Skip to main content

Advertisement

Log in

Immunohistochemical and biochemical evidence for the presence of serotonin-containing neurons and nerve fibers in the octopus arm

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The octopus arm contains a tridimensional array of muscles with a massive sensory-motor system. We herein provide the first evidence for the existence of serotonin (5-HT) in the octopus arm nervous system and investigated its distribution using immunohistochemistry. 5-HT-like immunoreactive (5-HT-lir) nerve cell bodies were exclusively localized in the cellular layer of the axial nerve cord. Those cell bodies emitted 5-HT-lir nerve fibers in the direction of the sucker, the intramuscular nerves cords, the ganglion of the sucker, and the intrinsic musculature. Others 5-HT-lir nerve fibers were observed in various tissues, including the cerebrobrachial tract, the skin, and the blood vessels. 5-HT was detected by high-performance liquid chromatography in various regions of the octopus arm at levels matching the density of 5-HT-lir staining. The absence of 5-HT-lir interconnections between the cerebrobrachial tract and the other components of the axial nerve cord suggests that two types of 5-HT-lir innervation exist in the arm. One type, which originates from the brain, may innervate the periphery through the cerebrobrachial tract. Another type, which originates in the cellular layer of the axial nerve cord, may form an intrinsic network in the arm. In addition, 5-HT-lir fibers likely emitted from the neuropil of the axial nerve cord were found to project into cells showing staining for peripheral choline acetyltransferase, a marker of sensory cells of the sucker. Taken together, these observations suggest that intrinsic 5-HT-lir innervation may participate in the sensory transmission in the octopus arm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

5-HT:

5-Hydroxytryptamine (serotonin)

5-HT-lir:

5-Hydroxytryptamine-like immunoreactive

abm :

Acetabulo-brachial muscles

ANC:

Axial nerve cord

AR:

Roof of the acetabulum

AT:

Anastomotic tract

AW:

Wall of the acetabulum

BA:

Brachial artery

BN:

Brachial nerve

CBT:

Cerebrobrachial tract

CB:

Central brain (brain)

CL:

Cellular layer of axial nerve cord

ECD-HPLC:

High-performance liquid chromatography coupled with electrochemical detection

Epi:

Epithelium

GS:

Ganglion of sucker

IC:

Interbrachial commissure

im :

Intrinsic musculature

IN:

Infundibulum

INC:

Intramuscular nerve cord

LM:

Longitudinal muscle

LR:

Lateral root

NP:

Neuropil of the axial nerve cord

OM:

Oblique muscle

PBST:

Phosphate-buffered saline with Triton X-100

pChAT:

Peripheral choline acetyltransferase

S:

Sucker

SM:

Sucker muscle

SR:

Sucker rim

TM:

Transverse muscle

VR:

Ventral root

References

  • Alexandrowicz JS (1960) A muscle receptor organ in Eledone cirrhosa. J Mar Biol Assoc U K 39:419–431

    Article  Google Scholar 

  • Altman JS (1971) Control of accept and reject reflexes in the octopus. Nature 229:204–206

    Article  CAS  PubMed  Google Scholar 

  • Andrews PLR, Tansey EM (1983) Aminergic innervation of the blood vessels of Octopus vulgaris. Cell Tissue Res 230:229–232

    Article  CAS  PubMed  Google Scholar 

  • Avila-Martin G, Galan-Arriero I, Gómez-Soriano J, Taylor J (2011) Treatment of rat spinal cord injury with the neurotrophic factor albumin-oleic acid: translational application for paralysis, spasticity and pain. PLoS One 6:e26107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbas D, DesGroseillers L, Castellucci VF et al (2003) Multiple serotonergic mechanisms contributing to sensitization in aplysia: evidence of diverse serotonin receptor subtypes. Learn Mem 10:373–386

    Article  PubMed  PubMed Central  Google Scholar 

  • Barber VC, Graziadei P (1965) The fine structure of cephalopod blood vessels. Zeitschrift für Zellforsch und Mikroskopische Anat 66:765–781

    Article  CAS  Google Scholar 

  • Bayliss DA, Li Y-W, Talley EM (1997) Effects of serotonin on caudal raphe neurons: inhibition of N- and P/Q-type calcium channels and the after hyperpolarization. J Neurophysiol 77:1362–1374

    CAS  PubMed  Google Scholar 

  • Bidel F, Corvaisier S, Jozet-Alves C et al (2015) An HPLC-ECD method for monoamines and metabolites quantification in cuttlefish (cephalopod) brain tissue. Biomed Chromatogr 30:1175–1183

    Article  Google Scholar 

  • Boyer C, Maubert E, Charnay Y, Chichery R (2007) Distribution of neurokinin A-like and serotonin immunoreactivities within the vertical lobe complex in Sepia officinalis. Brain Res 1133:53–66

    Article  CAS  PubMed  Google Scholar 

  • Budelmann BU, Young JZ (1985) Central pathways of the nerves of the arms and mantle of octopus. Philos Trans R Soc B Biol Sci 310:109–122

    Article  Google Scholar 

  • Carbone E, Swandulla D (1989) Neuronal calcium channels: kinetics, blockade and modulation. Prog Biophys Mol Biol 54:31–58

    Article  CAS  PubMed  Google Scholar 

  • Cebrià F (2008) Organization of the nervous system in the model planarian Schmidtea mediterranea: an immunocytochemical study. Neurosci Res 61:375–384

    Article  PubMed  Google Scholar 

  • Centenaro LA, Jaeger MDC, Ilha J et al (2011) Olfactory and respiratory lamina propria transplantation after spinal cord transection in rats: effects on functional recovery and axonal regeneration. Brain Res 1426:54–72

    Article  CAS  PubMed  Google Scholar 

  • Ciranna L, Feltz P, Schlichter R (1996) Selective inhibition of high voltage-activated L-type and Q-type Ca2+ currents by serotonin in rat melanotrophs. J Physiol 490:595–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curran KP, Chalasani SH (2012) Serotonin circuits and anxiety: what can invertebrates teach us? Invertebr Neurosci 12:81–92

    CAS  Google Scholar 

  • Dunn TW, Sossin WS (2013) Inhibition of the Aplysia sensory neuron calcium current with dopamine and serotonin. J Neurophysiol 110:2071–2081

    Article  CAS  PubMed  Google Scholar 

  • Erspamer V (1948) Active substances in the posterior salivary glands of octopoda. I. Enteramine-like substance. Acta Pharmacol Toxicol (Copenh) 4:213–223

    Article  CAS  Google Scholar 

  • Erspamer V, Asero B (1953) Isolation of enteramine from extracts of posterior salivary glands of Octopus vulgaris and of Discoglossus pictus skin. J Biol Chem 200:311–318

    CAS  PubMed  Google Scholar 

  • Fiorito G, Affuso A, Anderson DB et al (2014) Cephalopods in neuroscience: regulations, research and the 3Rs. Invertebr Neurosci 14:13–36

    Article  CAS  Google Scholar 

  • Fouad K, Rank MM, Vavrek R et al (2010) Locomotion after spinal cord injury depends on constitutive activity in serotonin receptors. J Neurophysiol 104:2975–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser Rowell CH (1963) Excitatory and inhibitory pathways in the arm of octopus. J Exp Biol 40:257–270

    Google Scholar 

  • Gillette R (2006) Evolution and function in serotonergic systems. Integr Comp Biol 46:838–846

    Article  CAS  PubMed  Google Scholar 

  • Giuditta A, Libonati M, Packard A, Prozzo N (1971) Nuclear counts in the brain lobes of Octopus vulgaris as a function of body size. Brain Res 25:55–62

    Article  CAS  PubMed  Google Scholar 

  • Graziadei P (1965a) Electron microscopy observations od some peripheral synapses in the sensory pathway of the sucker of Octopus vulgaris. Zeitschrift fur Zellforsch und Mikroskopische Anat 65:363–379

    Article  CAS  Google Scholar 

  • Graziadei P (1965b) Muscle receptors in cephalopods. Proc R Soc B Biol Sci 161:392–402

    Article  Google Scholar 

  • Graziadei P (1971) The nervous system of the arms. In: Young J (ed) The anatomy of the nervous system of Octopus vulgaris. Clarendon, Oxford, pp 45–61

    Google Scholar 

  • Graziadei PP, Gagné HT (1976) Sensory innervation in the rim of the octopus sucker. J Morphol 150:639–679

    Article  CAS  PubMed  Google Scholar 

  • Guérin J (1908) Contribution à l’étude des systèmes cutané, musculaire et nerveux de l’appareil tentaculaire des Céphalopodes. Arch Zool Exp Gen 4:1–178

    Google Scholar 

  • Gutfreund Y, Matzner H, Flash T, Hochner B (2006) Patterns of motor activity in the isolated nerve cord of the octopus arm. Biol Bull 211:212–222

    Article  PubMed  Google Scholar 

  • Hanlon RT, Messenger JB (1996) Cephalopod behaviour. Cambridge University, Cambridge

    Google Scholar 

  • Hochner B (2008) Octopuses. Curr Biol 18:R897–R898

    Article  CAS  PubMed  Google Scholar 

  • Hochner B, Shomrat T, Fiorito G (2006) The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms. Biol Bull 210:308–317

    Article  PubMed  Google Scholar 

  • Hsiao C-F, Wu N, Chandler SH (2005) Voltage-dependent calcium currents in trigeminal motoneurons of early postnatal rats: modulation by 5-HT receptors. J Neurophysiol 94:2063–2072

    Article  CAS  PubMed  Google Scholar 

  • Ikeda I, Inaba A (1971) Illustrated animal anatomy. Morikita S, Japan

    Google Scholar 

  • Inoue T, Yamashita T, Agata K (2014) Thermosensory signaling by TRPM is processed by brain serotonergic neurons to produce planarian thermotaxis. J Neurosci 34:15701–15714

    Article  PubMed  Google Scholar 

  • Juorio A (1971) Catecholamines and 5-hydroxytryptamine in nervous tissue of cephalopods. J Physiol 216:213–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoor V, Provost AC, Agarwal P, Murthy VN (2016) Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels. Nat Neurosci 19:271–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kier WM, Smith AM (1990) The morphology and mechanics of octopus suckers. Biol Bull 178:126–136

    Article  Google Scholar 

  • Kier WM, Stella MP (2007) The arrangement and function of octopus arm musculature and connective tissue. J Morphol 268:254–274

    Article  Google Scholar 

  • Kime DE, Messenger JB (1990) Monoamines in the cephalopod CNS: an HPLC analysis. Comp Biochem Physiol 96C:49–51

    CAS  Google Scholar 

  • Kito-Yamashita T, Haga C, Hirai K et al (1990) Localization of serotonin immunoreactivity in cephalopod visual system. Brain Res 521:81–88

    Article  CAS  PubMed  Google Scholar 

  • Koike H, Saito H, Matsuki N (1994) 5-HT1A receptor-mediated inhibition of N-type calcium current in acutely isolated ventromedial hypothalamic neuronal cells. Neurosci Res 19:161–166

    Article  CAS  PubMed  Google Scholar 

  • Kollmann M, Minoli S, Bonhomme J et al (2011) Revisiting the anatomy of the central nervous system of a hemimetabolous model insect species: the pea aphid Acyrthosiphon pisum. Cell Tissue Res 343:343–355

    Article  PubMed  Google Scholar 

  • Lehr T, Schipp R (2004) Serotonergic regulation of the central heart auricles of Sepia officinalis L. (Mollusca, Cephalopoda). Comp Biochem Physiol A Mol Integr Physiol 138:69–77

    Article  PubMed  Google Scholar 

  • Li CY, Ziesmer SC, Lazcano-Villareal O (1987) Use of azide and hydrogen peroxide as an inhibitor for endogenous peroxidase in the immunoperoxidase method. J Histochem Cytochem 35:1457–1460

    Article  CAS  PubMed  Google Scholar 

  • Maeda T, Fujimiya M, Kitahama K et al (1989) Serotonin neurons and their physiological roles. Arch Histol Cytol 52:113–120

    Article  PubMed  Google Scholar 

  • Martoja R, May RM (1956) Comparaison de l’innervation brachiale des céphalopodes Octopus vulgaris Lamarck et Sepiolo rondeleti Leach. Arch Zool Exp Gen 94:1–60

    Google Scholar 

  • Matus A (1973) Histochemical localization of biogenic monoamines in the cephalic ganglia of Octopus vulgaris. Tissue Cell 5:591–601

    Article  CAS  PubMed  Google Scholar 

  • Messenger JB (1996) Neurotransmitters of cephalopods. Invertebr Neurosci 2:95–114

    Article  CAS  Google Scholar 

  • Messenger JB (2001) Cephalopod chromatophores: neurobiology and natural history. Biol Rev Camb Philos Soc 76:473–528

    Article  CAS  PubMed  Google Scholar 

  • Messenger J, Cornwell C, Reed C (1997) L-Glutamate and serotonin are endogenous in squid chromatophore nerves. J Exp Biol 200:3043–3054

    CAS  PubMed  Google Scholar 

  • Mislin H (1950) Nachweis einer reflektorischen Regulation des peripheren Kreislaufs bei den Cephalopoden. Experientia 6:467–468

    Article  CAS  PubMed  Google Scholar 

  • Moltschaniwskyj NA, Hall K, Lipinski MR et al (2007) Ethical and welfare considerations when using cephalopods as experimental animals. Rev Fish Biol Fisheries 17:455–476

    Article  Google Scholar 

  • Monahan-Earley R, Dvorak AM, Aird WC (2013) Evolutionary origins of the blood vascular system and endothelium. J Thromb Haemost 11(Suppl 1):46–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Muñoz JLP, Patiño M a L, Hermosilla C et al (2011) Melatonin in octopus (Octopus vulgaris): tissue distribution, daily changes and relation with serotonin and its acid metabolite. J Comp Physiol A Neuroethol Sens Neural, Behav Physiol 197:789–797

    Article  Google Scholar 

  • Nesher N, Levy G, Grasso FW, Hochner B (2014) Self-recognition mechanism between skin and suckers prevents octopus arms from interfering with each other. Curr Biol 24:1271–1275

    Article  CAS  PubMed  Google Scholar 

  • Poustka AJ, Kühn A, Groth D et al (2007) A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks. Genome Biol 8:R85

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramirez MD, Oakley TH (2015) Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides. J Exp Biol 218:1513–1520

    Article  PubMed  PubMed Central  Google Scholar 

  • Richter S, Loesel R, Purschke G et al (2010) Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool 7:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Rowell CH (1966) Activity of interneurones in the arm of Octopus in response to tactile stimulation. J Exp Biol 44:589–605

    Article  CAS  PubMed  Google Scholar 

  • Sakaue Y, Bellier J-P, Kimura S et al (2014) Immunohistochemical localization of two types of choline acetyltransferase in neurons and sensory cells of the octopus arm. Brain Struct Funct 219:323–341

    Article  CAS  PubMed  Google Scholar 

  • Schipp R (1987a) The blood vessels of cephalopods. A comparative morphological and functional survey. Experientia 43:525–537

    Article  Google Scholar 

  • Schipp R (1987b) General morphological and functional characteristics of the cephalopod circulatory system. An introduction. Experientia 43:474–477

    Article  Google Scholar 

  • Shigeno S, Ragsdale CW (2015) The gyri of the octopus vertical lobe have distinct neurochemical identities. J Comp Neurol 523:1297–1317

    Article  CAS  PubMed  Google Scholar 

  • Shigeno S, Yamamoto M (2002) Organization of the nervous system in the pygmy cuttlefish, Idiosepius paradoxus Ortmann (Idiosepiidae, Cephalopoda). J Morphol 254:65–80

    Article  PubMed  Google Scholar 

  • Shomrat T, Feinstein N, Klein M, Hochner B (2010) Serotonin is a facilitatory neuromodulator of synaptic transmission and “reinforces” long-term potentiation induction in the vertical lobe of Octopus vulgaris. Neuroscience 169:52–64

    Article  CAS  PubMed  Google Scholar 

  • Smith LS (1962) The role of venous peristalsis in the arm circulation of Octopus dofleini. Comp Biochem Physiol 7:269–275

    Article  CAS  PubMed  Google Scholar 

  • Sumbre G, Gutfreund Y, Fiorito G et al (2001) Control of octopus arm extension by a peripheral motor program. Science 293:1845–1848

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Yamamoto T, Inenaga M, Uemura H (2000) Galanin-immunoreactive neuronal system and colocalization with serotonin in the optic lobe and peduncle complex of the octopus (Octopus vulgaris). Brain Res 865:168–176

    Article  CAS  PubMed  Google Scholar 

  • Tansey EM (1979) Neurotransmitters in the cephalopod brain. Comp Biochem Physiol Part C Comp Pharmacol 64:173–182

    Article  Google Scholar 

  • Tansey EM (1980) Aminergic fluorescence in the cephalopod brain. Philos Trans R Soc B Biol Sci 291:127–145

    Article  Google Scholar 

  • Uemura T, Yamashita T, Haga C et al (1987) Localization of serotonin-immunoreactivity in the central nervous system of Octopus vulgaris by immunohistochemistry. Brain Res 406:73–86

    Article  CAS  PubMed  Google Scholar 

  • Velázquez-Ulloa N, Blackshaw SE, Szczupak L et al (2003) Convergence of mechanosensory inputs onto neuromodulatory serotonergic neurons in the leech. J Neurobiol 54:604–617

    Article  PubMed  Google Scholar 

  • Viguier F, Michot B, Hamon M, Bourgoin S (2013) Multiple roles of serotonin in pain control mechanisms—implications of 5-HT7 and other 5-HT receptor types. Eur J Pharmacol 716:8–16

    Article  CAS  PubMed  Google Scholar 

  • von Bohlen und Halbach O, Dermietzel R (2006) Neurotransmitters and neuromodulators: handbook of receptors and biological effects, 2nd edn. Wiley, Weinheim

    Book  Google Scholar 

  • Wells MJ (1964) Tactile discrimination of shape by octopus. Q J Exp Psychol 16:156–162

    Article  Google Scholar 

  • Wells MJ (1979) The heartbeat of Octopus Vulgaris. J Exp Biol 78:87–104

    Google Scholar 

  • Wells MJ, Wells J (1956) The function of the brain of octopus in tactile discrimination. J Exp Biol 34:131–142

    Google Scholar 

  • Westermann B, Beuerlein K, Hempelmann G, Schipp R (2002) Localization of putative neurotransmitters in the mantle and siphuncle of the mollusc Nautilus pompilius L. (Cephalopoda). Histochem J 34:435–440

    Article  CAS  PubMed  Google Scholar 

  • Wollesen T, Degnan BM, Wanninger A (2010) Expression of serotonin (5-HT) during CNS development of the cephalopod mollusk, Idiosepius notoides. Cell Tissue Res 342:161–178

    Article  CAS  PubMed  Google Scholar 

  • Wollesen T, Sukhsangchan C, Seixas P et al (2012) Analysis of neurotransmitter distribution in brain development of benthic and pelagic octopod cephalopods. J Morphol 273:776–790

    Article  CAS  PubMed  Google Scholar 

  • Wu W-H, Cooper RL (2012) Serotonin and synaptic transmission at invertebrate neuromuscular junctions. Exp Neurobiol 21:101–112

    Article  PubMed  PubMed Central  Google Scholar 

  • Young JZ (1963) The number and sizes of nerve cells in Octopus. Proc Zool Soc London 140:229–254

    Article  Google Scholar 

  • Young J (1967) Some comparisons between the nervous systems of cephalopods and mammals. In: Wiersma C (ed) Invertebrate nervous systems: their significance for mammalian neurophysiology. Chicago University, Chigago, pp 353–362

    Google Scholar 

  • Young JZ (1971) Evolution and subdivisions of the cephalopod cervous system. In: Young JZ (ed) The anatomy of the nervous system of Octopus vulgaris. Clarendon, Oxford, pp 1–18

    Google Scholar 

  • Zhou XF, Zettler C, Rush RA (1994) An improved procedure for the immunohistochemical localization of nerve growth factor-like immunoreactivity. J Neurosci Methods 54:95–102

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. Koyama and Mrs. Mori, Nakase, Okamoto, Urushiyama, and Yamamoto from the Central Research Laboratory of Shiga University of Medical Science for their excellent technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Bellier.

Ethics declarations

Funding

This work was supported by JSPS KAKENHI Grant Number 15K1055600.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellier, JP., Xie, Y., Farouk, S.M. et al. Immunohistochemical and biochemical evidence for the presence of serotonin-containing neurons and nerve fibers in the octopus arm. Brain Struct Funct 222, 3043–3061 (2017). https://doi.org/10.1007/s00429-017-1385-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-017-1385-3

Keywords

Navigation