Skip to main content
Log in

Neurotransmitters of cephalopods

  • Review
  • Published:
Invertebrate Neuroscience

Abstract

  1. 1.

    ACh, dopamine, noradrenaline, 5-HT,l-glutamate, and GABA are widely distributed in cephalopods and probably all function as neurotransmitters; octopamine also occurs and at one site is known to act as a neuromodulator.

  2. 2.

    Several peptides are also present, as well as nitric oxide synthase.

  3. 3.

    In the brain and sense organs cholinergic, aminergic, serotonergic and glutamatergic systems seem to be the most important.

  4. 4.

    ACh is also active in the gut, vascular system and some body muscles: it is generally inhibitory. The ACh receptors are similar to the vertebrate nicotinic type.

  5. 5.

    The catecholamines are important in the gut and vascular system: they are generally excitatory. The NA receptors are like the α-adrenergic subtype of vertebrates, but the nature of the DA and OA receptors is less certain.

  6. 6.

    5-HT is important in the gut but is endogenous in some chromatophore nerves and acts on receptors that seem like the vertebrate 5-HT1 type.

  7. 7.

    l-glutamate is an excitatory transmitter at the chromatophore (and probably at other) nerve-muscle junctions and is an extremely strong candidate for being the excitatory transmitter at the squid giant synapse. There are NMDA receptors on Schwann-cells but the receptors on neurons and muscles are like the vertebrate kainate type.

  8. 8.

    Little is known about the mode of action of cephalopod peptides; nor has it ever been shown that they co-exist with conventional transmitters in these animals.

  9. 9.

    The structure of one (FMRFamide) receptor has been elucidated, but apart from this nothing is known of the molecular biology of receptors in cephalopods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, D. J. and Gillespie, J. I. (1988) The actions ofl-glutamate at the post-synaptic membrane of the squid giant synapse.J. Exp. Biol.,140, 535–548.

    Google Scholar 

  • Adams, D. J., Takeda, K. and Umbach, J. A. (1985) Inhibitors of calcium buffering depress evoked transmitter release of the squid giant synapse.J. Physiol. (Lond.),369, 145–160.

    Google Scholar 

  • Agnisola, C., Cariello, L., De Santis, A., Miralto, A. and Tota, B. (1989) Chronotropic and inotropic effects of atrial peptides on the isolated systemic heart ofOctopus vulgaris.J. Comp. Physiol. B.,158, 637–641.

    Google Scholar 

  • Alexandrowicz, J. S. (1965) The neurosecretory system of the vena cava in cephalopoda II.Sepia officinalis andOctopus vulgaris.J. Mar. Biol. Assoc. UK,45, 209–228.

    Google Scholar 

  • Andrews, P. L. R., Messenger, J. B. and Tansey, E. M. (1981) Colour changes in cephalopods after neurotransmitter injection into the cephalic aorta.Proc. R. Soc. Lond. Biol. Sci.,213, 93–99.

    Google Scholar 

  • Andrews, P. L. R., Messenger, J. B. and Tansey, E. M. (1983) The chromatic and motor effects of neurotransmitter injection in intact and brain-lesionedOctopus.J. Mar. Biol. Assoc. UK,63, 355–370.

    Google Scholar 

  • Andrews, P. L. R. and Tansey, E. M. (1981) A technique for central drug administration inOctopus vulgaris.J. Neurosci. Methods,4, 243–247.

    Google Scholar 

  • Andrews, P. L. R. and Tansey, E. M. (1983a) The digestive tract ofOctopus vulgaris: the anatomy, physiology and pharmacology of the upper tract.J. Mar. Biol. Assoc. UK,63, 109–134.

    Google Scholar 

  • Andrews, P. L. R. and Tansey, E. M. (1983b) Aminergic innervation of the blood vessels ofOctopus vulgaris.Cell Tissue Res.,230, 229–232.

    Google Scholar 

  • Auerbach, B. and Budelmann, B.V. (1986). Evidence for acetylcholine as a neurotransmitter in the statocyst ofOctopus vulgaris.Cell Tissue Res. 243, 429–436.

    Google Scholar 

  • Augustine, G. J., Deitmer, J., Hans, M., Swandula, D. and Zipser, K. (1995) Multiple calcium signalling pathways in squid giant presynaptic terminals. InCephalopod Neurobiology, ed. N. J. Abbott, R. Williamson, and L. Maddock, pp. 271–282. Oxford: Oxford University Press.

    Google Scholar 

  • Bacq, Z. M. (1935) Recherches sur la physiologie et la pharmacologie du système nerveux autonome. XVII. Les esters de la choline dans les extraits de tissus des invertébrés.Arch. Int. Physiol.,42, 24–42.

    Google Scholar 

  • Barlow, J. J. (1977) Comparative biochemistry of the central nervous system. InThe Biology of Cephalopods, ed. M. Nixon and J. B. Messenger, pp. 325–346.Symp. Zool. Soc. Lond., 38.

  • Bone, Q. and Howarth, J. V. (1980) The role ofl-glutamate in neuromuscular transmission in some molluscs.J. Mar. Biol. Assoc. UK,60, 619–26.

    Google Scholar 

  • Bone, Q., Packard, A. and Pulsford, A. L. (1982) Cholinergic innervation of muscle fibres in squid.J. Mar. Biol. Assoc. UK,62, 193–199.

    Google Scholar 

  • Boycott, B. B. (1961) The functional organization of the brain of the cuttlefishSepia officinalis.Proc. R. Soc. Lond. B Biol. Sci.,153, 503–534.

    Google Scholar 

  • Brzin, M., Tennyson, V. M. and Dettbarn, W. D. (1975) Cytochemical localization of cholinesterase activity at the giant synapse of the squid.Histochemistry,43, 305–311.

    Google Scholar 

  • Budelmann, B. U. (1990) The statocysts of squid. InSquid as Experimental Animals, ed. D. L. Gilbert, W. J. Adelman and J. M. Arnold, pp. 421–439. New York: Plenum.

    Google Scholar 

  • Budelmann, B. U. and Bonn, U. (1982) Histochemical evidence for catecholamines as neurotransmitters in the statocyst ofOctopus vulgaris.Cell Tissue Res.,227, 475–483.

    Google Scholar 

  • Budelmann, B. U., Sachse, M. and Staudigl, M. (1987) The angular acceleration receptor system ofOctopus vulgaris: morphometry, ultrastructure, and neuronal and synaptic organization.Philos. Trans. R. Soc. Lond. B Biol. Sci.,315, 305–343.

    Google Scholar 

  • Burnstock, G., Cocks, T., Kasakov, L. and Wong, H. K. (1978) Direct evidence for ATP release from non-adrenergic, non-cholinergic (purinergic) nerves in guinea-pig taenia coli and bladder.Eur. J. Pharmacol.,49, 145–149.

    Google Scholar 

  • Capasso, A., Carginale, V., Madonna, L., Mancaniello, D., Scudiero, R., De Prisco, P. P., De Petrocellis, B. and Parisi, E. (1991) A dopamine- and octopaminesensitive adenylate cyclase in the nervous system ofOctopus vulgaris.Comp. Biochem. Physiol.,100 B, 805–803.

    Google Scholar 

  • Capasso, A., Carginale, V., Borrelli, L. and Parisi, E. (1993) Receptor-mediated inhibition of octopamine-stimulated adenylate cyclase in the optic lobe of Octopus vulgaris.Comp. Biochem. Physiol,106C, 555–559.

    Google Scholar 

  • Chen, S-J., Spathis, R. and Schmidt, J. (1988) Binding sites for [3H]-acetylcholine and125I-α-hungarotoxin in the optic ganglion ofLoligo pealii.Comp. Biochem. Physiol.,90C, 317–323.

    Google Scholar 

  • Chichery, R. and Chanelet, J. (1972) Action de l'acétylcholine et de diverses substances curarisantes sur le système nerveux de la seiche.Compt. Rend. Séanc. Soc. Biol.,166, 273–276.

    Google Scholar 

  • Chichery, R. and Chichery, M. P. (1974) Histochemical study of the localization of cholinesterases in the central nervous system ofSepia officinalis.Cell Tissue Res.,148, 551–560.

    Google Scholar 

  • Chichery, R. and Chichery, M.-P. (1985) Motor and behavioural effects induced by putative neurotransmitter injection into the optic lobe of the cuttlefish,Sepia officinalis.Comp. Biochem. Physiol.,80C, 415–419.

    Google Scholar 

  • Chichery, R. and Chichery, M. P. (1994) NADPH-diaphorase in a cephalopod brain (Sepia): presence in an analogue of the cerebellum.NeuroReport,5, 1273–1276.

    Google Scholar 

  • Chin, G. J., Payza, K., Price, D. A., Greenberg, M. J. and Doble, K. E. (1994) Characterization and solubilization of the FMRFamide receptor of squid.Biol. Bull.,187, 185–199.

    Google Scholar 

  • Cloney, R. A. and Florey, E. (1968) Ultrastructure of cephalopod chromatophore organs.Zeit. Zellforsch.,89, 250–280.

    Google Scholar 

  • Cohen, A. I. (1973) An ultrastructural analysis of the photoreceptors of the squid and their synaptic connections. III Photoreceptor termination in the optic lobes.J. Comp. Neurol.,147, 399–426.

    Google Scholar 

  • Cornwell, C. J. and Messenger, J. B. (1995) Neurotransmitters of squid chromatophores. InCephalopod Neurobiology, ed. N. J. Abbott, R. Williamson and L. Maddock, pp. 369–379. Oxford: Oxford University Press.

    Google Scholar 

  • Cornwell, C. J., Messenger, J. B. and Williamson, R. (1993) Distribution of GABA-like immunoreactivity in the octopus brain.Brain Res.,621, 353–357.

    Google Scholar 

  • Corrie, J. E. T., De Santis, A., Katayama, Y., Khodakhah, K., Messenger, J. B., Ogden, D. C. and Trentham, D. R. (1993) Postsynaptic activation at the squid giant synapse by photolytic release ofl-glutamate from ‘caged’l-glutamate.J. Physiol. (Lond.),465, 1–8.

    Google Scholar 

  • Cottrell, G. A., Lin, J. W., Llinas, R., Price, D. A., Sugimori, M. and Stanley, E. F. (1992) FMRFamide-related peptides potentiate transmission at the squid giant synapse.Exp. Physiol.,77, 881–889.

    Google Scholar 

  • D'Aniello, A., Nardi, G., De Santis, A., Vetere, A. Di Cosmo, A., Marchelli, R., Dossena, A. and Fisher, G. (1995) Freel-amino acids andd-aspartate content in the nervous system of Cephalopoda. A comparative study.Comp. Biochem. Physiol.,112B, 661–666.

    Google Scholar 

  • De La Torre, J. D. and Surgeon, J. W. (1976) A methodological approach to rapid and sensitive monoamine histofluorescence using a modified glyoxylic acid technique: the SPG method.Histochemistry,49, 81–93.

    Google Scholar 

  • Demushkin, V. P. and Kotelevtsev, Yu. V. (1980) Properties of membrane-bound acetylcholine receptor from optic ganglion of the squidBerryteuthis magister.Biokhimiya,45, 1773–1779.

    Google Scholar 

  • De Santis, A., Eusebi, F. and Miledi, R. (1978) Kainic acid and synaptic transmission in the stellate ganglion of the squid.Proc. R. Soc. Lond. B Biol. Sci.,202, 527–32.

    Google Scholar 

  • De Santis, A. and Messenger, J. B. (1989) New evidence thatl-glutamate is a transmitter at the squid giant synapse.Q. J. Exp. Physiol.,74, 219–222.

    Google Scholar 

  • De Santis, A. and Messenger, J. B. (1990) Argiotoxin 636 blocks squid giant synapse. FEBSAbstracts P-Mo 065.

  • Evans, P. D. (1981) Multiple receptor types for octopamine in the locust.J. Physiol. (Lond.),318, 99–122.

    Google Scholar 

  • Evans, P. D., Reale, V., Merzon, R. M. and Villegas, I. (1986) Peptidergic modulation of the membrane potential of the Schwann cell of the squid giant nerve fibre.J. Physiol. (Lond.),379, 61–82.

    Google Scholar 

  • Evans, P. D., Reale, V., Merzon, R. M. and Villegas, I. (1990) Substance P modulation of the membrane potential of the Schwann cell of the squid giant nerve fibre.Glia,3, 393–404.

    Google Scholar 

  • Evans, P. D., Reale, V., Merzon, R. M. and Villegas, I. (1991)N-methyl-d-aspartate (NMDA) and non-NMDA type glutamate receptors are present on squid giant axon Schwann cells.J. Exp. Biol.,157, 593–600.

    Google Scholar 

  • Evans, P. D., Reale, V., Merzon, R. M. and Villegas, I. (1992a)N-methyl-d-aspartate (NMDA) and non-NMDA (metabotropic) type glutamate receptors modulate the membrane potential of the Schwann cell of the squid giant nerve fibre.J. Exp. Biol.,173, 229–249.

    Google Scholar 

  • Evans, P. D., Reale, V., Merzon, R. M. and Villegas, I. (1992b) The effect of a glutamate uptake inhibitor on axon-Schwann cell signalling in the squid giant nerve fibre.J. Exp. Biol.,173, 251–260.

    Google Scholar 

  • Evans, P. D., Reale, V., Merzon, R. M. and Villegas, I. (1995) The pharmacology of receptors present on squid giant axon Schwann cells. InCephalopod Neurobiology, ed. N. J. Abbott, R. Williamson and L. Maddock, pp 213–228. Oxford: Oxford University Press.

    Google Scholar 

  • Evans, P. D. and Villegas, J. (1988) The action of vasoactive intestinal peptide antagonists on peptidergic modulation of the squid Schwann cell.J. Exp. Biol.,138, 259–269.

    Google Scholar 

  • Feldman, S. C. (1986) Distribution of immunoreactive somatostatin (ISRIF) in the nervous system of the squid,Loligo pealei.J. Comp. Neurol.,245, 238–257.

    Google Scholar 

  • Fiedler, A. (1992) The possible role of vena cava peptides in regulation of the branchial hearts ofSepia officinalis L. (Cephalopoda).J. Exp. Zool.,264, 136–143.

    Google Scholar 

  • Fiedler, A. and Schipp, R. (1990) The effects of biogenic monoamines and related agonists and antagonists on the isolated, perfused branchial heart ofSepia officinalis (Cephalopoda).Comp. Biochem. Physiol.,97C, 71–78.

    Google Scholar 

  • Fiedler, A. and Schipp, R. (1991) Localization of catecholaminecontaining nerve fibres in the branchial heart and cardia ganglion of the common cuttlefish.Sepia officinalis L. (Cephalopda).Tissue Cell,23, 813–819.

    Google Scholar 

  • Florey, E. (1966) Nervous control and spontaneous activity of the chromatophores of a cephalopod,Loligo opalescens.Comp. Biochem. Physiol.,18, 305–324.

    Google Scholar 

  • Florey, E., Dubas, F. and Hanlon, R. T. (1985) Evidence forl-glutamate as a transmitter of motoneurons innervating squid chromatophote muscles.Comp. Biochem. Physiol.,82C, 259–268.

    Google Scholar 

  • Florey, E. and Kriebel, M. E. (1969) Electrical and mechanical responses of chromatophore muscle fibres of the squidLoligo opalescens to nerve stimulation and drugs.Z. Vergl. Physiol.,65, 98–130.

    Google Scholar 

  • Florey, E. and Winesdorfer, J. (1968) Cholinergic nerve endings in Octopus brain.J. Neurochem.,15, 169–177.

    Google Scholar 

  • Ghiretti, F. (1948) Studio comparativo dell'azione della colina e dell'acetilcolina sul cuore isolato dei molluschi gasteropodi e cefalopodi.Arch. Sci. Biol.,32, 239–251.

    Google Scholar 

  • Gleadall, I. G., Ohtsu, K., Gleadall, E. and Tsukahara, Y. (1993) Screening-pigment migration in theOctopus tetina includes control via dopaminergic efferents.J. Exp. Biol.,185, 1–16.

    Google Scholar 

  • Gray, E. G. (1970) A note on synaptic structure of the retina of theOctopus vulgaris.J. Cell. Sci.,7, 203–215.

    Google Scholar 

  • Hanlon, R. T. and Messenger, J. B. (1996)Cephalopod behaviour. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hill, R. B. and Huddart, H. (1995) Actions of GTP on molluscan buccal, cardiac and visceral muscle.Comp. Biochem. Physiol.,111C, 389–396.

    Google Scholar 

  • Hill, R. B. and Welsh, J. H. (1966) Heart, circulation and blood cells. InThe Physiology of Mollusca Volume 2, ed. K. M. Wilbur and C. M. Yonge, pp 125–174. New York: Academic Press.

    Google Scholar 

  • Jakobs, P. M. (1991) Effects of FMRFamide and some analogues on the isolated systemic heart ofSepia officinalis L. in orthograde perfusion. InFirst International Symposium on the Cuttlefish Sepia, University of Caen, France, 1989, ed. E. Boucaud-Camou, pp. 237–247. Caen: Centre Publications, Univetsity of Caen.

    Google Scholar 

  • Jakobs, P. M. and Schipp, R. (1992) The electocardiogram ofSepia officinalis L. (Cephalopoda: Coleoidea) and its modulation by neuropeptides of the FMRFamide group.Comp. Biochem. Physiol.,103C, 399–402.

    Google Scholar 

  • Johansen, K. and Huston, M. J. (1962) Effects of some drugs on the circulatory system of the intact non-anesthetized cephalopod,Octopus dofleini.Comp. Biochem. Physiol.,5, 177–184.

    Google Scholar 

  • Juorio, A. V. (1971) Catecholamines and 5-hydroxytryptamine in nervous tissue of cephalopods.J. Physiol. (Lond.),216, 213–226.

    Google Scholar 

  • Juorio, A. V. and Killick, S. W. (1972) Monoamines and their metabolism in some molluscs.Comp. Gen. Pharmacol.,3, 283–295.

    Google Scholar 

  • Juorio, A. V. and Killick, S. W. (1973) The distribution of monoamines and some of their acid metabolites in the posterior salivary glands and viscera of some cephalopods.Comp. Biochem. Physiol.,44, 1059–1067.

    Google Scholar 

  • Juorio, A. V. and Molinoff, P. B. (1974) The normal occurrence of octopamine in neural tissues of theOctopus and other cephalopods.J. Neurochem.,22, 271–280.

    Google Scholar 

  • Juorio, A. V. and Philips, S. R. (1976) Arylalkylamines inOctopus tissue.Neurochem. Res.,1, 501–509.

    Google Scholar 

  • Kawai, N., Yamagishi, S., Saito, M., and Furuya, K. (1983) Blockade of synaptic transmission in the squid giant synapse by a spider toxin (JSTX).Brain Res.,278, 346–349.

    Google Scholar 

  • Kelly, J. S. and Gage, P. W. (1969)l-glutamate blockade of transmission at the giant synapse of the squid stellate ganglion.J. Neurobiol.,1, 209–219.

    Google Scholar 

  • Kier, W. M. (1988) The arrangement and function of molluscan muscle. InThe Mollusca, Vol. 11. Form and Function, ed. E. R. Trueman and M. R. Clarke, pp. 211–252. San Diego: Academic Press.

    Google Scholar 

  • Kime, D. E. and Messenger, J. B. (1990) Monoamines in the cephalopod CNS: an HPLC analysis.Comp. Biochem. Physiol.,96C, 49–57.

    Google Scholar 

  • Kito-Yamashita, T., Haga, C., Hirai, K., Uemura, T., Kondo, H. and Kosaka, K. (1990) Localization of serotonin immunoreactivity in cephalopod visual system.Brain Res.,521, 81–88.

    Google Scholar 

  • Kling, G. (1986) Histochemical localisation of cholinesterases and monoamines in the central heart ofSepia officinalis L. (Cephalopoda).Histochemistry,85, 241–250.

    Google Scholar 

  • Kling, G. (1987) The effect of acetylcholine, cholinergic agonists and antagonists on the isolated central heart ofSepia officinalis L.Zool. Jb. Physiol.,91, 13–25.

    Google Scholar 

  • Kling, G. and Jakobs, P. M. (1987) Cephalopod myocardial receptors: pharmacological studies on the isolated heart ofSepia officinalis (L.).Experientia,43, 511–525.

    Google Scholar 

  • Kling, G. and Schipp, R. (1987) Effects of biogenic amines and related agonists and antagonists on the isolated heart of the common cuttlefishSepia officinalis.Comp. Biochem. Physiol.,87C, 251–285.

    Google Scholar 

  • Lam, P. M. K., Wiesel, T. N. and Kaneko, A. (1974) Neurotransmitter synthesis in cephalopod retina.Brain Res.,82, 365–368.

    Google Scholar 

  • Le Gall, S., Féral, C., Van Minnen, J. and Marchand, C. R. (1988) Evidence for peptidergic innervation of the endocrine optic gland inSepia by neurons showing FMRFamide-like immunoreactivity.Brain Res.,462, 83–88.

    Google Scholar 

  • Lieberman, E. M., Abbott, N. J. and Hassan, S. (1989) Evidence that glutamate mediates axon-to-Schwann cell signaling in the squid.Glia,2, 94–102.

    Google Scholar 

  • Lieberman, E. M. and Sanzenbacher, E. (1992) Mechanisms of glutamate activation of axon-to-Schwann cell signalling in the squid.Neuroscience,47, 931–939.

    Google Scholar 

  • Llinás, R., Joyner, R. W. and Nicholson, C. (1974) Equilibrium potential for the post-synaptic response in the squid giant synapse.J. Gen. Physiol.,64, 519–535.

    Google Scholar 

  • Llinás, R. and Sugimori, M. (1995) Synaptic transmission in the squid stellate ganglion. InCephalopod Neurobiology, ed. N. J. Abbott, R. Williamson and L. Maddock, pp. 255–270. Oxford: Oxford University Press.

    Google Scholar 

  • Loi, P. K., Saunders, R. G., Young, D. C. and Tublitz, N. J. (1996) Peptidergic regulation of chromatophore function in the European cuttlefishSepia officinalis.J. Exp. Biol.,199, 1177–1187.

    Google Scholar 

  • Loi, P. K. and Tublitz, N. J. (1996) Cloning and sequence of a full length FMRF amide coding cDNA from the brain of the cuttle-fishSepia officinalis. Soc. Neurosci. Abstracts,22, in press.

  • Lucero, M. T., Farrington, H. and Gilly, W. F. (1994) Quantification of L-DOPA and dopamine in squid ink: implications for chemoreception.Biol. Bull.,187, 55–63.

    Google Scholar 

  • Lucero, M. T. and Gilly, W. F. (1995) Physiology of squid olfaction. InCephalopod Neurobiology, ed. N. J. Abbott, R. Williams and L. Maddock, pp 521–534. Oxford: Oxford University Press.

    Google Scholar 

  • Lucero, M. T., Horrigan, F. T. and Gilly, W. F. (1992) Electrical responses to chemical stimulation of squid olfactory receptor cells.J. Exp. Biol.,162, 231–249.

    Google Scholar 

  • Makman, M. H., Berrios, I., Pratt, S., Hanlon, R. T. and Stefano, G. B. (1987) Anatomical localization of dopaminergic systems inOctopus retina; evidence for intrinsic dopamine-containing cells and dopamine D1 receptors. InNeurobiology: Molluscan models, ed. H. H. Boer, W. P. M. Geraerts and J. Joose, pp 31–35. Amsterdam: North Holland.

    Google Scholar 

  • Martin, R. (1968) Fine structure of the neurosecretory system of the vena cava inOctopus.Brain Res.,8, 201–205.

    Google Scholar 

  • Martin, R. and Miledi, R. (1986) The form and dimensions of the giant synapse of squids.Philos. Trans. R. Soc. Lond. B Biol. Sci.,312, 355–377.

    Google Scholar 

  • Martin, R. and Voigt, K. H. (1987) The neurosecretory system of the octopus vena cava: a neurohemal organ.Experientia,43, 537–543.

    Google Scholar 

  • Matus, A. I. (1973) Histochemical localization of biogenic monoamines in the cephalic ganglia ofOctopus vulgaris.Tissue Cell,5, 590–601.

    Google Scholar 

  • Messenger, J. B. (1967) The peduncle lobe: a visuo-motor centre inOctopus.Proc. R. Soc. Lond. B Biol. Sci.,167, 225–251.

    Google Scholar 

  • Messenger, J. B. (1979) The nervous system ofLoligo. IV. The peduncle and olfactory lobes.Philos. Trans. R. Soc. Lond. B Biol. Sci.,285, 275–309.

    Google Scholar 

  • Messenger, J. B. (1991) Transmitters, toxins and phylogeny.J. Zool.,223, 687–694.

    Google Scholar 

  • Messenger, J. B., De Santis, A. and Ogden, D. C. (1995) Chemical transmission at the squid giant synapse. InCephalopod Neurobiology, ed. N. J. Abbott, R. Williamson and L. Maddock, pp. 283–297. Oxford: Oxford University Press.

    Google Scholar 

  • Messenger, J. B., Katayama, Y., Ogden, D. C., Corrie, J. E. T. and Trentham, D. R. (1991) Photolytic release of glutamate from ‘caged’ glutamate expands squid chromatophores.J. Physiol. (Lond.),438, 293P.

    Google Scholar 

  • Messenger, J. B. and Tansey, E. M. (1979) Aminergic fluorescence in the cephalopod ‘cerebellum’.J. Physiol. (Lond.), 287, 7–8P.

    Google Scholar 

  • Miledi, R. (1967) Spontaneous synaptic potentials and quantal release of transmitter in the stellate ganglion of the squid.J. Physiol. (Lond.),192, 379–406.

    Google Scholar 

  • Miledi, R. (1969) Transmitter action in the giant synapse of the squid.Nature,223, 1284–1286.

    Google Scholar 

  • Moroz, L. L. and Gillette, R. (1995) From Polyplacophora to Cephalopoda: comparative analysis of nitric oxide signalling in Mollusca.Acta Biol. Hungarica,46, 169–182.

    Google Scholar 

  • Nachmansohn, D. and Meyerhof, B. (1941) Electrical changes during nerve activity and relation to concentration of choline esterase.J. Neurophysiol.,4, 348–361.

    Google Scholar 

  • Nathanson, J. A. (1993) Identification of octopaminergic agonists with selectivity for octopamine receptor subtypes.J. Pharmacol. Exp. Ther.,265, 509–515.

    Google Scholar 

  • Osborne, N. N., Beaton, D. W., Boyd, P. J. and Walker, R. J. (1986) Substance P-like immunoreactivity in the retina and optic lobe of the squid.Neurosci. Lett.,70, 65–68.

    Google Scholar 

  • Packard, A. and Sanders, G. D. (1971) Body patterns ofOctopus vulgaris and maturation of the response to disturbance.Anim. Behav.,19, 780–790.

    Google Scholar 

  • Parr, K. L. (1988) The distributuion of 5-HT and other amines in the cephalopod nervous system. Ph.D. Thesis, University of Sheffield.

  • Reale, V., Evans, P. D. and Villegas, J. (1986) Octopaminergic modulation of the membrane potential of the Schwann cell of the squid giant nerve fibre.J. Exp. Biol.,121, 421–443

    Google Scholar 

  • Reed, C. M. (1995) The ultrastructure and innervation of muscles controlling chromatophore expansion in the squid,Loligo vulgaris.Cell Tissue Res.,282, 503–572.

    Google Scholar 

  • Reich, G. (1992) A new peptide of the oxytocin/vasopressin family isolated from nerves of the cephalopodOctopus vulgaris.Neurosci. Lett.,134, 191–194.

    Google Scholar 

  • Robertson, H. A. and Juorio, A. V. (1977) Octopamine and some related non-catecholic amines in invertebrate nervous systems.Int. Rev. Neurobiol.,19, 173–224.

    Google Scholar 

  • Robertson, J. D., Bonaventura, J. and Kohm, A. P. (1994) Nitric oxide is required for tactile learning in Octopus vulgaris.Proc. R. Soc. Lond. B Biol Sci.,256, 269–273.

    Google Scholar 

  • Saito, M., Kawai, N., Miwa, A., Yamagishi, S. and Furuya, K. (1985) Evidence forl-glutamate as the neurotransmitter of the squid giant synapse.Neurosci. Res.,2, 297–307.

    Google Scholar 

  • Sanders, G. D. (1975) The Cephalapods. InInvertebrate Learning. Vol. 3: Cephalopods and Echinoderms, ed. W. C. Corning, J. A. Dyal and A. O. D. Willows, pp. 1–101. New York: Plenum.

    Google Scholar 

  • Schipp, R. and Fiedler, A. (1994) Cholinergic mechanisms in the neurocontrol of the cephalic aorta of the cephalopodSepia officinalis L.Comp. Biochem. Physiol.,107C, 149–157.

    Google Scholar 

  • Schipp, R., Jakobs, P. M. and Fiedler, A. (1991) Monoaminergicpeptidergic interactions in neuroregulatory control of the cephalic aorta inSepia officinalis L. (Cephalopoda).Comp. Biochem. Physiol.,99C, 421–429.

    Google Scholar 

  • Schipp, R., Schmidt, H. R. and Fiedler, A. (1986) Comparative cytochemical and pharmacological studies on the cholinergic innervation of the branchial heart of the cephalopodSepia officinalis (L.)Experientia,42, 23–30.

    Google Scholar 

  • Scuka, M. (1971) Effects of histamine on resting and action potentials of squid giant axons.Life Sci.,10, 355–360.

    Google Scholar 

  • Sereni, E. (1930) The chromatophores of the cephalopods.Biol. Bull.,59, 247–268.

    Google Scholar 

  • Silver, S. C., Patterson, J. A. and Mobbs, P. G. (1983) Biogenic amines in cephalopod retina.Brain Res.,273, 366–368.

    Google Scholar 

  • Smart, D., Shaw, C., Johnson, C., Thim, L., Halton, D. and Buchanan, K. (1992) Peptide tyrosine phenylalanine: a novel neuropeptide F-related nonapeptide from the brain of the squid,Loligo vulgaris.Biochem. Biophys. Res. Comm.,186, 1616–1623.

    Google Scholar 

  • Stanley, E. F. (1983) Depolarizing and desensitizing actions of glutaminergic and cholinergic agonists at the squid giant synapse.Biol. Bull.,165, 533.

    Google Scholar 

  • Stanley, E. F. (1984) The action of cholinergic agonists on the squid stellate ganglion giant synapse.J. Neurosci.,4, 1904–1911.

    Google Scholar 

  • Stefano, G. B., Hall, B., Makman, M. H. and Dvorkin, B. (1981) Opioid inhibition of dopamine release from nervous tissue ofMytilus edulis andOctopus bimaculatus.Science,213, 928–930.

    Google Scholar 

  • Suzuki, H. and Tasaki, K. (1983) Inhibitory retinal efferents from dopaminergic cells in the optic lobe of the octopus.Vision Res.,23, 451–457.

    Google Scholar 

  • Tansey, E. M. (1978) A histochemical study of the cephalopod brain. Ph.D. Thesis, University of Sheffield.

  • Tansey, E. M. (1979) Neurotransmitters in the cephalopod brain.Comp. Biochem. Physiol.,64C, 173–182.

    Google Scholar 

  • Tansey, E. M. (1980) Aminergic fluorescence in the cephalopod brain.Philos. Trans. R. Soc. Lond. B Biol. Sci.,291, 127–145.

    Google Scholar 

  • Tasaki, K. and Suzuki, H. (1980) Efferent inhibitory system in the octopus retina.Neurosci. Lett.,Suppl. 4, 563.

    Google Scholar 

  • Tu, Y. and Budelmann, B. U. (1994) The effect ofl-glutamate on the afferent resting activity in the cephalopod statocyst.Brain Res.,642, 47–58.

    Google Scholar 

  • Uemura, T., Yamashita, T., Haga, C., Miyazaki, N., Kondo, H. and Matsushita, M. (1987) Localization of serotonin-immunoreactivity in the central nervous system ofOctopus vulgaris by immunohistochemistry.Brain Res.,406, 73–86.

    Google Scholar 

  • Villegas, J. (1984) Axon-Schwann cell relationships.Curr. Top. Membr. Trans.,22, 547–571.

    Google Scholar 

  • Villegas, G. M. and Villegas, G. (1974) Acetylcholinesterase localization in the giant nerve fibre of the squid.J. Ultrastruc. Res.,46, 149–163.

    Google Scholar 

  • Walker, R. J. and Holden-Dye, L. (1989) Commentary on the evolution of transmitters, receptors and ion channels in invertebrates.Comp. Biochem. Physiol.,93A, 25–39.

    Google Scholar 

  • Walker, R. J. and Holden-Dye, L. (1991) Evolutionary aspects of transmitter molecules, their receptors and channels.Parasitology,102, S7-S29.

    Google Scholar 

  • Wells, M. J. (1966) Learning in the octopus.Symp. Soc. Exp. Biol.,20, 477–507.

    Google Scholar 

  • Wells, M. J. (1978)Octopus — Physiology and Behaviour of an Advanced Invertebrate. London: Chapman & Hall.

    Google Scholar 

  • Wells, M. J. (1983) Circulation in cephalopods. InThe Mollusca Vol. 5 (Part 2), ed. A. S. M. Saleuddin and K. M. Wilbur, pp. 239–290. New York: Academic Press.

    Google Scholar 

  • Wells, M. J. and Mangold, K. (1980) The effects of extracts from neurosecretory cells in the anterior vena cava and pharyngoopthalmic vein upon the hearts of intact, free-moving octopuses.J. Exp. Biol.,84, 319–334.

    Google Scholar 

  • Williamson, R. (1989) Electrophysiological evidence for cholinergic and catecholaminergic efferent transmitters in the statocyst of octopus.Comp. Biochem. Physiol.,93C, 23–27.

    Google Scholar 

  • Williamson, R. and Chrachri, A. (1994) The efferent system in cephalopod statocysts.Biomed. Res. (Tokyo),15,suppl. 1, 51–56.

    Google Scholar 

  • Young, J. Z. (1939) Fused neurons and synaptic contacts in the giant nerve fibres of cephalopods.Philos. Trans. R. Soc. Lond. B Biol. Sci.,229, 465–503.

    Google Scholar 

  • Young, J. Z. (1965) The organization of a memory system.Proc. R. Soc. Lond. B Biol. Sci.,163, 285–320.

    Google Scholar 

  • Young, J. Z. (1971)The Anatomy of the Nervous System of Octopus vulgaris. Oxford: Clarendon Press.

    Google Scholar 

  • Young, J. Z. (1973) The giant fibre synapse ofLoligo.Brain Res.,57, 457–460.

    Google Scholar 

  • Young, J. Z. (1974) The central nervous system ofLoligo. I. The optic lobe.Philos. Trans. R. Soc. Lond. B Biol. Sci.,267, 263–302.

    Google Scholar 

  • Young, J. Z. (1976) The nervous system ofLoligo. II. Suboesophageal centres.Philos. Trans. R. Soc. Lond. B Biol. Sci.,274, 101–167.

    Google Scholar 

  • Young, J. Z. (1977) The nervous system ofLoligo. III. Higher motor centres: the basal supraoesophageal lobes.Philos. Trans. R. Soc. Lond. B Biol. Sci,276, 351–398.

    Google Scholar 

  • Young, J. Z. (1979) The nervous system ofLoligo. V. The vertical lobe complex.Philos. Trans. R. Soc. Lond. B Biol. Sci.,285, 311–354.

    Google Scholar 

  • Young, J. Z. (1983) The distributed tactile memory system ofOctopus.Proc. R. Soc. Lond. B Biol. Sci.,218, 135–176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Messenger, J.B. Neurotransmitters of cephalopods. Invertebrate Neuroscience 2, 95–114 (1996). https://doi.org/10.1007/BF02214113

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02214113

Key words

Navigation