Skip to main content
Log in

Utility of divergent domains of 28S ribosomal RNA in species discrimination of paramphistomes (Trematoda: Digenea: Paramphistomoidea)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Among the digenetic trematodes, paramphistomes are known to be the causative agent of “amphistomiasis” or the stomach fluke disease of domestic and wild animals, mainly ruminants. The use of 28S (divergent domains) and 18S rRNA for phylogenetic inference is significantly warranted for these flukes since it is as yet limited to merely the exploration of the second internal transcribed spacer (ITS2) region. The present study intended to explore the divergent domains (D1–D3) of 28S rRNA and simultaneously equate the phylogenetic information with 18S rRNA in paramphistomes. Divergence of the 28S rRNA domains was evident amongst the divergent (D) domains, where D1 domain emerged as the most variable and D2, the most robust domain, since the latter could provide a higher resolution of the species. D2 was the only domain that comprised compensatory mutations in the helices of its structural constraints; this domain is thus well suited for species distinction and may be considered a potential DNA barcode complementary to mitochondrial DNA. 28S (D1 + D2 + D3) rRNA provided a significant resolution of the taxa corroborating with the taxonomy of these flukes and thus proved to be more robust as a phylogenetic marker for lower levels than 18S rRNA. Phylogenetic inferences of paramphitomes are still scarcely explored; additional data from other taxa belonging to this family may estimate better the biodiversity of these flukes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abele LG, Kim W, Felegenhauer BE (1989) Molecular evidence for inclusion of the phylum Pentastomida in the Crustacea. Mol Biol Evol 6:685–691

    Google Scholar 

  • Adoutte A, Balavoine G, Lartillot N, Lespinet O, Prud'homme B, de Rosa R (2000) The new animal phylogeny: reliability and implications. Proc Natl Acad Sci U S A 97:4453–4456

    Article  CAS  PubMed  Google Scholar 

  • Aguinaldo AMA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493

    Article  CAS  PubMed  Google Scholar 

  • Al-Banna L, Willamson VM, Gardner SL (1997) Phylogenetic analysis of nematodes of the genus Pratylenchus using nuclear 26S rDNA. Mol Phylogenet Evol 7:94–102

    Article  CAS  PubMed  Google Scholar 

  • Al-Banna L, Ploeg AT, Williamson VM, Kaloshian A (2004) Discrimination of six Pratylenchus species using PCR and species-specific primers. J Nematol 36:142–146

    CAS  PubMed  Google Scholar 

  • Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434

    Article  PubMed  CAS  Google Scholar 

  • Anuracpreeda P, Wanichanon C, Sobhon P (2008) Paramphistomum cervi: antigenic profile of adults as recognized by infected cattle sera. Exp Parasitol 118:203–207

    Article  CAS  PubMed  Google Scholar 

  • Bachellerie JP, Michot B (1989) Evolution of large subunit rRNA structure The 3' terminal domain contains elements of secondary structure specific to major phylogenetic groups. Biochimie 71:701–709

    Article  CAS  PubMed  Google Scholar 

  • Bae CH, Robbins RT, Szalanski AL (2010) Secondary structure models of D2-D3 expansion segments of 28S rRNA for Hoplolaiminae species. J Nematol 42(3):218–229

    CAS  Google Scholar 

  • Barker SC, Blair D, Garrett AR, Cribb TH (1993) Utility of the D1 domain of nuclear 28S rRNA for phylogenetic inference in the Digenea. Syst Parasitol 26:181–188

    Article  Google Scholar 

  • Blair D, Campos A, Cummings MP, Laclette JP (1996) Evolutionary biology of parasitic platyhelminths: the role of molecular phylogenetics. Parasitol Today 12:66–71

    Article  CAS  PubMed  Google Scholar 

  • Campos A, Cummings MP, Reyes JL, Laclette JP (1998) Phylogenetic relationships of Platyhelminthes based on 18S ribosomal gene sequences. Mol Phylogenet Evol 10(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Chethanon U, Ausavamatha P, Piriyayon S, (1985) Parasitological survey of cattle in the south of Thailand. Proceedings of the 4th Annual Livestock Conference, Department Livestock Development 281–290

  • Chilton NB, Hoste H, Newton LA, Beveridge I, Gasser RB (2001) Evolutionary relationships of trichostrongyloid nematodes (Strongylid) inferred from ribosomal DNA sequence data. Mol Phylogenet Evol 19:367–386

    Article  CAS  PubMed  Google Scholar 

  • Chilton NB, Huby-Chilton F, Gasser RB (2003) First complete large subunit ribosomal RNA sequence and secondary structure for a parasitic nematode: phylogenetic and diagnostic implications. Mol Cell Probes 17:33–39

    Article  CAS  PubMed  Google Scholar 

  • Coleman AW (2000) The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence. Protist 151:1–9

    Article  CAS  PubMed  Google Scholar 

  • Coleman AW (2003) ITS2 is a double-edged tool for eukaryote evolutionary comparisons. TIG 19:370–375

    Article  CAS  PubMed  Google Scholar 

  • Coleman AW (2007) Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Res 35(10):3322–3329

    Article  CAS  PubMed  Google Scholar 

  • Coleman AW, Vacquier V (2002) Exploring the phylogenetic utility of ITS sequences for animals: a test case for Abalone (Haliotis). J Mol Evol 54:246–257

    Article  CAS  PubMed  Google Scholar 

  • Cruickshank RH (2002) Molecular markers for the phylogenetics of mites and ticks. Syst Appl Acarol 7:3–14

    Google Scholar 

  • De Ley P, De Ley IT, Morris K, Abebe E, Mundo-Ocampo M, Yoder M, Heras J, Waumann D, Rocha-Olivares A, Jay Burr AH, Baldwin JG, Thomas WK (2005) An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding. J Philos Trans R Soc Lond B; Biol Sci 360(1462):1945–1958

    Article  CAS  Google Scholar 

  • De Rijk P, Van de Peer Y, Van den Broeck I, DeWachter R (1995) Evolution according to large ribosomal subunit RNA. J Mol Evol 41:366–375

    Article  PubMed  Google Scholar 

  • Díez B, Pedrós-Alió C, Massana R (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 67:2932–2941

    Article  PubMed  Google Scholar 

  • Dixon MT, Hillis DM (1993) Ribosomal RNA secondary structure: compensatory mutations and implications for phylogenetic analysis. Mol Biol Evol 10(1):256–267

    CAS  PubMed  Google Scholar 

  • Duncan LW, Inserra RN, Thomas WK, Dunn D, Mustika I, Frisse LM, Mendes ML, Morris K, Kaplan DT (1999) Molecular and morphological analysis of isolates of Pratylenchus coffeae and closely related species. Nematropica 29:61–80

    Google Scholar 

  • Field KG, Olsen GJ, Lane DJ, Giovannoni SJ, Ghiselin MT, Raff EC, Pace NR, Raff RA (1988) Molecular phylogeny of the animal kingdom. Science 239:748–753

    Article  CAS  PubMed  Google Scholar 

  • Fontaneto D (2011) Biogeography of microscopic organisms is everything small everywhere? Cambridge University Press, Imperial College London

    Book  Google Scholar 

  • Friedrich M, Tautz D (1995) Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature 376:165–167

    Article  CAS  PubMed  Google Scholar 

  • Ghatani S, Shylla JA, Tandon V, Chatterjee A, Roy B (2012) Molecular characterization of pouched amphistome parasites (Trematoda: Gastrothylacidae) using ribosomal ITS2 sequence and secondary structures. J Helminthologia 86:117–124

    Article  CAS  Google Scholar 

  • Gillespie JJ, Munro JB, Heraty JM, Yoder MJ, Owen AK, Carmichael AE (2005) A secondary structural model of the 28S rRNA expansion segments D2 and D3 for chalcidoid wasps (Hymenoptera: Chalcidoidea). Mol Biol Evol 22(7):1593–1608

    Article  CAS  PubMed  Google Scholar 

  • Goswami LM, Prasad PK, Tandon V, Chatterjee A (2009) Molecular characterization of Gastrodiscoides hominis (Platyhelminthes: Trematoda: Digenea) inferred from ITS rDNA sequence analysis. Parasitol Res 104:1485–1490

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hancock JM, Tautz D, Dover GA (1988) Evolution of the secondary structures and compensatory mutations of the ribosomal RNAs of Drosophila melanogaster. Mol Biol Evol 5:393–414

    CAS  PubMed  Google Scholar 

  • Hassouna N, Michot B, Bachellerie JP (1984) The complete nucleotide sequence of mouse 28S rRNA gene: implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Res 12:3563–3583

    Article  CAS  PubMed  Google Scholar 

  • Hershkovitz M, Lewis L (1996) Deep level diagnostic value of the rDNA-ITS region: the case of an algal interloper. Mol Biol Evol 13:167–177

    Article  Google Scholar 

  • Hofacker IL, Fontana W, Stadler PF, Bonhoeffer S, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatsh Chem 125:167–188

    Article  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Hwang UW, Kim W (1999) General properties and phylogenetic utilities of nuclear ribosomal DNA and mitochondrial DNA commonly used in molecular systematics. Korean J Parasitol 37:215–228

    Article  CAS  PubMed  Google Scholar 

  • Hwang UW, Ree HI, Kim W (2000) Evolution of hypervariable regions, V4 and V7, of insect 18S rRNA and their phylogenetic implications. Zool Sci 17:111–121

    Article  CAS  PubMed  Google Scholar 

  • Ilha MR, Loretti AP, Reis AC (2005) Wasting and mortality in beef cattle parasitized by Eurytrema coelamaticum in the state of Parana, southern Brazil. Vet Parasitol 133:49–60

    Article  CAS  PubMed  Google Scholar 

  • Itagaki T, Tsumagari N, Tsutsumi K, Chinone S (2003) Discrimination of three amphistome species by PCR-RFLP based on rDNA ITS2 markers. J Vet Med Sci 65:931–933

    Article  CAS  PubMed  Google Scholar 

  • Jarmen SN, Nicol S, Elliott NG, McMinn A (2000) 28S rDNA evolution in the eumalacostraca and the phylogenetic position of krill. Mol Phylogenet Evol 17:26–36

    Article  CAS  Google Scholar 

  • Jones A (1990) Techniques for sectioning thick-bodied platyhelminths. Syst Parasitol 15:211–218

    Article  CAS  Google Scholar 

  • Jones A (2005a) Superfamily Paramphistomoidea Fischoeder, 1901. In: Jones A, Bray RA, Gibson DI (eds) Keys to the Trematoda, vol 2. CABI Publishing and The Natural History Museum, London, pp 221–227

    Google Scholar 

  • Jones A (2005b) Family Gastrodiscidae Monticelli, 1892. In: Jones A, Bray RA, Gibson DI (eds) Keys to the Trematoda, vol 2. CABI Publishing and The Natural History Museum, London, pp 325–336

    Google Scholar 

  • Juyal PD, Kasur K, Hassan SS, Kaur P (2003) Epidemiological status of paramphistomiasis in domestic ruminants in Punjab. J Parasit Dis 231–235

  • Kaukas A, Neto ED, Simpson AJG, Southgate VR, Rollinson D (1994) A phylogenetic analysis of Schistosoma haematobium group species based on randomly amplified polymorphic DNA. Int J Parasitol 24:285–290

    Article  CAS  PubMed  Google Scholar 

  • Khan UJ, Tanveer A, Maqbool A, Masood S (2008) Epidemiological studies of paramphistomosis in cattle. Vet Arh 78:243–251

    Google Scholar 

  • Kilani K, Guillot J, Chermett R (2003) Amphistomes digestive. In: Lefevre PC, Blanco J, Chermatt J (eds) Principales maladies infectieuses et parasitaires du betail, 1st edn. Tec & Doc, Paris, pp 1400–1410

    Google Scholar 

  • Kjer KM (1995) Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs. Mol Phylogenet Evol 4:314–330

    Article  CAS  PubMed  Google Scholar 

  • Leon-Regagnon V, Paredes-Calderon EL (2002) Haematoloechus danbrooksi n. sp (Digenea: Plagiorchioidea) from Rana vaillanti from Los Tuxtlas, Veracruz, Mexico. J Parasitol 88:1215–1221

    CAS  PubMed  Google Scholar 

  • Littlewood DTJ (1994) Molecular phylogenetics of cupped oysters based on partial 28S rRNA gene sequences. Mol Phylogenet Evol 3:221–229

    Article  CAS  PubMed  Google Scholar 

  • Litvaitis MK, Bates JW, Hope WD, Moens T (2000) Inferring a classification of the Adenophorea (Nematoda) from nucleotide sequences of the D3 expansion segment (26/28S rDNA). Can J Zool 78:911–922

    Article  CAS  Google Scholar 

  • Lotfy WM, Brant SV, Ashmawy KI, Devkota R, Mkojie GM, Loker ES (2010) A molecular approach for identification of paramphistomes from Africa and Asia. Vet Parasitol 174:234–240

    Article  CAS  PubMed  Google Scholar 

  • Mage C, Bourgne H, Toullieu JM, Rondelaud D, Dreyfuss G (2002) Fasciola hepatica and Paramphistomum daubneyi: changes in the prevalence of natural infections in cattle and Lymnaea truncatula from Central France over the past 12 years. Vet Res 33:439–447

    Article  PubMed  Google Scholar 

  • Mallatt J, Sullivan J (1998) 28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes. Mol Biol Evol 15:1706–1718

    Article  CAS  PubMed  Google Scholar 

  • Medina M, Collins AG, Silberman JD, Sogin ML (2001) Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proc Natl Acad Sci U S A 98:9707–9712

    Article  CAS  PubMed  Google Scholar 

  • Müller T, Philippi N, Dandekar T, Schultz J, Wolf M (2007) Distinguishing species. RNA 1:1469–1472

    Article  CAS  Google Scholar 

  • Nolan MJ, Cribb TH (2005) The use and implications of ribosomal DNA sequencing for the discrimination of digenean species. Adv Parasitol 60:101–163

    Article  PubMed  Google Scholar 

  • Prasitirat T, Chompoochan S, Nithiuthai S, Wongkasemjit T, Punmamoamg P, Pongrut S, Chinone S, Itagaki H (1997) Prevalence of amphistomes of cattle in Thailand. Parasitol Hung 29–30:27–32

    Google Scholar 

  • Ramirez J, Ramírez R (2010) Analysis of the secondary structure of mitochondrial LSU rRNA of Peruvian land snails (Orthalicidae: Gastropoda). Rev Peru Biol 17(1):053–057

    Google Scholar 

  • Rinaldi L, Perugini AG, Capuano F, Fenizia D, Musella V, Veneziano V, Cringoli G (2005) Characterization of the second internal transcribed spacer of ribosomal DNA of Calicophoron daubneyi from various hosts and locations in southern Italy. Vet Parasitol 131:247–253

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes version 3.0: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Roy B, Tandon V (1992) Trematodiasis in North-East India: a study on the spectrum of Digenetic trematodes among pigs, buffaloes, cattle, goats and sheep. Indian J Anim Health 13:5–14

    Google Scholar 

  • Ruhl MW, Wolf M, Jenkins TM (2009) Compensatory base changes illuminate taxonomically difficult taxonomy. Mol Phylogenet Evol 54:664–669

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sanabria R, Romero J (2008) Review and update of paramphistomosis. Helminthologia 45:64–68

    Article  Google Scholar 

  • Seemann ES, Menzel KP, Backofen R, Gorodkin J (2011) The PETfold and PETcofold web servers for intra- and intermolecular structures of multiple RNA sequences. Nucleic Acids Res 39(2):107–111

    Article  CAS  Google Scholar 

  • Seibel PN, Muller T, Dandekar T, Schultz J, Wolf M (2006) 4SALE–a tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinforma 7:498

    Article  CAS  Google Scholar 

  • Sey O (1991) CRC handbook of the zoology of Amphistomes. CRC Press, Florida, Boca Raton

    Google Scholar 

  • Shylla JA, Ghatani S, Chatterjee A, Tandon V (2011) Secondary structure analysis of ITS2 in the rDNA of three Indian paramphistomid species found in local livestock. Parasitol Res 108:1027–1032

    Article  PubMed  Google Scholar 

  • Snyder SD, Tkach VV (2001) Phylogenetic and biogeographical relationships among some holarctic frog lung flukes (Digenea: Haematoloechidae). J Parasitol 87:1433–1440

    CAS  PubMed  Google Scholar 

  • Subbotin SA, Sturhan D, Vovlas N, Castillo P, Tanyi Tambe J, Moens M, Baldwin JG (2007) Application of secondary structure model of rRNA for phylogeny: D2-D3 expansion segments of the LSU gene of plant-parasitic nematodes from the family Hoplolaimidae Filipjev, 1934. Mol Phylogenet Evol 43:881–890

    Article  CAS  PubMed  Google Scholar 

  • Subbotin SA, Vovlas N, Crozzoli R, Sturhan D, Lamberti F, Moens M, Baldwin JG (2005) Phylogeny of Criconematina Siddiqi, 1980 (Nematode: Tylenchida) based on morphology and D2-D3 expansion segments of the 28S-rRNA gene sequences with application of a secondary structure model. Nematology 7:927–944

    Article  CAS  Google Scholar 

  • Subbotin SA, Ragsdale EJ, Mullens T, Roberts PA, Mundo-Ocampo M, Baldwin JG (2008) A phylogenetic framework for root lesion nematodes of the genus Pratylenchus (Nematoda): evidence from 18S and D2-D3 expansion segments of 28S ribosomal RNA genes and morphological characters. Mol Phylogenet Evol 48:491–505

    Article  CAS  PubMed  Google Scholar 

  • Thornhill DJ, LaJeunesse TC, Santos SR (2007) Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artefacts confound biodiversity estimates. Mol Ecol 16:5326–5340

    Article  CAS  PubMed  Google Scholar 

  • Tkach VV, Pawlowski J, Mariaux J (2000) Phylogenetic analysis of the suborder Plagiorchiata (Platyhelminthes, Digenea) based on partial lsrDNA sequences. Int J Parasitol 3:89–93

    Google Scholar 

  • Tkach V, Pawlowski J, Mariaux J, Swiderski Z (2001) Molecular phylogeny of the suborder Plagiorchiata and its position in the system of Digenea. In: Littlewood DTJ, Bray RA (eds) Interrelationships of the Platyhelminthes. Taylor & Francis, London, pp 186–193

    Google Scholar 

  • Van de Peer Y, Baldouf SL, Doolittle WF, Meyer A (2000) An updated and comprehensive rRNA phylogeny of (crown) eukaryotes based on rate-calibrated evolutionary distances. J Mol Evol 51:565–576

    PubMed  Google Scholar 

  • Vovlas N, Subbotin SA, Troccoli A, Liebanas G, Castillo P (2008) Molecular phylogeny of the genus Rotylenchus (Nematoda, Tylenchida) and description of a new species. Zool Scr 37:521–537

    Article  Google Scholar 

  • Wheeler WC, Honeycutt RL (1988) Paired sequence difference in ribosomal RNAs: evolution and phylogenetic implications. Mol Biol Evol 5:90–96

    CAS  PubMed  Google Scholar 

  • Whiting MF (1998) Phylogenetic position of the Strepsiptera: review of molecular and morphological evidence. Int J Morphol Embryol 27:53–60

    Article  Google Scholar 

  • Wickramasinghe S, Yatawara L, Rajapakse RPVJ, Agatsuma T (2009) Toxocara canis and Toxocara vitulorum : molecular characterization, discrimination, and phylogenetic analysis based on mitochondrial (ATP synthase subunit 6 and 12S) and nuclear ribosomal (ITS-2 and 28S) genes. Parasitol Res 104:1425–1430

    Google Scholar 

  • Winchell CJ, Sullivan J, Cameron CB, Swalla BJ, Mallatt J (2002) Evaluating hypotheses of deuterostome evolution with new LSU and SSU ribosomal DNA phylogenies. Mol Biol Evol 19:762–776

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Lou Z, Li L, Ni X, Guo A, Li H, Zheng Y, Dyachenko V, Jia W (2013) The nuclear 18S ribosomal RNA gene as a source of phylogenetic information in the genus Taenia. Parasitol Res 112:1343–1347

    Article  PubMed  Google Scholar 

  • Zhao Ya-E W, Li-Ping H, Li X, Yang WZ-H, Wen-Yan L (2012) Sequencing for complete rDNA sequences (18S, ITS1, 5.8S, ITS2, and 28S rDNA) of Demodex and phylogenetic analysis of Acari based on 18S and 28S rDNA. Parasitol Res 111:2109–2114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

JAS is thankful to Council of Scientific and Industrial Research (CSIR), Delhi, for awarding her junior and senior research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena Tandon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shylla, J.A., Ghatani, S. & Tandon, V. Utility of divergent domains of 28S ribosomal RNA in species discrimination of paramphistomes (Trematoda: Digenea: Paramphistomoidea). Parasitol Res 112, 4239–4253 (2013). https://doi.org/10.1007/s00436-013-3616-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-013-3616-8

Keywords

Navigation