Skip to main content

Development and Fate of Cajal-Retzius Cells In Vivo and In Vitro

  • Chapter
Development of the Central Nervous System in Vertebrates

Part of the book series: NATO ASI Series ((NSSA,volume 234))

Abstract

Tangentially oriented neurons in the first layer of the developing mammalian cerebral cortex, were first described by Cajal (1891) and by Retzius (1893) independently. These neurons have been called Cajal-Retzius cells (CRc). Using 3H thymidine and autoradiography, it has been established in different mammalian species that CRc were the earliest generated neurons of the cerebral cortex and were cogenerated with cells located under the cortical plate which are known as the subplate neurons (Raedler and Sievers 1975, 1976, Konig et al., 1977, Raedler and Raedler 1978, Shoukimas and Hinds 1978, Raedler et al., 1980, Caviness 1982, Luskin and Shatz 1985, Chun and Shatz 1989, Jackson et al., 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbour, B., Brew, H., and Attnell, D. (1988) Electrogenic glutamate uptake in glial cells is activated by intracellular potassium. Nature 335:433–335.

    Article  PubMed  CAS  Google Scholar 

  • Baron, M., and Gallego, A. (1971) Cajal cells of the rabbit cerebral cortex. Experientia 27:430–432.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, R., Parnavelas, J.G., and Lieberman, A.R. (1977) Neurons in layer I of the developing occipital cortex of the rat. J. Comp. Neurol. 176:121–132.

    Article  PubMed  CAS  Google Scholar 

  • Cajal Ramon y S. (1891) Sur la structure de l’écorce cérébrale de quelques mammifěres. La Cellule 7:125–176.

    Google Scholar 

  • Caviness, V,S, Jr. (1982) Neocortical histogenesis in normal and reeler mice: a developmental study based upon 3H thymidine autoradiography. Dev. Brain Res. 4:293–302.

    Article  Google Scholar 

  • Choi, D.W., Koh, J.Y., and Peters, S. (1988) Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J. Neurosci. 8:185–196.

    PubMed  CAS  Google Scholar 

  • Choi, D.W., Maulucci-Gedde, M., and Kriegstein, A.R. (1987) Glutamate neurotoxicity in cortical cell culture. J. Neurosci. 7:357–368.

    PubMed  CAS  Google Scholar 

  • Chun, J.J.M., and Shatz, C.J. (1989) The earliest-generated neurons of the cat cerebral cortex: characterization by MAP2 and neurotransmitter immunohistochemistry during fetal life. J. Neurosci. 9:1648–1667.

    PubMed  CAS  Google Scholar 

  • Chu-Wang, I.W., and Oppenheim, R.W. (1978). Cell death of motoneurons in the chick embryo spinal cord. 1. A light and electron microscopic study of naturally occurring and induced cell loss during development. J. Comp. Neurol. 177:33–58.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, T.J. (1982) Naturally occurring neuron death and its regulation by developing neural pathways. Int. Rev. Cytol. 74:163–185.

    Article  PubMed  CAS  Google Scholar 

  • Derer, P. (1979) Evidence for the occurrence of early modifications in the “glia limitans” layer of the neocortex of the Reeler mutant mouse. Neurosci. Lett. 13:195–202.

    Article  PubMed  CAS  Google Scholar 

  • Derer, P. (1985) Comparative localization of Cajal-Retzius cells in the neocortex of normal and reeler mutant mice fetuses. Neurosci. Lett. 54:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Derer, P., and Derer, M. (1990) Cajal-Retzius cell ontogenesis and death in the mouse brain visualized with horseradish peroxidase and electronmicroscopy. Neuroscience 36(3):839–856.

    Article  PubMed  CAS  Google Scholar 

  • Derer, P., and Derer, M. (1991) Identification des cellules de Cajal-Retzius durant l’ontogenese du néocortex de la souris a l’aide d’une carbocyanine fluorescente. C.R. Acad. Sci. Paris 313(111):175–181.

    PubMed  CAS  Google Scholar 

  • Dichter, M.A. (1980). Physiological identification of GABA as the inhibitory transmitter for mammalian cortical neurons in cell culture. Brain Res. 190:111–121.

    Article  PubMed  CAS  Google Scholar 

  • Duckett, S., and Pearse, A.G.E. (1968) The cells of Cajal-Retzius in the developing human brain. J. Anat. 102:183–187.

    PubMed  CAS  Google Scholar 

  • Edmunds, S.M., and Parnavelas, J.G. (1982) Retzius-Cajal cells: an ultrastructural study in the developing visual cortex of the rat. J. Neurocytol. 11:427–446.

    Article  PubMed  CAS  Google Scholar 

  • Ferrer, I., Bernet, E., Soriano, E., Del Rio, T., and Fonseca, M. (1990) Naturally occurring cell death in the cerebral cortex of the rat and removal of dead cells by transitory phagocytes. Neuroscience 39:451–458.

    Article  PubMed  CAS  Google Scholar 

  • Flott, B., and Seifert, W. (1991) Characterization of glutamate uptake systems in astrocyte primary cultures from rat brain. Glia 4:293–304.

    Article  PubMed  CAS  Google Scholar 

  • Fox, M.W, and Inman, O. (1966) Persistence of Retzius-Cajal cells in the developing dog brain. Brain Res. 3:192–194.

    Article  PubMed  CAS  Google Scholar 

  • Gadisseux, J.F., Kadhim, H.J., Van den Bosch de Aguilar, P., Caviness, V.S., and Evrard, P. (1990) Neuron migration within the radial glial fiber system of the developing murine cerebrum: an electron microscopic autoradiographic analysis. Dev. Brain Res. 52:39–56.

    Article  CAS  Google Scholar 

  • Giordano, D.L., Murray, M., and Cunningham, T.J. (1980) Naturally occurring neuron death in the optic layers of superior colliculus of the postnatal rat. J. Neurocytol. 9:603–614.

    Article  PubMed  CAS  Google Scholar 

  • Godement, P., Vanselow, J., Thanos, S., and Bonhoeffer, F. (1987) A study of developing visual systems with a new method for staining neurons and their processes in fixed tissue. Development 101:697–713.

    PubMed  CAS  Google Scholar 

  • Goto, K., Ishige, A., Sekiguchi, K., Lizuka, S., Sugimoto, A., Yuzurihara, M., Aburada, M., Hosoya, E., and Kogure, K. (1990) Effects of cycloheximide on delayed neuronal death in rat hippocampus. Brain Res.534:299–302.

    Article  PubMed  CAS  Google Scholar 

  • Hamberger, A.C., Chiang, G.H., Nylen, E.S., Scheff, S.W., and Cotman, C.W. (1979) Glutamate as a CNS transmitter. 1. Evaluation of glucose and glutamine as precursors for the synthesis of preferentially released glutamate. Brain Res, 168:513–530.

    Article  PubMed  CAS  Google Scholar 

  • Honig, M.G., and Hume, R.I. (1986) Fluorescent carbocyanine dyes allow living neuronsof identified origin to be studied in long term cultures. J. Cell Biol. 103:171–187.

    Article  PubMed  CAS  Google Scholar 

  • Honig, M.G., and Hume, R.I. (1989) Dil and DiO: versatile fluorescent dyes for neuronal labelling and pathway tracing. Trends Neurosci. 12:333–341.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, C.A., Peduzzi, J.D., and Hickey, T.L. (1989) Visual cortex development in the ferret. 1. Genesis and migration of visual cortical neurons. J. Neurosci. 9:1242–1253.

    PubMed  CAS  Google Scholar 

  • König, N., and Marty, R. (1981) Early neurogenesis and synaptogenesis in cerebral cortex. Biblthca. anat. 19:152–160.

    Google Scholar 

  • König, N., Valat, J., Fulcrand, J., and Marty, R. (1977) The time of origin of Cajal-Retiius cells in the rat temporal cortex. An autoradiographic study. Neurosci. Lett.4:21–26.

    Article  PubMed  Google Scholar 

  • Kristt, D.A. (1978) Neuronal differentiation in somatosensory cortex of the rat. 1. Relationship to synaptogenesis in the first postnatal week. Brain Res. 150:467–486.

    Article  PubMed  CAS  Google Scholar 

  • Kristt, D.A. (1979) Development of neocortical circuitry: histochemical localization of acetylcholinesterase in relation to the cell layers of rat somatosensory cortex. J. Comp. Neurol. 186:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Larroche, J.C. (1981) The marginal layer in the neocortex of a seven week-old human embryo. Anat. Embryol. 162:301–312.

    Article  PubMed  CAS  Google Scholar 

  • Lipton, S.A., and Kater, S.B. (1989) Neurotransmitter regulation of neuronal outgrowth plasticity and survival. TINS 12:265–270.

    PubMed  CAS  Google Scholar 

  • Luskin, M.B., and Shatz, C.J. (1985) Studies of the earliest generated cells of the cat’s visual cortex: cogeneration of subplate and marginal zones. J. Neurosci. 5:1062–1075.

    PubMed  CAS  Google Scholar 

  • Marin-Padilla, M. (1971) Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. 1. The primordial neocortical organization. Z. Anat. Entwickl.-Gesch 134:117–145.

    Article  CAS  Google Scholar 

  • Marin-Padilla, M. (1972) Prenatal ontogenic history of the principal neurons of the neocortex of the cat (Felis domestica) a Golgi study. 11. Developmental differences and their significances. Z. Anat. Entwickl.-Gesch 136:125–142.

    Article  CAS  Google Scholar 

  • Marin-Padilia, M. (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat. Embryol. 152:109–126.

    Article  Google Scholar 

  • Marin-Padilla, M. (1988) Early ontogenesis of the human cerebral cortex. In: “Cerebral Cortex Vol 7 Development and Maturation of Cerebral Cortex”: (eds Peters, A. and Jones, E.G.), pp. 1–30. Plenum Press, New York and London.

    Google Scholar 

  • Martin, D.P., Schmidt, R.E., DiStefano, P.S., Lowry, O.H., Carter, J.G., and Johnson Jr., E.M. (1988) Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J. Cell Biol. 106:829–844.

    Article  PubMed  CAS  Google Scholar 

  • Matthiessen, H.P., Schmalenbach, C., and Müller, H.W. (1991) Identification of meningeal cell released neurite promoting activities for embryonic hippocampal neurons. J. Neurochem. 56:759–768.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, G., and Ferres-Torres, R. (1984) Postnatal maturation of nonpyramidal neurons in the visual cortex of the cat. J. Comp. Neurol. 228:226–244.

    Article  PubMed  CAS  Google Scholar 

  • Noback, C.R., and Purpura, D.P. (1961) Postnatal ontogenesis of neurons in cat neocortex. J. Comp. Neurol. 117:291–307.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim, R.W. (1991) Cell death during development of the nervous system. Annu. Rev. Neurosci. 14:453–501.

    Article  PubMed  CAS  Google Scholar 

  • Parnavelas, J.G., and Edmunds, S.M. (1983) Further evidence that Retzius-Cajal cells transform to nonpyramidal neurons in the developing rat visual cortex. J. Neurocytol. 12:863–871

    Article  PubMed  CAS  Google Scholar 

  • Purpura, D.P., Carmichael, M.W., and Housepian, E.M. (1960) Physiological and anatomical studies of development of superficial axodendritic synaptic pathways in neocortex. Exp. Neurol. 2:324–347.

    Article  PubMed  CAS  Google Scholar 

  • Raedler, A., and Sievers, J. (1975) The development of the visual system of the albino rat. Adv. Anat. Embryol. Cell Biol. 50:5–88.

    Google Scholar 

  • Raedler, A., and Sievers, J. (1976) Light and electron microscopical studies on specific cells of the marginal zone in the developing rat cerebral cortex. Anat. Embryol. 149:173–181.

    Article  PubMed  CAS  Google Scholar 

  • Raedler, E., and Raedler, A. (1978) Autoradiographic study of early neurogenesis in rat neocortex. Anat. Embryol. 154:267–284.

    Article  PubMed  CAS  Google Scholar 

  • Raedler, E., Raedler, A., and Feldhaus, S. (1980) Dynamical aspects of neocortical histogenesis in the rat. Anat. Embryol. 158:253–269.

    Article  PubMed  CAS  Google Scholar 

  • Raff, M.C., Abney, E.R., Cohen, J., Lindsay, R., and Noble, M. (1983) Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics. J. Neurosci. 3:1289–1300.

    PubMed  CAS  Google Scholar 

  • Rakic, P. (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145:61–83.

    Article  PubMed  CAS  Google Scholar 

  • Retzius, G. (1893) Die Cajal’schen Zellen der Grosshirnrinde bein Menschen und bei Saugetieren. Biol. Untersuch. 5:1–6.

    Google Scholar 

  • Rickmann, M., Chronwall, B.M., and Wolff, J.R. (1977) On the development of non-pyramidal neurons and axons outside the cortical plate: the early marginal zone as a pallial anlage. Anat. Embryol. 151:285–307.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, P.A. (1991) Accumulation of extracellular glutamate and neuronal death in astrocyte-poor cortical cultures exposed to glutamine. Glia 4:91–100.

    Article  PubMed  CAS  Google Scholar 

  • Rothman, S.M., and Olney, J.W. (1987) Excitotoxicity and the NMDA receptor. TINS 10:299–302.

    CAS  Google Scholar 

  • Saji, M., and Reis, D.J. (1987) Delayed transneuronal death of substantia nigra neurons prevented by gamma-aminobutyric acid agonist. Science 235:66–69.

    Article  PubMed  CAS  Google Scholar 

  • Sas, E., and Sanides, F. (1970) A comparative Golgi study of Cajal foetal cells. Z. mikr. anat. Forsch. 82:385–396.

    PubMed  CAS  Google Scholar 

  • Schousboe, A. (1981) Transport and metabolism of glutamate and GABA in neurons and glial cells. Int. Rev. Neurobiol. 22:1–45.

    Article  PubMed  CAS  Google Scholar 

  • Seguela, P., Geffard, M., Buijs, R.M., and Le Moal, M. (1984) Antibodies against GABA: specificity studies and immunocytochemical results. Proc. Natl. Acad. Sci. USA 81:3888–3892.

    Article  PubMed  CAS  Google Scholar 

  • Shigeno, T., Yamasaki, Y., Kato, G., Kusaka, K., Mima, T., Takakura, K., Graham, D.I., and Furukawa, S. (1990) Reduction of delayed neuronal death by inhibition of protein synthesis. Neurosci. Lett. 120:117–119.

    Article  PubMed  CAS  Google Scholar 

  • Shoukimas, G.M., and Hinds, J.W. (1978) The development of the cerebral cortex in the embryonic mouse: an electron microscopic serial section analysis. J. Comp. Neurol. 179:795–830.

    Article  PubMed  CAS  Google Scholar 

  • Valverde, F., and Facal-Valverde, M.V. (1987) Transitory population of cells in the temporal cortex of Kittens. Dev. Brain Res. 32:283–288.

    Article  Google Scholar 

  • Valverde, F., and Facal-Valverde, M.V. (1988) Postnatal development of interstitial (subplate) cells in the white matter of the temporal cortex of kittens: a correlated Golgi and electron microscopic study. J. Comp. Neurol. 269:168–192.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Derer, P., Derer, M. (1992). Development and Fate of Cajal-Retzius Cells In Vivo and In Vitro . In: Sharma, S.C., Goffinet, A.M. (eds) Development of the Central Nervous System in Vertebrates. NATO ASI Series, vol 234. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3018-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3018-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6315-6

  • Online ISBN: 978-1-4615-3018-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics