Aguiló A, Schwartz TH, Kumar VS, Peterlin ZA, Tsiola A, Soriano E, Yuste R (1999) Involvement of Cajal-Retzius neurons in spontaneous correlated activity of embryonic and postnatal layer 1 from wild-type and reeler mice. Neurosci 19:10856–10868
Google Scholar
Alcantara S, Ruiz M, D’Arcangelo G et al (1998) Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J Neurosci 18:7779–7799
CAS
PubMed
Google Scholar
Bayer SA, Altman J (1990) Development of layer I and the subplate in the rat neocortex. Exp Neurol 107:48–62
CAS
PubMed
Article
Google Scholar
Benhayon D, Magdaleno S, Curran T (2003) Binding of purified reelin to ApoER2 and VLDLR mediates tyrosine phosphorylation of disabled-1. Brain Res Mol Brain Res 112:33–45
CAS
PubMed
Article
Google Scholar
Bielle F, Griveau A, Narboux-Neme N, Vigneau S, Sigrist M, Arber S, Wassef M, Pierani A (2005) Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nat Neurosci 8:1002–1012
CAS
PubMed
Article
Google Scholar
Bystron I, Rakic P, Molnár Z, Blakemore C (2006) The first neurons of the human cerebral cortex. Nat Neurosci 9:880–886
CAS
PubMed
Article
Google Scholar
Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: boulder committee revised. Nat Neurosci 9:110–122
CAS
Article
Google Scholar
Chiara F, Badaloni A, Croci L, Yeh ML, Cariboni A, Hoerder-Suabedissen A, Giacomo Consalez G, Eickholt B, Shimogori T, Parnavelas JG, Rakic S (2012) Early B-cell factors 2 and 3 (EBF2/3) regulate early migration of Cajal-Retzius cells from the cortical hem. Dev Biol 365:277–289
CAS
PubMed Central
PubMed
Article
Google Scholar
Chowdhury TG, Jimenez JC, Bomar JM, Cruz-Martin A, Cantle JP, Portera-Cailliau C (2010) Fate of Cajal-Retzius neurons in the postnatal mouse neocortex. Front Neuroanat 4:10–17
PubMed Central
PubMed
Google Scholar
Connors BW, Benardo LS, Prince DA (1983) Coupling between neurons of the developing rat neocortex. J Neurosci 3:773–782
CAS
PubMed
Google Scholar
Cosgrove KE, Maccaferri G (2012) mGlu1alpha-dependent recruitment of excitatory GABAergic input to neocortical Cajal-Retzius cells. Neuropharmacol 63:486–493
CAS
Article
Google Scholar
D’Arcangelo G, Miao GG, Chen SC et al (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719–723
PubMed
Article
Google Scholar
D’Arcangelo G, Nakajima K, Miyata T et al (1997) Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J Neurosci 17:23–31
PubMed
Google Scholar
D’Arcangelo G, Homayouni R, Keshvara L et al (1999) Reelin is a ligand for lipoprotein receptors. Neuron 24:471–479
PubMed
Article
Google Scholar
DeFelipe J (2005) Reflections on the structure of the cortical minicolumn. In: Casanova F (ed) Neocortical modularity and the cell minicolumn. Nova Science Publisher, New York, pp 57–92
Google Scholar
Del Rio JA, Heimrich B, Super H, Borrell V, Frotscher M, Soriano E (1996) Differential survival of Cajal-Retzius cells in organotypic cultures of hippocampus and neocortex. J Neurosci 16:6896–6907
PubMed
Google Scholar
Del Rio JA, Heimrich B, Borrell V, Förster E, Drakew A, Alcantara S, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Derer P, Frotscher M, Soriano E (1997) A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature 385:70–74
PubMed
Article
Google Scholar
Derer P, Derer M (1990) Cajal-Retzius cell ontogenesis and death in mouse brain visualized with horseradish peroxidase and electron microscopy. Neuroscience 36:839–856
CAS
PubMed
Article
Google Scholar
Derer P, Derer M (1992) Development of Cajal-Retzius cells in vivo and in vitro. In: Sharma SC, Goffinet AM (eds) Development of the central nervous system in Vertebrates. Plenum Press, New York, pp 113–129
Chapter
Google Scholar
Edmunds SM, Parnavelas JG (1982) Retzius-Cajal cells: an ultrastructural study in the developing visual cortex of the rat. J Neurocytol 11:427–446
CAS
PubMed
Article
Google Scholar
Escobar MI, Pimienta H, Caviness VS Jr, Jacobsen M, Crandall JE, Kosik KS (1986) Architecture of apical dendrites in the murine neocortex. Dual apical dendritic systems. Neuroscience 17:975–989
CAS
PubMed
Article
Google Scholar
Fleischhauer K, Petsche H, Wittkowski W (1972) Vertical bundles of dendrites in the neocortex. Z Anat Entwicklungsgesch 136:213–223
CAS
PubMed
Article
Google Scholar
Friauf E, McConnell SK, Shatz CJ (1990) Functional synaptic circuitry in the subplate during fetal and early postnatal development of cat visual cortex. J Neurosci 10:2601–2613
CAS
PubMed
Google Scholar
Frotscher M (1998) Cajal-Retzius cells, Reelin, and the formation of layers. Curr Opin Neurobiol 8:570–575
CAS
PubMed
Article
Google Scholar
Garcia-Moreno F, Lopez-Mascaraque L, De Carlos JA (2007) Origins and migratory routes of murine Cajal-Retzius cells. J Comp Neurol 500:419–432
CAS
PubMed
Article
Google Scholar
Goodman CS, Shatz CJ (1993) Developmental mechanisms that generate precise patterns of neuronal connectivity. Neuron 10:77–98
Google Scholar
Gutnick MJ, Prince DA (1981) Dye coupling and possible electrotonic coupling in the guinea pig neocortical slice. Science 211:67–70
CAS
PubMed
Article
Google Scholar
Hestrin S, Armstrong WE (1996) Morphology and physiology of cortical neurons in layer I. J Neurosci 16:5290–5300
CAS
PubMed
Google Scholar
Hevner RF, Neogi T, Englund C, Daza RA, Fink A (2003) Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin. Dev Brain Res 141:39–53
CAS
Article
Google Scholar
Howell BW, Herrick TM, Hildebrand JD et al (2000) Dab1 tyrosine phosphorylation sites relay positional signals during mouse brain development. Curr Biol 10:877–885
CAS
PubMed
Article
Google Scholar
Jiang X, Wang G, Lee AJ, Stornetta RL, Zhu JJ (2013) The organization of two new cortical interneuronal circuits. Nat Neurosci 16:210–218
CAS
PubMed Central
PubMed
Article
Google Scholar
Kilb W, Luhmann HJ (2000) Characterization of a hyperpolarization-activated inward current in Cajal-Retzius cells in rat neonatal neocortex. J Neurophysiol 84:1681–1691
CAS
PubMed
Google Scholar
Kilb W, Luhmann HJ (2001) Spontaneous GABAergic postsynaptic currents in Cajal-Retzius cells in neonatal rat cerebral cortex. Eur J Neurosci 13:1387–1390
CAS
PubMed
Article
Google Scholar
Kim HG, Fox K, Connors BW (1995) Properties of excitatory synaptic events in neurons of primary somatosensory cortex of neonatal rats. Cereb Cortex 5:148–157
CAS
PubMed
Article
Google Scholar
König N, Marty R (1981) Early neurogenesis and synaptogenesis in cerebral cortex. Bibl Anat 19:152–160
PubMed
Google Scholar
Kubota Y, Hatada SN, Kawaguchi Y (2009) Important factors for the three-dimensional reconstruction of neuronal structures from serial ultrathin sections. Front Neural Circuits 3:1–10
Article
Google Scholar
Kubota Y, Shigematsu N, Karube F, Sekigawa A, Kata S, Yamaguchi N, Hirai Y, Morishima M, Kawaguchi Y (2011) Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. Cereb Cortex 21:1803–1817
PubMed
Article
Google Scholar
Kuo G, Arnaud L, Kronstad-O’Brien P et al (2005) Absence of Fyn and Src causes a reeler-like phenotype. J Neurosci 25:8578–8586
CAS
PubMed
Article
Google Scholar
Larkum ME, Zhu JJ (2002) Signaling of layer 1 and wisker-evoked Ca2+ and Na+ action potentials in distal and terminal dendrites of rat neocortical pyramidal neurons in vitro and in vivo. J Neurosci 22:6991–7005
CAS
PubMed
Google Scholar
Larkum ME, Zhu JJ, Sakmann B (1999) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398:338–341
CAS
PubMed
Article
Google Scholar
Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 19:7881–7888
CAS
PubMed
Google Scholar
Le Magueresse C, Monyer H (2013) GABAergic interneurons shape the functional maturation of the cortex. Neuron 77:388–405
PubMed
Article
Google Scholar
LoTurco JJ, Kriegstein AR (1991) Clusters of coupled neuroblasts in embryonic neocortex. Science 252:563–566
CAS
Article
Google Scholar
Lu S-M, Zecevic N, Yeh HH (2001) Distinct NMDA and AMPA receptor-mediated responses in mouse and human Cajal-Retzius cells. J Neurophysiol 86:2642–2646
CAS
PubMed
Google Scholar
Lübke J, Egger V, Sakmann B, Feldmeyer D (2000) Columnar organization of dendrites and axons of single and synaptically coupled excitatory spiny neurons in layer 4 of the rat. J Neurosci 20:5300–5311
PubMed
Google Scholar
Lübke J, Roth A, Feldmeyer D, Sakmann B (2003) Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. Cereb Cortex 13:1051–1063
PubMed
Article
Google Scholar
Luskin MB, Shatz CJ (1985) Studies of the earliest generated cells of the cat’s visual cortex: cogeneration of subplate and marginal zones. J Neurosci 5:1062–1075
CAS
PubMed
Google Scholar
Marchionni I, Takacs VT, Nunzi MG, Mugnaini E, Miller RJ, Maccaferri G (2010) Distinctive properties of CXC chemokine receptor 4-expressing Cajal-Retzius cells versus GABAergic interneurons of the postnatal hippocampus. J Physiol 588:2859–2878
CAS
PubMed Central
PubMed
Article
Google Scholar
Marín-Padilla M (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol 152:109–126
PubMed
Article
Google Scholar
Marín-Padilla M (1990) Three-dimensional structural organization of layer 1 of the human cerebral cortex: a Golgi study. J Comp Neurol 357:554–572
Article
Google Scholar
Marín-Padilla M (1998) Cajal-Retzius cells and the development of the neocortex. Trends Neurosci 21:64–71
PubMed
Article
Google Scholar
McConnell SK, Gosh A, Shatz CJ (1989) Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science 245:978–982
CAS
PubMed
Article
Google Scholar
Merchán-Peréz A, Rodriguez J-R, Alonso-Nanclares L, Schertel A, DeFelipe J (2009) Counting synapses using FIB/SEM microscopy: a true revolution for ultrastructural volume reconstruction. Front Neuroanat 3:1–14
Article
Google Scholar
Meyer G, Goffinet AM (1998) Prenatal development of reelin-immunoreactive neurons in the human neocortex. J Comp Neurol 397:29–40
CAS
PubMed
Article
Google Scholar
Meyer G, Soria JM, Martinez-Galan JR, Martin-Clemente B, Fairen A (1998) Different origins and developmental histories of transient neurons in the marginal zone of the fetal neonatal rat cortex. J Comp Neurol 397:493–518
CAS
PubMed
Article
Google Scholar
Meyer G, Goffinet AM, Fairen A (1999) What is a Cajal-Retzius cell? A reassessment of a classical cell type based on recent observations in the developing cortex. Cereb Cortex 9:765–775
CAS
PubMed
Article
Google Scholar
Meyer G, Schaaps JP, Moreau L, Goffinet AM (2000) Embryonic and early fetal development of the human neocortex. J Neurosci 20:1858–1868
CAS
PubMed
Google Scholar
Mienville JM (1999) Cajal-Retzius cell physiology: just in time to bridge the 20th century. Cereb Cortex 9:776–782
CAS
PubMed
Article
Google Scholar
Mienville JM, Pesold C (1999) Low resting potential and postnatal upregulation of NMDA receptors may cause Cajal-Retzius cell death. J Neurosci 19:1636–1646
CAS
PubMed
Google Scholar
Min R, Nevian T (2012) Astrocyte signaling controls spike timing-dependent depression at neocortical synapses. Nat Neurosci 15:746–753
CAS
PubMed
Article
Google Scholar
Noctor SC, Palmer SL, Hasling T, Juliano SL (1999) Interference with the development of early generated neocortex results in disruption of radial glia abnormal formation of neocortical layers. Cereb Cortex 9:121–136
CAS
PubMed
Article
Google Scholar
Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720
CAS
PubMed
Article
Google Scholar
Paredes MF, Li G, Berger O, Baraban SC, Pleasure SJ (2006) Stromal-derived factor-1 (CXCL12) regulates laminar position of Cajal-Retzius cells in normal and dysplastic brains. J Neurosci 26:9404–9412
CAS
PubMed Central
PubMed
Article
Google Scholar
Parnavelas JG, Edmunds SM (1983) Further evidence that Retzius-Cajal cells transform to nonpyramidal neurons in the developing rat visual cortex. J Neurocytol 12:863–871
CAS
PubMed
Article
Google Scholar
Parnavelas JG, Papadopoulos GC, Cavanagh ME (1988) Changes in neurotransmitters during development. In: Peters A, Jones EG (eds) Cerebral cortex. Plenum Press, New York, pp 177–209
Chapter
Google Scholar
Peinado A, Yuste R, Katz LC (1993a) Gap junctional communication and the development of local circuits in neocortex. Cereb Cortex 3:488–498
CAS
PubMed
Article
Google Scholar
Peinado A, Yuste R, Katz LC (1993b) Extensive dye coupling between rat neocortical neurons during the period of circuit formation. Neuron 10:103–114
CAS
PubMed
Article
Google Scholar
Perez-Garcia CG, Gonzalez-Delgado FJ, Suarez-Sola ML, Castro-Fuentes R, Martin-Trujillo JM, Ferres-Torres R, Meyer G (2001) Reelin-immunoreactive neurons in the adult vertebrate pallium. J Chem Neuroanat 21:41–51
CAS
PubMed
Article
Google Scholar
Radnikow G, Feldmeyer D, Lübke J (2002) Axonal projection, input and output synapses, and synaptic physiology of Cajal-Retzius cells in the developing rat neocortex. J Neurosci 22:6908–6919
CAS
PubMed
Google Scholar
Rakic P, Caviness VS (1995) Cortical development: view from neurological mutants two decades later. Neuron 14:1101–1104
CAS
PubMed
Article
Google Scholar
Ramón y Cajal S (1891) Sur la structure de l’écorce cérébrale de quelques mammifères. La Cellule 7:125–176
Google Scholar
Retzius G (1893) Die Cajalschen Zellen der Großhirnrinde beim Menschen und bei Säugetieren. Biol Unters 5:1–9
Google Scholar
Retzius G (1894) Weitere Beiträge zur Kenntnis der Cajalschen Zellen der Großhirnrinde des Menschen. Biol Unters 6:29–34
Google Scholar
Rice DS, Sheldon M, D’Arcangelo G et al (1998) Disabled-1 acts downstream of reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125:3719–3729
CAS
PubMed
Google Scholar
Rörig B, Klausa G, Sutor B (1996) Intracellular acidification reduced gap junction coupling between immature rat neocortical pyramidal neurones. J Physiol 490:31–49
PubMed Central
PubMed
Google Scholar
Schwartz TH, Rabinowitz D, Unni V, Kumar VS, Smetters DK, Tsiola A, Yuste R (1998) Networks of coactive neurons in developing layer 1. Neuron 20:541–552
CAS
PubMed
Article
Google Scholar
Soda T, Nakashima R, Watanabe D, Nakajima K, Pastan I, Nakanishi S (2003) Segregation and coactivation of developing neocortical layer 1 neurons. J Neurosci 23:6272–6279
CAS
PubMed
Google Scholar
Somogyi P, Hodgson AJ, Chubb IW, Penke B, Erdei A (1985) Antisera to gamma-aminobutyric acid. II. Immunocytochemical application to the central nervous system. J Histochem Cytochem 33:240–248
CAS
PubMed
Article
Google Scholar
Supèr H, Martinez A, Del Rio JA, Soriano E (1998) Involvement of distinct pioneer neurons in the formation of layer-specific connections in the hippocampus. J Neurosci 18:4616–4626
PubMed
Google Scholar
Supèr H, Del Rio JA, Martinez A, Perez-Sust P, Soriano E (2000) Disruption of neuronal migration and radial glia in the developing cerebral cortex following ablation of Cajal-Retzius cells. Cereb Cortex 10:602–613
PubMed
Article
Google Scholar
Takiguchi-Hayashi K, Sekiguchi M, Ashigaki S, Takamatsu M, Hasegawa H, Suzuki-Migishima R, Yokoyama M, Nakanishi S, Tanabe Y (2004) Generation of reelin-positive marginal zone cells from the caudomedial wall of telencephalic vesicles. J Neurosci 24:2286–2295
CAS
PubMed
Article
Google Scholar
Tissir F, Goffinet AM (2003) Reelin and brain development. Nat Rev Neurosci 4:496–505
CAS
PubMed
Article
Google Scholar
Trommsdorff M, Gotthardt M, Hiesberger T et al (1999) Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor. Cell 97:689–701
CAS
PubMed
Article
Google Scholar
Verney C, Derer P (1995) Cajal-Retzius neurons in human cerebral cortex at midge station show immunoreactivity for neurofilament and calcium-binding proteins. J Comp Neurol 359:144–153
CAS
PubMed
Article
Google Scholar
Volman V, Bazhenov M, Sejnowski TJ (2012) Computational models of neuron-astrocyte interaction in epilepsy. Front Comput Neurosci 6:58
PubMed Central
PubMed
Article
Google Scholar
Wade JJ, McDaid LJ, Harkin J, Crunelli V, Kelso JA (2011) Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach. PLoS ONE 6:e29445
CAS
PubMed Central
PubMed
Article
Google Scholar
Wang F, Lidow MS (1997) α2A-adrenergic receptors are expressed by diverse cell types in the fetal primate cerebral wall. J Comp Neurol 378:493–507
CAS
PubMed
Article
Google Scholar
Wozny C, Williams SR (2011) Specificity of synaptic connectivity between layer 1 inhibitory interneurons and layer 2/3 pyramidal neurons in the rat neocortex. Cereb Cortex 21:1818–1826
PubMed Central
PubMed
Article
Google Scholar
Yuste R, Peinado A, Katz LC (1992) Neuronal domains in developing neocortex. Science 257:665–669
CAS
PubMed
Article
Google Scholar
Zecevic N, Rakic P (2001) Development of layer I neurons in the primate cerebral cortex. J Neurosci 21:5607–5619
CAS
PubMed
Google Scholar
Zhou FM, Hablitz JJ (1996a) Postnatal development of membrane properties of layer I neurons in rat neocortex. J Neurosci 16:1131–1139
CAS
PubMed
Google Scholar
Zhou FM, Hablitz JJ (1996b) Morphological properties of intracellularly labeled layer I neurons in rat neocortex. J Comp Neurol 376:198–213
CAS
PubMed
Article
Google Scholar