Skip to main content
Log in

Physical mapping and microsynteny of Brassica rapa ssp. pekinensis genome corresponding to a 222 kbp gene-rich region of Arabidopsis chromosome 4 and partially duplicated on chromosome 5

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

We constructed a bacterial artificial chromosome (BAC) library, designated as KBrH, from high molecular weight genomic DNA of Brassica rapa ssp. pekinensis (Chinese cabbage). This library, which was constructed using HindIII-cleaved genomic DNA, consists of 56,592 clones with average insert size of 115 kbp. Using a partially duplicated DNA sequence of Arabidopsis, represented by 19 and 9 predicted genes on chromosome 4 and 5, respectively, and BAC clones from the KBrH library, we studied conservation and microsynteny corresponding to the Arabidopsis regions in B. rapa ssp. pekinensis. The BAC contigs assembled according to the Arabidopsis homoeologues revealed triplication and rearrangements in the Chinese cabbage. In general, collinearity of genes in the paralogous segments was maintained, but gene contents were highly variable with interstitial losses. We also used representative BAC clones, from the assembled contigs, as probes and hybridized them on mitotic (metaphase) and/or meiotic (leptotene/pachytene/metaphase I) chromosomes of Chinese cabbage using bicolor fluorescence in situ hybridization. The hybridization pattern physically identified the paralogous segments of the Arabidopsis homoeologues on B. rapa ssp. pekinensis chromosomes. The homoeologous segments corresponding to chromosome 4 of Arabidopsis were located on chromosomes 2, 8 and 7, whereas those of chromosome 5 were present on chromosomes 6, 1 and 4 of B. rapa ssp. pekinensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Blanc G, Hokamp K, Wolfe KH (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 13:137–144

    Article  PubMed  CAS  Google Scholar 

  • Bohuon EJR, Ramsay LD, Craft JA, Arthur AE, Marshall DF, Lydiate DJ, Kearsey MJ (1998) The association of flowering time quantitative trait loci with duplicated regions and candidate loci in Brassica oleracea. Genetics 150:393–401

    PubMed  CAS  Google Scholar 

  • Cavell AC, Lydiate DJ, Parkin IAP, Dean C, Trick M (1998) Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome 41:62–69

    Article  PubMed  CAS  Google Scholar 

  • Fahey JW, Talalay P (1995) The role of crucifers in cancer chemoprotection. In: Gustin DL, Flores HE (eds) Phytochemicals and health. American Society of Plant Physiologists, Rockville, pp 87–93

    Google Scholar 

  • Fransz PF, Alonso-Blanco C, Liharska TB, Peeters AJM, Zabel P, deJong JH (1996) High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant J 9:421–430

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Li G, Yang B, McCombie WR, Quiros CF (2004) Comparative analysis of Brassica BAC clone containing several major aliphatic glucosinolate genes with its corresponding Arabidopsis sequence. Genome 47:666–679

    Article  PubMed  CAS  Google Scholar 

  • Jackson SA, Wang ML, Goodman HM, Jiang J (1998) Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome 41:566–572

    Article  PubMed  CAS  Google Scholar 

  • Jackson SA, Cheng Z, Wang ML, Goodman HM, Jiang J (2000) Comparative fluorescence in situ hybridization mapping of a 431-kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of Brassica rapa genome. Genetics 156:833–838

    PubMed  CAS  Google Scholar 

  • Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617–624

    Article  PubMed  CAS  Google Scholar 

  • Kim UJ, Birren BW, Slepak T, Mancino V, Boysen C, Kang HL, Simon MI, Shizuya H (1996) Construction and characterization of a human bacterial artificial chromosome library. Genomics 34:213–218

    Article  PubMed  CAS  Google Scholar 

  • Koo DH, Hur YK, Jin DC, Bang JW (2002) Karyotype analysis of a Korean cucumber cultivar (Cucumis sativus L. cv. Winter Long) using C-banding and bicolour fluorescence in situ hybridization. Mol Cells 13:413–418

    PubMed  CAS  Google Scholar 

  • Koo DH, Plaha P, Lim YP, Hur YK, Bang JW (2004) A high resolution karyotype of Brassica rapa ssp. pekinensis revealed by pachytene analysis and multicolor fluorescence in situ hybridization. Theor Appl Genet 109:1346–1352

    Article  PubMed  Google Scholar 

  • Kowalski SP, Lan TH, Feldman KA, Paterson AH (1994) Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization. Genetics 138:499–510

    PubMed  CAS  Google Scholar 

  • Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228

    PubMed  CAS  Google Scholar 

  • Lagercrantz U, Lydiate DJ (1996) Comparative genome mapping in Brassica. Genetics 144:1903–1910

    PubMed  CAS  Google Scholar 

  • Lagercrantz U, Putterill J, Coupland G, Lydiate D (1996) Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J 9:13–20

    Article  PubMed  CAS  Google Scholar 

  • Lan T-H, DelMonte TA, Reischmann KP, Hyman J, Kowalski SP, Mcferson J, Kresovich S, Paterson AH (2000) An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Res 10:776–788

    Article  PubMed  CAS  Google Scholar 

  • O’Neill CM, Bancroft I (2000) Comparative physical mapping of the segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J 23:233–243

    Article  PubMed  CAS  Google Scholar 

  • Peterson DG, Tomkins JP, Frisch DA, Wing RA, Paterson AH (2000) Construction of plant Bacterial Artificial Chromosome (BAC) libraries:An illustrated guide. J Agric Genomics 5:http://www.ncgr.org/research/jag.

  • Quiros CF, Grellet F, Sadowski J, Suzuki T, Li G, Wroblewski T (2001) Arabidopsis and Brassica comparative genomics:sequence, structure and gene content in the ABI1-Rps2-Ck1 chromosomal segment and related regions. Genetics 157:1321–1330

    PubMed  CAS  Google Scholar 

  • Sadowski J, Quiros CF (1998) Organization of an Arabidopsis thaliana gene cluster on chromosome 4 including the RPS2 gene in the Brassica nigra genome. Theor Appl Genet 96:468–474

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Scheffler JA, Sharpe AG, Schmidt H, Sperling P, Parkin IAP, Luhs W, Lydiate DJ, Heinz E (1997) Desaturase multigene families of Brassica napus arose through genome duplication. Theor Appl Genet 94:583–591

    Article  CAS  Google Scholar 

  • Schmidt R, Acarkan A, Boivin K (2001) Comparative structural genomics in the Brassicaceae family. Plant Phys Biochem 39:253–262

    Article  CAS  Google Scholar 

  • Shizua H, Birren B, Kim U-J, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci USA 89:8794–8797

    Article  PubMed  Google Scholar 

  • Tanksley SD, Ganal MW, Martin GB (1995) Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet 11:63–68

    Article  PubMed  CAS  Google Scholar 

  • Teutonico RA, Osborn TC (1994) Mapping of RFLP and qualitative trait loci in Brassica rapa, and comparison to the linkage maps of B. napus,B. oleracea, and Arabidopsis thaliana. Theor Appl Genet 89:885–894

    Article  CAS  Google Scholar 

  • Tomkins JP, Mahalingam R, Smith H, Goicoechea JL, Knap HT, Wing RA (1999) A bacterial artificial chromosome library for soybean PI 437654 and identification of clones associated with cyst nematode resistance. Plant Mol Biol 41:25–32

    Article  PubMed  CAS  Google Scholar 

  • U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Wang G-L, Holsten TE, Song W-Y, Wang H-P, Ronald PC (1995) Construction of a rice bacterial artificial chromosome library and identification of clones linked to the Xa-21 disease resistance locus. Plant J 7:525–533

    Article  PubMed  CAS  Google Scholar 

  • Woo SS, Jiang J, Gill BS, Paterson AH, Wing RA (1994) Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res 22:4922–4931

    Article  PubMed  CAS  Google Scholar 

  • Zhang HB, Martin GB, Tanksley SD, Wing RA (1994) Map-based cloning in crop plants: tomato as a model system. II. Isolation and characterization of a set of overlapping yeast artificial chromosomes encompassing the jointless locus. Mol Gen Genet 244:613–621

    Article  PubMed  CAS  Google Scholar 

  • Zhong XB, de Jong JH, Zabel P (1996) Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosome Res 4:24–28

    Article  PubMed  CAS  Google Scholar 

  • Zimmer R, Gibbins AMV (1997) Construction and characterization of a large-fragment chicken bacterial artificial chromosome library. Genomics 42:217–226

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was carried out in Bio-Green project with financial support from Rural Development Administration; Korean Brassica Genome Resource Bank, Ministry of Science and Technology; and Korea Research Foundation and the Korean Federatiom of Science and Technology Societies Grant of Korea Government (MOEHRD, Basic Science Research Fund). The work at JIC was supported by the John Innes Centre Competitive Support Grant and UK Biotechnology and Biological Sciences Research Council Grant 208/IGF12449.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. P. Lim.

Additional information

Communicated by W.R. McCombie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.Y., Koo, D.H., Hong, C.P. et al. Physical mapping and microsynteny of Brassica rapa ssp. pekinensis genome corresponding to a 222 kbp gene-rich region of Arabidopsis chromosome 4 and partially duplicated on chromosome 5. Mol Genet Genomics 274, 579–588 (2005). https://doi.org/10.1007/s00438-005-0041-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-005-0041-4

Keywords

Navigation