidopsis chromosome 4 and partially duplicated on chromosome 5. Mol Genet Genomics 274(6):579–588

    Article  PubMed  CAS  Google Scholar 

  • Parkin IA, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171(2):765–781

    Article  PubMed  CAS  Google Scholar 

  • Quiros CF, Grellet F, Sadowski J, Suzuki T, Li G, Wroblewski T (2001) Arabidopsis and Brassica comparative genomics: sequence, structure and gene content in the ABI-Rps2-Ck1 chromosomal segment and related regions. Genetics 157(3):1321–1330

    PubMed  CAS  Google Scholar 

  • Ramírez-Carvajal GA, Morse AM, Davis JM (2008) Transcript profiles of the cytokinin response regulator gene family in Populus imply diverse roles in plant development. New Phytol 177(1):77–89

    PubMed  Google Scholar 

  • Sadowski J, Hu J, Delseny M, Quiros CF (1994) Genetical and physical mapping of an Arabidopsis gene complex in Brassica genomes. Cruciferae Newslett 16:47–48

    Google Scholar 

  • Sadowski J, Gaubier P, Delseny M, Quiros CF (1996) Genetic and physical mapping in Brassica diploid species of a gene cluster defined in Arabidopsis thaliana. Mol Genet Genomics 251(3):298–306

    CAS  Google Scholar 

  • Salathia N, Lynn JR, Millar AJ, King GJ (2007) Detection and resolution of genetic loci affecting circadian period in Brassica oleracea. Theor Appl Genet 114(4):683–692

    Article  PubMed  Google Scholar 

  • Salter MG, Franklin KA, Whitelam GC (2003) Gating of the rapid shade-avoidance response by the circadian clock in plants. Nature 426(6967):680–683

    Article  PubMed  CAS  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF et al (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288(5471):1613–1616

    Article  PubMed  CAS  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11(11):535–542

    Article  PubMed  CAS  Google Scholar 

  • Schranz ME, Windsor AJ, Song BH, Lawton-Rauh A, Mitchell-Olds T (2007) Comparative genetic mapping in Boechera stricta, a close relative of Arabidopsis. Plant Physiol 144(1):286–298

    Article  PubMed  CAS  Google Scholar 

  • Schwartz S, Zhang Z, Frazer KA, Smit A, Riemer C, Bouck J et al (2000) PipMaker—a web server for aligning two genomic DNA sequences. Genome Res 10(4):577–586

    Article  PubMed  CAS  Google Scholar 

  • Somers DE, Webb AA, Pearson M, Kay SA (1998) The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125(3):485–494

    PubMed  CAS  Google Scholar 

  • Suárez-Lopéz P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410(6832):1116–1120

    Article  PubMed  Google Scholar 

  • Takahashi Y, Teshima KM, Yokoi S, Innan H, Shimamoto K (2009) Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proc Natl Acad Sci USA 106:4555–4560

    Google Scholar 

  • Takata N, Saito S, Saito CT, Uemura M (2010) Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of pseudo-response regulators. BMC Evol Biol 10:126

    Article  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tiwari SB, Shen Y, Chang H-C, Hou Y, Harris A, Ma SF, McPartland M, Hymus GJ, Adam L, Marion C et al (2010) The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytol 187:57–66

  • Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR et al (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18(6):1348–1359

    Article  PubMed  CAS  Google Scholar 

  • Ueda HR (2006) Systems biology flowering in the plant clock field. Mol Syst Biol 2:60

    Article  PubMed  Google Scholar 

  • van Ooijen JW, Voorrips RE (2001) JoinMap Version 3.0: software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13(5):555–556

    PubMed  CAS  Google Scholar 

  • Yang TJ, Yu Y, Frisch D, Lee S, Kim HR (2004) Construction of various copy number plasmid vectors and their utility for genome sequencing. Genomics Inform 2:174–179

    Google Scholar 

  • Yang TJ, Kim JS, Lim KB, Kwon SJ, Kim JA, Jin M et al (2005) The Korea Brassica genome project: a glimpse of the Brassica genome based on comparative genome analysis with Arabidopsis. Comp Funct Genomics 6(3):138–146

    Article  PubMed  Google Scholar 

  • Yang TJ, Kim JS, Kwon SJ, Lim KB, Choi BS, Kim JA et al (2006) Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18(6):1339–1347

    Article  PubMed  CAS  Google Scholar 

  • Zeilinger MN, Farre EM, Taylor SR, Kay SA, Doyle FJ (2006) A novel computational model of the circadian clock in Arabidopsis that incorporates PRR7 and PRR9. Mol Syst Biol 2:58

    Article  PubMed  Google Scholar 

  • Zhu HY, Kim DJ, Baek JM, Choi HK, Ellis LC, Kuester H et al (2003) Syntenic relationships between Medicago truncatula and Arabidopsis reveal extensive divergence of genome organization. Plant Physiol 131(3):1018–1026

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from “Research Program for Agricultural Science & Technology Development (Project No. PJ907049)”, National Academy of Agricultural Science and BioGreen 21 Program (project No. PJ008025), the Rural Development Administration, Republic of Korea. We thank Dr. Hans J. Bohnert in University of Illinois for comment about comparison between paralogous genes and editing in English.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung Sun Kim or Chang Hoo Jeon.

Additional information

Communicated by A. Schnittger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1 The quantitative real-time RT-PCR of BrPRR genes mRNA in B. rapa plants grown under a 16-h day/8-h night photoperiod (A) or for 72 h in the light (B). Plant tissues were collected every 3 h and analyzed for the expression of BrPRR genes by quantitative RT–PCR using the gene-specific probes shown in Table 1. qRT-PCR reaction were performed with 3 technical replication using Bio-Rad system and the SYBR Green I master mix in a volume 20ul.

Supplemental Fig. 2 Comparison of the predicted amino acid sequences of all PRR genes in B. rapa using ClustalW2(http://www.ebi.ac.uk/Tools/msa/clustalw2/) in EMBL-EBI web site. The strictly conserved glutamate (E) and the CCT and PRR domains are indicated.

Supplemental Fig. 3 Comparison of the predicted amino acid sequences of PRR3 and its B. rapa ortholog BrPRR3. The strictly conserved glutamate (E) and the CCT and PRR domains are indicated.

Supplemental Fig. 4 Comparison of the predicted amino acid sequences of PRR5 and its two B. rapa orthologs BrPRR5a and BrPRR5b. The strictly conserved glutamate (E) and the CCT and PRR domains are indicated.

Supplemental Fig. 5 Comparison of the predicted amino acid sequences of PRR7 and its two B. rapa orthologs BrPRR7a and BrPRR7b. The strictly conserved glutamate (E) and the CCT and PRR domains are indicated.

Supplemental Fig. 6 Comparison of the predicted amino acid sequences of PRR9 and its B. rapa ortholog BrPRR9. The strictly conserved glutamate (E) and the CCT and PRR domains are indicated.

Supplemental Fig. 7 Comparison of exon–intron structures of PRR3 (A), PRR5 (B), PRR7 (C), and PRR9 (D) with those of orthologous genes in B. rapa. Lines and boxes indicate introns and exons, respectively. Numbers indicate the start positions of the first exon. Coding regions of PRR genes were respectively aligned with their genomic sequences

Supplementary material 1 (DOC 61 kb)

Supplementary material 2 (TIFF 2271 kb)

Supplementary material 3 (TIFF 1073 kb)

Supplementary material 4 (TIFF 2759 kb)

Supplementary material 5 (TIFF 3177 kb)

Supplementary material 6 (TIFF 4036 kb)

Supplementary material 7 (TIFF 2595 kb)

Supplementary material 8 (TIFF 573 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.A., Kim, J.S., Hong, J.K. et al. Comparative mapping, genomic structure, and expression analysis of eight pseudo-response regulator genes in Brassica rapa . Mol Genet Genomics 287, 373–388 (2012). https://doi.org/10.1007/s00438-012-0682-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-012-0682-z

Keywords

Navigation