Skip to main content

Advertisement

Log in

Immunohistochemical localization of two types of choline acetyltransferase in neurons and sensory cells of the octopus arm

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Cholinergic structures in the arm of the cephalopod Octopus vulgaris were studied by immunohistochemistry using specific antisera for two types (common and peripheral) of acetylcholine synthetic enzyme choline acetyltransferase (ChAT): antiserum raised against the rat common type ChAT (cChAT), which is cross-reactive with molluscan cChAT, and antiserum raised against the rat peripheral type ChAT (pChAT), which has been used to delineate peripheral cholinergic structures in vertebrates, but not previously in invertebrates. Western blot analysis of octopus extracts revealed a single pChAT-positive band, suggesting that pChAT antiserum is cross-reactive with an octopus counterpart of rat pChAT. In immunohistochemistry, only neuronal structures of the octopus arm were stained by cChAT and pChAT antisera, although the pattern of distribution clearly differed between the two antisera. cChAT-positive varicose nerve fibers were observed in both the cerebrobrachial tract and neuropil of the axial nerve cord, while pChAT-positive varicose fibers were detected only in the neuropil of the axial nerve cord. After epitope retrieval, pChAT-positive neuronal cells and their processes became visible in all ganglia of the arm, including the axial and intramuscular nerve cords, and in ganglia of suckers. Moreover, pChAT-positive structures also became detectable in nerve fibers connecting the different ganglia, in smooth nerve fibers among muscle layers and dermal connective tissues, and in sensory cells of the suckers. These results suggest that the octopus arm has two types of cholinergic nerves: cChAT-positive nerves from brain ganglia and pChAT-positive nerves that are intrinsic to the arm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

AChE:

Acetylcholinesterase

ChAT:

Choline acetyltransferase

cChAT:

Common type of choline acetyltransferase

pChAT:

Peripheral type of choline acetyltransferase

References

  • Alexandrowicz JS (1960) A muscle receptor organ in Eledone Cirrhosa. J Mar Biol Ass 39:419–431

    Article  Google Scholar 

  • Andrews PLR, Tansey EM (1983) The digestive tract of Octopus vulgaris: the anatomy, physiology and pharmacology of the upper tract. J Mar Biol Assoc UK 63(1):109–134

    Article  CAS  Google Scholar 

  • Andrews PLR, Messenger J, Tansey EM (1981) Colour changes in cephalopods after neurotransmitter injection into the cephalic aorta. Proc R Soc Lond B 213:93–99

    Article  CAS  PubMed  Google Scholar 

  • Andrews PLR, Messenger J, Tansey EM (1983) The chromatic and motor effects of neurotransmitter injection in intact and brain-lesioned Octopus. J Mar Biol Assoc UK 63(2):355–370

    Article  CAS  Google Scholar 

  • Anglade P, Larabi-Godinot Y (2010) Historical landmarks in the histochemistry of the cholinergic synapse: perspectives for future researches. Biomed Res 31(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Auerbach B, Budelmann BU (1986) Evidence for acetylcholine as neurotransmitter in the statocyst of Octopus vulgaris. Cell Tissue Res 243(2):429–436

    Article  CAS  Google Scholar 

  • Bacq ZM, Mazza FP (1935) Recherches sur la physiologie et la pharmacologie du systeme nerveux autonome. XVIII. Isolement de cholaurate d’acetylcholine a partir d’un extrait de cellules nerveuses d’Octopus vulgaris. Arch Int Physiol 42:43–46

    CAS  Google Scholar 

  • Bellanger C, Dauphin F, Chichery MP, Chichery R (2003) Changes in cholinergic enzyme activities in the cuttlefish brain during memory formation. Physiol Behav 79(4–5):749–756

    Article  CAS  PubMed  Google Scholar 

  • Bellanger C, Halm MP, Dauphin F, Chichery R (2005) In vitro evidence and age-related changes for nicotinic but not muscarinic acetylcholine receptors in the central nervous system of Sepia officinalis. Neurosci Lett 387(3):162–167

    Article  CAS  PubMed  Google Scholar 

  • Bellier JP, Kimura H (2007) Acetylcholine synthesis by choline acetyltransferase of a peripheral type as demonstrated in adult rat dorsal root ganglion. J Neurochem 101(6):1607–1618

    Article  CAS  PubMed  Google Scholar 

  • Bellier JP, Kimura H (2011) Peripheral type of choline acetyltransferase: biological and evolutionary implications for novel mechanisms in cholinergic system. J Chem Neuroanat 42(4):225–235

    Article  CAS  PubMed  Google Scholar 

  • Bellier JP, Casini A, Sakaue Y, Kimura S, Kimura H, Renda TG, D’Este L (2012) Chemical neuroanatomy of the cholinergic neurons in the cephalopod octopus and the gastropod limax. In: Fyodorov A, Yakovlev H (eds) Mollusks: morphology, behavior and ecology. Nova Science Publishers, New-York, pp 89–122

    Google Scholar 

  • Bone Q, Packard A, Pulsford AL (1982) Cholinergic innervation of muscle fibres in squid. J Mar Biol Assoc UK 62:193–199

    Article  Google Scholar 

  • Boyle PR (1991) The UFAW handbook on the care and management of cephalopods in the laboratory. Universities Federation for Animal Welfare, Potters Bar

    Google Scholar 

  • Budelmann BU, Young JZ (1985) Central pathways of the nerves of the arms and mantle of octopus. Phil Trans R Soc Lond B 310:109–122

    Article  Google Scholar 

  • Budelmann BU, Young JZ (1987) Brain pathways of the brachial nerves of Sepia and Loligo. Phil Trans R Soc Lond B 315:345–352

    Article  Google Scholar 

  • Casini A, Vaccaro R, D’Este L, Sakaue Y, Bellier J, Kimura H, Renda T (2012) Immunolocalization of choline acetyltransferase of common type (cChAT) in the central brain mass of Octopus vulgaris. Eur J Histochem 56(3):e34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chichery R, Chanelet J (1972) Effect of acetylcholine and various curarizing substances on the nervous system of sepia. C R Seances Soc Biol Fil 166(2):273–276

    CAS  PubMed  Google Scholar 

  • Chichery R, Chichery MP (1985) Motor and behavioural effects induced by putative neurotransmitter injection into the optic lobe of the cuttlefish, Sepia officinalis. Comp Biochem Physiol C 80(2):415–419

    Article  CAS  PubMed  Google Scholar 

  • Chiocchetti R, Poole DP, Kimura H, Aimi Y, Robbins HL, Castelucci P, Furness JB (2003) Evidence that two forms of choline acetyltransferase are differentially expressed in subclasses of enteric neurons. Cell Tissue Res 311(1):11–22

    Article  CAS  PubMed  Google Scholar 

  • Clements AN, May TE (1974) Pharmacological studies on a locust neuromuscular preparation. J Exp Biol 61(2):421–442

    CAS  PubMed  Google Scholar 

  • D’Este L, Kimura S, Casini A, Matsuo A, Bellier JP, Kimura H, Renda TG (2008) First visualization of cholinergic cells and fibers by immunohistochemistry for choline acetyltransferase of the common type in the optic lobe and peduncle complex of Octopus vulgaris. J Comp Neurol 509(6):566–579

    Article  PubMed  Google Scholar 

  • D’Este L, Casini A, Kimura S, Bellier JP, Ito E, Kimura H, Renda TG (2011) Immunohistochemical demonstration of cholinergic structures in central ganglia of the slug (Limax maximus, Limax valentianus). Neurochem Int 58(5):605–611

    Article  PubMed  Google Scholar 

  • Eckenstein F, Sofroniew MV (1983) Identification of central cholinergic neurons containing both choline acetyltransferase and acetylcholinesterase and of central neurons containing only acetylcholinesterase. J Neurosci 3(11):2286–2291

    CAS  PubMed  Google Scholar 

  • Fiorito G, Agnisola C, d’Addio M, Valanzano A, Calamandrei G (1998) Scopolamine impairs memory recall in Octopus vulgaris. Neurosci Lett 253(2):87–90

    Article  CAS  PubMed  Google Scholar 

  • Florey E, Dubas F, Hanlon RT (1985) Evidence for l-glutamate as a transmitter substance of motoneurons innervating squid chromatophore muscles. Comp Biochem Physiol C 82(2):259–268

    Article  CAS  PubMed  Google Scholar 

  • Fraser Rowell CH (1966) Activity of interneurones in the arm of Octopus in response to tactile stimulation. J Exp Biol 44(3):589–605

    Google Scholar 

  • Futamachi KJ (1972) Acetylcholine: possible neuromuscular transmitter in Crustacea. Science 175(28):1373–1375

    Article  CAS  PubMed  Google Scholar 

  • Gebauer M, Versen B, Schipp R (1999) Inhibitory cholinergic effects on the autonomously contractile bulbus cordis branchialis of the cephalopod Sepia officinalis L. Gen Pharmacol 33(1):59–66

    Article  CAS  PubMed  Google Scholar 

  • Graziadei P (1964) Electron microscopy of some primary receptors in the sucker of Octopus vulgaris. Z Zellforsch Mikrosk Anat 64:510–522

    Article  CAS  PubMed  Google Scholar 

  • Graziadei P (1965) Electron microscope observations of some peripheral synapses in the sensory pathway of the sucker of Octopus vulgaris. Z Zellforsch Mikrosk Anat 65:363–379

    Article  CAS  PubMed  Google Scholar 

  • Graziadei P (1971) The nervous system of the arms. In: Young JZ (ed) The anatomy of the nervous system of Octopus vulgaris. Clarendon Press, Oxford, pp 45–61

  • Graziadei PP, Gagne HT (1976) Sensory innervation in the rim of the octopus sucker. J Morphol 150(3):639–679

    Article  CAS  PubMed  Google Scholar 

  • Gutfreund Y, Matzner H, Flash T, Hochner B (2006) Patterns of motor activity in the isolated nerve cord of the octopus arm. Biol Bull 211(3):212–222

    Article  PubMed  Google Scholar 

  • Halm MP, Chichery MP, Chichery R (2002) The role of cholinergic networks of the anterior basal and inferior frontal lobes in the predatory behaviour of Sepia officinalis. Comp Biochem Physiol A Mol Integr Physiol 132(2):267–274

    Article  CAS  PubMed  Google Scholar 

  • Hanlon RT, Cooper KM, Budelmann BU, Pappas TC (1990) Physiological color change in squid iridophores I. Behavior, morphology and pharmacology in Lolliguncula brevis. Cell Tissue Res 259:3–14

    Article  CAS  PubMed  Google Scholar 

  • Hochner B, Shomrat T, Fiorito G (2006) The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms. Biol Bull 210(3):308–317

    Article  PubMed  Google Scholar 

  • Husain SS, Mautner HG (1973) The purification of choline acetyltransferase of squid-head ganglia. Proc Natl Acad Sci USA 70(12):3749–3753

    Article  CAS  PubMed  Google Scholar 

  • Kerkut GA, Leake LD, Shapira A, Cowan S, Walker RJ (1965) The presence of glutamate in nerve-muscle perfusates of Helix, Carcinus and Periplaneta. Comp Biochem Physiol 15(4):485–502

    Article  CAS  PubMed  Google Scholar 

  • Kier WM (1988) The arrangement and function of molluscan muscle. In: Trueman ER, Clarke MR, Wilbur KM (eds) The mollusca, form and function. Academic Press, New-York, pp 211–252

    Chapter  Google Scholar 

  • Kier WM, Stella MP (2007) The arrangement and function of octopus arm musculature and connective tissue. J Morphol 268(10):831–843

    Article  PubMed  Google Scholar 

  • Kimura H, McGeer PL, Peng F, McGeer EG (1980) Choline acetyltransferase-containing neurons in rodent brain demonstrated by immunohistochemistry. Science 208(4447):1057–1059

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Bellier JP, Matsuo A, Tooyama I, Kimura H (2007) The production of antibodies that distinguish rat choline acetyltransferase from its splice variant product of a peripheral type. Neurochem Int 50(1):251–255

    Article  CAS  PubMed  Google Scholar 

  • Lam DM, Wiesel TN, Kaneko A (1974) Neurotransmitter synthesis in cephalopod retina. Brain Res 82(2):365–368

    Article  CAS  PubMed  Google Scholar 

  • Leong TY, Leong AS (2007) How does antigen retrieval work. Adv Anat Pathol 14(2):129–131

    Article  PubMed  Google Scholar 

  • Li CY, Ziesmer SC, Lazcano-Villareal O (1987) Use of azide and hydrogen peroxide as an inhibitor for endogenous peroxidase in the immunoperoxidase method. J Histochem Cytochem 35(12):1457–1460

    Article  CAS  PubMed  Google Scholar 

  • Loe PR, Florey E (1966) The distribution of acetylcholine and cholinesterase in the nervous system and in innervated organs of Octopus dofleini. Comp Biochem Physiol 17(2):509–522

    Article  CAS  PubMed  Google Scholar 

  • Mäthger LM, Collins TFT, Lima PA (2004) The role of muscarinic receptors and intracellular Ca2+ in the spectral reflectivity changes of squid iridophores. J Exp Biol 207:1759–1769

    Article  PubMed  Google Scholar 

  • Matsuo A, Bellier JP, Hisano T, Aimi Y, Yasuhara O, Tooyama I, Saito N, Kimura H (2005) Rat choline acetyltransferase of the peripheral type differs from that of the common type in intracellular translocation. Neurochem Int 46(5):423–433

    Article  CAS  PubMed  Google Scholar 

  • Matzner H, Gutfreund Y, Hochner B (2000) Neuromuscular system of the flexible arm of the octopus: physiological characterization. J Neurophysiol 83(3):1315–1328

    CAS  PubMed  Google Scholar 

  • Messenger JB (1996) Neurotransmitters of cephalopods. Invert Neurosci 2(2):94–114

    Article  Google Scholar 

  • Messenger JB, Cornwell C, Reed C (1997) l-Glutamate and serotonin are endogenous in squid chromatophore nerves. J Exp Biol 200(Pt 23):3043–3054

    CAS  PubMed  Google Scholar 

  • Moltschaniwskyj N, Hall K, Lipinski M, Marian J, Nishiguchi M, Sakai M, Shulman D, Sinclair B, Sinn D, Staudinger M, Gelderen R, Villanueva R, Warnke K (2007) Ethical and welfare considerations when using cephalopods as experimental animals. Rev Fish Biol Fisher 17(2–3):455–476

    Article  Google Scholar 

  • Nachmansohn D, Machado A (1943) The formation of acetylcholine. A new enzyme, “choline acetylase”. J Neurophysiol 6:397–403

    CAS  Google Scholar 

  • Piscopo S, Moccia F, Di Cristo C, Caputi L, Di Cosmo A, Brown ER (2007) Pre- and postsynaptic excitation and inhibition at octopus optic lobe photoreceptor terminals; implications for the function of the ‘presynaptic bags’. Eur J Neurosci 26(8):2196–2203

    Article  PubMed  Google Scholar 

  • Prince AK (1967) Properties of choline acetyltransferase isolated from squid ganglia. Proc Natl Acad Sci USA 57(4):1117–1122

    Article  CAS  PubMed  Google Scholar 

  • Smotherman M (2002) Acetylcholine mediates excitatory input to chromatophore motoneurons in the squid, Loligo pealeii. Biol Bull 203(2):231–232

    Article  PubMed  Google Scholar 

  • Spintzik J, Springer J, Westermann B (2009) Morphological and histological organization of the pyriform appendage of the tetrabranchiate Nautilus pompilius (Cephalopoda, Mollusca). J Morphol 270(4):459–468

    Article  PubMed  Google Scholar 

  • Talesa V, Grauso M, Giovannini E, Rosi G, Toutant JP (1995) Acetylcholinesterase in tentacles of Octopus vulgaris (Cephalopoda). Histochemical localization and characterization of a specific high salt-soluble and heparin-soluble fraction of globular forms. Neurochem Int 27(2):201–211

    Article  CAS  PubMed  Google Scholar 

  • Talesa V, Romani R, Calvitti M, Rosi G, Giovannini E (1998) Acetylcholinesterase at high catalytic efficiency and substrate specificity in the optic lobe of Eledone moschata (Cephalopoda: Octopoda): biochemical characterization and histochemical localization. Neurochem Int 33(2):131–141

    Article  CAS  PubMed  Google Scholar 

  • Thieffry M, Bruner J (1978) Direct evidence for a presynaptic action of glutamate at a crayfish neuromuscular junction. Brain Res 156(2):402–406

    Article  CAS  PubMed  Google Scholar 

  • Tooyama I, Kimura H (2000) A protein encoded by an alternative splice variant of choline acetyltransferase mRNA is localized preferentially in peripheral nerve cells and fibers. J Chem Neuroanat 17(4):217–226

    Article  CAS  PubMed  Google Scholar 

  • Usherwood PN, Machili P, Leaf G (1968) l-Glutamate at insect excitatory nerve-muscle synapses. Nature 219:1169–1172

    Article  CAS  PubMed  Google Scholar 

  • Wardill TJ, Gonzalez-Bellido PT, Crook RJ, Hanlon RT (2012) Neural control of tuneable skin iridescence in squid. Proc Biol Sci 279(1745):4243–4252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Welsch F, Dettbarn WD (1972) The subcellular distribution of acetylcholine, cholinesterases and choline acetyltransferase in optic lobes of the squid Loligo pealei. Brain Res 39(2):467–482

    Article  CAS  PubMed  Google Scholar 

  • Williamson R (1989) Electrophysiological evidence for cholinergic and catecholaminergic efferent transmitters in the statocyst of octopus. Comp Bioch Physiol C 93(1):23–27

    Article  Google Scholar 

  • Yasuhara O, Tooyama I, Aimi Y, Bellier JP, Hisano T, Matsuo A, Park M, Kimura H (2003) Demonstration of cholinergic ganglion cells in rat retina: expression of an alternative splice variant of choline acetyltransferase. J Neurosci 23(7):2872–2881

    CAS  PubMed  Google Scholar 

  • Young JZ (1963a) The number and sizes of nerve cells in octopus. Proc Zool Soc London 140(2):229–254

    Article  Google Scholar 

  • Young JZ (1963b) Some essentials of neural memory systems. Paired centres that regulate and address the signals of the results of action. Nature 198:626–630

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the late Professor Tindaro G. Renda (University la Sapienza, Roma) for performance of preliminary immunohistochemical staining using pChAT antiserum in the octopus arm. J-P. B was supported by a Grant-in-Aid for KAKENHI from the Japan Society for the Promotion of Science (No. 24592334).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Bellier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakaue, Y., Bellier, JP., Kimura, S. et al. Immunohistochemical localization of two types of choline acetyltransferase in neurons and sensory cells of the octopus arm. Brain Struct Funct 219, 323–341 (2014). https://doi.org/10.1007/s00429-012-0502-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-012-0502-6

Keywords

Navigation