Skip to main content
Log in

Molecular markers based on LTR retrotransposons BARE-1 and Jeli uncover different strata of evolutionary relationships in diploid wheats

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Molecular markers based on retrotransposon insertions are widely used for various applications including phylogenetic analysis. Multiple cases were described where retrotransposon-based markers, namely sequence-specific amplification polymorphism (SSAP), were superior to other marker types in resolving the phylogenetic relationships due to their higher variability and informativeness. However, the patterns of evolutionary relationships revealed by SSAP may be dependent on the underlying retrotransposon activity in different periods of time. Hence, the proper choice of retrotransposon family is essential for obtaining significant results. We compared the phylogenetic trees for a diverse set of diploid A-genome wheat species (Triticum boeoticum, T. urartu and T. monococcum) based on two unrelated retrotransposon families, BARE-1 and Jeli. BARE-1 belongs to Copia class and has a uniform distribution between common wheat (T. aestivum) genomes of different origin (A, B and D), indicating similar activity in the respective diploid genome donors. Gypsy-class family Jeli was found by us to be an A-genome retrotransposon with >70% copies residing in A genome of hexaploid common wheat, suggesting a burst of transposition in the history of A-genome progenitors. The results indicate that a higher Jeli transpositional activity was associated with T. urartu versus T. boeoticum speciation, while BARE-1 produced more polymorphic insertions during subsequent intraspecific diversification; as an outcome, each retrotransposon provides more informative markers at the corresponding level of phylogenetic relationships. We conclude that multiple retroelement families should be analyzed for an image of evolutionary relationships to be solid and comprehensive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barkworth ME, von Bothmer R (2009) Scientific names in the Triticeae. In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae. Springer, New York, pp 3–30

    Chapter  Google Scholar 

  • Bassam BJ, Gresshoff PM (2007) Silver staining DNA in polyacrylamide gels. Nat Protoc 2:2649–2654

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  CAS  PubMed  Google Scholar 

  • Bertioli DJ, Moretzsohn MC, Madsen LH, Sandal N, Leal-Bertioli SC, Guimarães PM, Hougaard BK, Fredslund J, Schauser L, Nielsen AM, Sato S, Tabata S, Cannon SB, Stougaard J (2009) An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genomics 10:45

    Article  PubMed  Google Scholar 

  • Brandolini A, Vaccino P, Boggini G, Ozkan H, Kilian B, Salamini F (2006) Quantification of genetic relationships among A genomes of wheats. Genome 49:297–305

    Article  CAS  PubMed  Google Scholar 

  • Chalker DL, Sandmeyer SB (1990) Transfer RNA genes are genomic targets for de novo transposition of the yeast retrotransposon Ty3. Genetics 126:837–850

    CAS  PubMed  Google Scholar 

  • Charles M, Belcram H, Just J, Huneau C, Viollet A, Couloux A, Segurens B, Carter M, Huteau V, Coriton O, Appels R, Samain S, Chalhoub B (2008) Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat. Genetics 180:1071–1086

    Article  CAS  PubMed  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Dorofeev VF, Filatenko AA, Migushova EF, Udachin RA, Jakubtsiner MM (1979) Pshenitsa (Wheat). In: Dorofeev VF, Korovina ON (eds) Cultivated Flora of the USSR. Kolos, Leningrad (in Russian)

    Google Scholar 

  • Ellis TH, Poyser SJ, Knox MR, Vershinin AV, Ambrose MJ (1998) Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet 260:9–19

    CAS  PubMed  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  CAS  PubMed  Google Scholar 

  • Filatenko A, Grau M, Knüpffer H, Hammer K (2002) Discriminating characters of diploid wheat species. In: Proceedings of the 4th International Triticeae Symposium, Cordoba, pp 49–55

  • Fischer A, Saedler H, Theissen G (1995) Restriction fragment length polymorphism-coupled domain-directed differential display: a highly efficient technique for expression analysis of multigene families. Proc Natl Acad Sci USA 92:5331–5335

    Article  CAS  PubMed  Google Scholar 

  • Flavell AJ, Knox MR, Pearce SR, Ellis TH (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16:643–650

    Article  CAS  PubMed  Google Scholar 

  • Golovnina K, Glushkov S, Blinov A, Mayorov V, Adkison L, Goncharov N (2007) Molecular phylogeny of the genus Triticum L. Plant Syst Evol 264:195–216

    Article  CAS  Google Scholar 

  • Golovnina K, Kondratenko E, Blinov A, Goncharov N (2009) Phylogeny of the A genomes of wild and cultivated wheat species. Russ J Genet 45:1360–1367

    Article  CAS  Google Scholar 

  • Goncharov NP, Kondratenko E, Bannikova SV, Konovalov AA, Golovnina KA (2007) Comparative genetic analysis of diploid naked wheat Triticum sinskajae and the progenitor T. monococcum accession. Russ J Genet 43:1248–1256

    Article  CAS  Google Scholar 

  • Goncharov NP, Golovnina KA, Kondratenko EY (2009) Taxonomy and molecular phylogeny of natural and artificial wheat species. Breed Sci 59:492–498

    Article  CAS  Google Scholar 

  • Gribbon BM, Pearce SR, Kalendar R, Schulman AH, Paulin L, Jack P, Kumar A, Flavell AJ (1999) Phylogeny and transpositional activity of Ty1-copia group retrotransposons in cereal genomes. Mol Gen Genet 261:883–891

    Article  CAS  PubMed  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electronica 4:1–9

    Google Scholar 

  • Heslop-Harrison JS, Brandes A, Taketa S, Schmidt T, Vershinin A, Alkhimova E, Kamm A, Doudrick R, Schwarzacher T, Katsiotis A, Kubis S, Kumar A, Pearce S, Flavell A, Harrison G (1997) The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution. Genetica 100:197–204

    Article  CAS  PubMed  Google Scholar 

  • Heun M, Schafer-Pregl R, Klawan D, Castagna R, Accerbi M, Borghi B, Salamini F (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278:1312–1314

    Article  CAS  Google Scholar 

  • Heun M, Haldorsen S, Vollan K (2008) Reassessing domestication events in the Near East: einkorn and Triticum urartu. Genome 51:444–451

    Article  CAS  PubMed  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Ji H, Moore DP, Blomberg MA, Braiterman LT, Voytas DF, Natsoulis G, Boeke JD (1993) Hotspots for unselected Ty1 transposition events on yeast chromosome III are near tRNA genes and LTR sequences. Cell 73:1007–1018

    Article  CAS  PubMed  Google Scholar 

  • Jing R, Knox MR, Lee JM, Vershinin AV, Ambrose M, Ellis TH, Flavell AJ (2005) Insertional polymorphism and antiquity of PDR1 retrotransposon insertions in Pisum species. Genetics 171:741–752

    Article  CAS  PubMed  Google Scholar 

  • Kilian B, Ozkan H, Walther A, Kohl J, Dagan T, Salamini F, Martin W (2007) Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (einkorn) domestication: implications for the origin of agriculture. Mol Biol Evol 24:2657–2668

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Ann Rev Genet 33:479–532

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Hirochika H (2001) Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci 6:127–134

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Ellis THN, Turner L, Hellens RP, Cleary WG (1990) A copia-like element in Pisum demonstrates the uses of dispersed repeated sequences in genetic analysis. Plant Mol Biol 15:707–722

    Article  CAS  PubMed  Google Scholar 

  • Lisch D (2009) Epigenetic regulation of transposable elements in plants. Ann Rev Plant Biol 60:43–66

    Article  CAS  Google Scholar 

  • Llorens C, Munoz-Pomer A, Bernad L, Botella H, Moya A (2009) Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biol Direct 4:41

    Article  PubMed  Google Scholar 

  • Lou Q, Chen J (2007) Ty1-copia retrotransposon-based SSAP marker development and its potential in the genetic study of cucurbits. Genome 50:802–810

    Article  CAS  PubMed  Google Scholar 

  • Mac Key J (1989) Genus Triticum and its systematics. In: Shumny VK (ed) Vavilov’s legacy in modern biology. Nauka, Moscow, pp 170–185

    Google Scholar 

  • Martín M, Martín L, Alvarez J (2008) Polymorphisms at the Gli-Au1 and Gli-Au2 loci in wild diploid wheat (Triticum urartu). Euphytica 163:303–307

    Article  Google Scholar 

  • Messing J, Bharti AK, Karlowski WM, Gundlach H, Kim HR, Yu Y, Wei F, Fuks G, Soderlund CA, Mayer KFX, Wing RA (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101:14349–14354

    Article  CAS  PubMed  Google Scholar 

  • Pearce SR, Knox M, Ellis THN, Flavell AJ, Kumar A (2000) Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Mol Gen Genet 263:898–907

    Article  CAS  PubMed  Google Scholar 

  • Queen RA, Gribbon BM, James C, Jack P, Flavell AJ (2004) Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol Genet Genomics 271:91–97

    Article  CAS  PubMed  Google Scholar 

  • Sabot F, Sourdille P, Chantret N, Bernard M (2006) Morgane, a new LTR retrotransposon group, and its subfamilies in wheats. Genetica 128:439–447

    Article  CAS  PubMed  Google Scholar 

  • Sanz A, Gonzalez S, Syed N, Suso M, Saldaña C, Flavell A (2007) Genetic diversity analysis in Vicia species using retrotransposon-based SSAP markers. Mol Genet Genomics 278:433–441

    Article  CAS  PubMed  Google Scholar 

  • Sasanuma T, Chabane K, Endo T, Valkoun J (2002) Genetic diversity of wheat wild relatives in the Near East detected by AFLP. Euphytica 127:81–93

    Article  CAS  Google Scholar 

  • Schulman A (2007) Molecular markers to assess genetic diversity. Euphytica 158:313–321

    Article  CAS  Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. University of Missouri Agricultural Experiment Station Research Bulletin v.572, pp 1–59

  • Syed NH, Sureshsundar S, Wilkinson MJ, Bhau BS, Cavalcanti JJ, Flavell AJ (2005) Ty1-copia retrotransposon-based SSAP marker development in cashew (Anacardium occidentale L.). Theor Appl Genet 110:1195–1202

    Article  CAS  PubMed  Google Scholar 

  • Syed NH, Sorensen AP, Antonise R, van de Wiel C, van der Linden CG, van ‘t Westende W, Hooftman DA, den Nijs HC, Flavell AJ (2006) A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers. Theor Appl Genet 112:517–527

    Article  CAS  PubMed  Google Scholar 

  • Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR, Grandbastien M-A (2005) Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet 110:819–831

    Article  CAS  PubMed  Google Scholar 

  • Torres AM, Weeden NF, Martín A (1993) Linkage among isozyme, RFLP and RAPD markers in Vicia faba. Theor Appl Genet 85:937–945

    Article  CAS  Google Scholar 

  • van der Linden CG, Wouters DC, Mihalka V, Kochieva EZ, Smulders MJ, Vosman B (2004) Efficient targeting of plant disease resistance loci using NBS profiling. Theor Appl Genet 109:384–393

    Article  PubMed  Google Scholar 

  • Vershinin AV, Allnutt TR, Knox MR, Ambrose MJ, Ellis TH (2003) Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication. Mol Biol Evol 20:2067–2075

    Article  CAS  PubMed  Google Scholar 

  • Vukich M, Schulman AH, Giordani T, Natali L, Kalendar R, Cavallini A (2009) Genetic variability in sunflower (Helianthus annuus L.) and in the Helianthus genus as assessed by retrotransposon-based molecular markers. Theor Appl Genet 119:1027–1038

    Article  CAS  PubMed  Google Scholar 

  • Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BB, Powell W (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Matthews DE, Keller B (2002) TREP: a database for Triticeae repetitive elements. Trends Plant Sci 7:561–562

    Article  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Taudien S, Houben A, Keller B, Graner A, Platzer M, Stein N (2009) A whole-genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Plant J 59:712–722

    Article  CAS  PubMed  Google Scholar 

  • Yamane K, Kawahara T (2005) Intra- and interspecific phylogenetic relationships among diploid Triticum-Aegilops species (Poaceae) based on base-pair substitutions, indels, and microsatellites in chloroplast noncoding sequences. Am J Bot 92:1887–1898

    Article  CAS  Google Scholar 

  • Zohary D, Hopf M (1988) Domestication of plants in the old world. Clarendon Press, Oxford

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Drs. O.P. Mitrofanova and O.A. Lyapunova (Vavilov Institute of Plant Industry, St. Petersburg, Russia), Dr. H. Bockelman (the National Small Grains Collection, Aberdeen, USA), Dr. T. Kawahara (Graduate School of Agriculture of Kyoto University, Kyoto, Japan), Dr. J. Valkoun (ICARDA, Aleppo, Syria) for providing the seed material used in the study. We would like to thank Dr. Elena Khlestkina (Institute of Cytology and Genetics of SB RAS, Novosibirsk, Russia) for providing DNA of common wheat cv. Chinese Spring aneuploid lines, and Dr. Ekaterina Badaeva (Vavilov Institute of General Genetics, Moscow, Russia) for helpful discussions. The work was supported by the subprogram “Gene Pools and Genetic Diversity” of the program “Biodiversity” of Russian Academy of Sciences, by a Young Scientist Support grant from Russian Academy of Sciences (F.K.) and by state contract no. 02.740.11.0281 from the Russian government.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fedor A. Konovalov.

Additional information

Communicated by M.-A. Grandbastien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konovalov, F.A., Goncharov, N.P., Goryunova, S. et al. Molecular markers based on LTR retrotransposons BARE-1 and Jeli uncover different strata of evolutionary relationships in diploid wheats. Mol Genet Genomics 283, 551–563 (2010). https://doi.org/10.1007/s00438-010-0539-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-010-0539-2

Keywords

Navigation