Skip to main content

Advertisement

Log in

Mapping SNP-anchored genes using high-resolution melting analysis in almond

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Peach and almond have been considered as model species for the family Rosaceae and other woody plants. Consequently, mapping and characterisation of genes in these species has important implications. High-resolution melting (HRM) analysis is a recent development in the detection of SNPs and other markers, and proved to be an efficient and cost-effective approach. In this study, we aimed to map genes corresponding to known proteins in other species using the HRM approach. Prunus unigenes were searched and compared with known proteins in the public databases. We developed single-nucleotide polymorphism (SNP) markers, polymorphic in a mapping population produced from a cross between the cloned cultivars Nonpareil and Lauranne. A total of 12 SNP-anchored putative genes were genotyped in the population using HRM, and mapped to an existing linkage map. These genes were mapped on six linkage groups, and the predicted proteins were compared to putative orthologs in other species. Amongst those genes, four were abiotic stress-responsive genes, which can provide a starting point for construction of an abiotic resistance map. Two allergy and detoxification related genes, respectively, were also mapped and analysed. Most of the investigated genes had high similarities to sequences from closely related species such as apricot, apple and other eudicots, and these are putatively orthologous. In addition, it was shown that HRM can be an effective means of genotyping populations for the purpose of constructing a linkage map. Our work provides basic genomic information for the 12 genes, which can be used for further genetic and functional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott AG, Lecouls AC, Wang Y, Georgi L, Scorza R, Reighard G (2002) Peach: the model genome for Rosaceae genomics. Acta Hortic 592:199–209

    CAS  Google Scholar 

  • Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27:617–631

    Article  PubMed  CAS  Google Scholar 

  • Bielenberg D, Wang Y, Li Z, Zhebentyayeva T, Fan S, Reighard G, Scorza R, Abbott A (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495–507

    Article  Google Scholar 

  • Chagne D, Gasic K, Crowhurst RN, Han Y, Bassett HC, Bowatte DR, Lawrence TJ, Rikkerink EH, Gardiner SE, Korban SS (2008) Development of a set of SNP markers present in expressed genes of the apple. Genomics 92:353–358

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Zhang S, Illa E, Song L, Wu S, Howad W, Arús P, van de Weg E, Chen K, Gao Z (2008) Genomic characterization of putative allergen genes in peach/almond and their synteny with apple. BMC Genomics 9:543

    Article  PubMed  Google Scholar 

  • Choi DW, Close TJ (2000) A newly identified barley gene, Dhn12, encoding a YSK2 DHN, is located on chromosome 6H and has embryo-specific expression. Theor Appl Genet 100:1274–1278

    Article  CAS  Google Scholar 

  • Croxford AE, Rogers T, Caligari PD, Wilkinson MJ (2008) High-resolution melt analysis to identify and map sequence-tagged site anchor points onto linkage maps: a white lupin (Lupinus albus) map as an exemplar. New Phytol 180:594–607

    Article  PubMed  CAS  Google Scholar 

  • Dickson EE, Arumuganathan K, Kresovich S, Doyle JJ (1992) Nuclear-DNA content variation within the Rosaceae. Am J Bot 79:1081–1086

    Article  Google Scholar 

  • Dirlewanger E, Pronier V, Parvery C, Rothan C, Guye A, Monet R (1998) Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers. Theor Appl Genet 97:888–895

    Article  CAS  Google Scholar 

  • Dondini L, Lain O, Geuna F, Banfi R, Gaiotti F, Tartarini S, Bassi D, Testolin R (2007) Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus maps. Tree Genet Genomes 3:239–249

    Article  Google Scholar 

  • Eldredge L, Ballard R, Baird WV, Abbott A, Morgens P, Callahan A, Scorza R, Monet R (1992) Application of RFLP analysis to genetic-linkage mapping in peaches. Hortscience 27:160–163

    CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) version 3.6a2 Department of Genetics, University of Washington, Seattle

  • Flot JF (2007) Champuru 1.0: a computer software for unraveling mixtures of two DNA sequences of unequal lengths. Mol Ecol Notes 7:974–977

    Article  CAS  Google Scholar 

  • Flot JF, Tillier A, Samadi S, Tillier S (2006) Phase determination from direct sequencing of length-variable DNA regions. Mol Ecol Notes 6:627–630

    Article  CAS  Google Scholar 

  • Garcia D, Saingery V, Chambrier P, Mayer U, Jurgens G, Berger F (2003) Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol 131:1661–1670

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Mas J, Messeguer R, Arús P, Puigdomenech P (1995) Molecular characterization of cDNAs corresponding to genes expressed during almond (Prunus amygdalus Batsch) seed development. Plant Mol Biol 27:205–210

    Article  PubMed  CAS  Google Scholar 

  • Gregory D, Sedgley M, Wirthensohn MG, Arús P, Kaiser B, Collins GG (2005) An integrated genetic linkage map for almond based on RAPD, ISSR, SSR and morphological markers. Acta Hortic 694:67–72

    CAS  Google Scholar 

  • Han S, Seo Y, Kim D, Sung S-K, Kim W (2007) Expression of MdCAS1 and MdCAS2, encoding apple β-cyanoalanine synthase homologs, is concomitantly induced during ripening and implicates MdCASs in the possible role of the cyanide detoxification in Fuji apple (Malus domestica Borkh.) fruits. Plant Cell Rep 26:1321–1331

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Hashimoto N, Daigen M, Ashikawa I (2004) Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theor Appl Genet 108:1212–1220

    Article  PubMed  CAS  Google Scholar 

  • Huang D-J, Chen H-J, Lin Y-H (2005) Isolation and expression of protein disulfide isomerase cDNA from sweet potato (Ipomoea batatas [L.] Lam ‘Tainong 57’) storage roots. Plant Sci 169:776–784

    Article  CAS  Google Scholar 

  • Joobeur T, Viruel MA, de Vicente MC, Jáuregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arús P (1998) Construction of a saturated linkage map for Prunus using an almond × peach F2 progeny. Theor Appl Genet 97:1034–1041

    Article  CAS  Google Scholar 

  • Joobeur T, Periam N, Vicente MC, King GJ, Arús P (2000) Development of a second-generation linkage map for almond using RAPD and SSR markers. Genome 43:649–655

    Article  PubMed  CAS  Google Scholar 

  • Kennerson M, Nicholson G, Kowalski B, Krajewski K, El-Khechen D, Feely S, Chu S, Shy M, Garbern J (2009) X-linked distal hereditary motor neuropathy maps to the DSMAX locus on chromosome Xq13.1–q21. Neurology 72:246–252

    Article  PubMed  CAS  Google Scholar 

  • Koike M, Takezawa D, Arakawa K, Yoshida S (1997) Accumulation of 19-kDa plasma membrane polypeptide during induction of freezing tolerance in wheat suspension-cultured cells by abscisic acid. Plant Cell Physiol 38:707–716

    PubMed  CAS  Google Scholar 

  • Kouchi H, Hata S (1993) Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol Gen Genet 238:106–119

    PubMed  CAS  Google Scholar 

  • Lalli DA, Decroocq V, Blenda AV, Schurdi-Levraud V, Garay L, Le Gall O, Damsteegt V, Reighard GL, Abbott AG (2005) Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. Theor Appl Genet 111:1504–1513

    Article  PubMed  CAS  Google Scholar 

  • Lamboy WF, Alpha CG (1998) Using simple sequence repeats (SSRs) for DNA fingerprinting germplasm accessions of grape (Vitis L.) species. J Am Soc Hortic Sci 123:182–188

    CAS  Google Scholar 

  • Lee D, Redfern O, Orengo C (2007) Predicting protein function from sequence and structure. Nat Rev Mol Cell Biol 8:995–1005

    Article  PubMed  CAS  Google Scholar 

  • Lehmensiek A, Sutherland MW, McNamara RB (2008) The use of high-resolution melting (HRM) to map single nucleotide polymorphism markers linked to a covered smut resistance gene in barley. Theor Appl Genet 117:721–728

    Article  PubMed  CAS  Google Scholar 

  • Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, Wittwer C (2004) Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem 50:1156–1164

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A (2005) MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA 102:17531–17536

    Article  PubMed  CAS  Google Scholar 

  • Maruyama A, Saito K, Ishizawa K (2001) β-Cyanoalanine synthase and cysteine synthase from potato: molecular cloning, biochemical characterization, and spatial and hormonal regulation. Plant Mol Biol 46:749–760

    Article  PubMed  CAS  Google Scholar 

  • McCallum J, Ganesh S (2003) Text mining of DNA sequence homology searches. Appl Bioinformatics 2:S59–S63

    PubMed  CAS  Google Scholar 

  • Okubara PA, Berry AM (1999) DgPDI (Accession No. AF131223), a full-length cDNA from symbiotic root nodules of Datisca glomerata with homology to protein disulfide isomerase genes. Plant Physiol 119:1568

    Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Reid SJ, Ross GS (1997) Up-regulation of two cDNA clones encoding metallothionein-like proteins in apple fruit during cool storage. Physiol Plant 100:183–189

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  • Silva C, Garcia-Mas J, Sanchez AM, Arús P, Oliveira M (2005) Looking into flowering time in almond (Prunus dulcis (Mill) D. A. Webb): the candidate gene approach. Theor Appl Genet 110:959–968

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Cornilescu CC, Tyler RC, Cornilescu G, Tonelli M, Lee MS, Markley JL (2005) Solution structure of a late embryogenesis abundant protein (LEA14) from Arabidopsis thaliana, a cellular stress-related protein. Protein Sci 14:2601–2609

    Article  PubMed  CAS  Google Scholar 

  • Soltis PS, Soltis DE, Chase MW (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:402–404

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Komeda Y (1989) Characterization of two genes encoding small heat-shock proteins in Arabidopsis thaliana. Mol Gen Genet 219:365–372

    Article  PubMed  CAS  Google Scholar 

  • Tavassolian I (2008) Construction of a microsatellite-based genetic linkage map of almond. PhD thesis, The University of Adelaide

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0. Software for the calculation of genetic linikage maps. Plant Research International, The Netherlands

    Google Scholar 

  • Viruel MA, Messeguer R, de Vicente MC, Garcia-Mas J, Puigdomenech P, Vargas F, Arús P (1995) A linkage map with RFLP and isozyme markers for almond. Theor Appl Genet 91:964–971

    Article  CAS  Google Scholar 

  • Waters ER (1995) The molecular evolution of the small heat-shock proteins in plants. Genetics 141:785–795

    PubMed  CAS  Google Scholar 

  • Weeden NF (1994) Approaches to mapping in horticultural crops. In: Gresshoff P (ed) Plant genome analysis. CRC Press, Florida, pp 57–68

    Google Scholar 

  • Wise M (2003) LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinformatics 4:52

    Article  PubMed  Google Scholar 

  • Wu SB, Collins G, Sedgley M (2004) A molecular linkage map of olive (Olea europaea L) based on RAPD, microsatellite, and SCAR markers. Genome 47:26–35

    Article  PubMed  CAS  Google Scholar 

  • Wu SB, Wirthensohn MG, Hunt P, Gibson JP, Sedgley M (2008) High resolution melting analysis of almond SNPs derived from ESTs. Theor Appl Genet 118:1–14

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Australian Research Council Grant No. DP0556459.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Biao Wu.

Additional information

Communicated by C. Gebhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, SB., Tavassolian, I., Rabiei, G. et al. Mapping SNP-anchored genes using high-resolution melting analysis in almond. Mol Genet Genomics 282, 273–281 (2009). https://doi.org/10.1007/s00438-009-0464-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-009-0464-4

Keywords

Navigation