Skip to main content
Log in

Molecular characterization of miRNA genes and their expression in Dimocarpus longan Lour

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

A genome-wide analysis of longan miRNA genes was conducted, and full-length pri-miRNA transcripts were cloned. Bioinformatics and expression analyses contributed to the functional characterization of longan miRNA genes.

MicroRNAs are important for the post-transcriptional regulation of target genes. However, little is known about the transcription and regulation of miRNA genes in longan (Dimocarpus longan Lour.). In this study, 80 miRNA precursors (pre-miRNA) were predicted, and their secondary structure, size, conservation, and diversity were analyzed. Furthermore, the full-length cDNA sequences of 13 longan primary miRNAs (pri-miRNAs) were amplified by RLM-RACE and SMART-RACE and analyzed, which revealed that longan pri-miRNA transcripts have multiple transcription start sites (TSSs) and the downstream pre-miRNAs are polymorphic. Accordingly, the longan pri-miRNAs and protein-encoding genes may have similar transcriptional specificities. An analysis of the longan miRNA gene promoter elements indicated that the three most abundant cis-acting elements were light-responsive, stress-responsive, and hormone-responsive elements. A quantitative real-time PCR assay elucidated the potential spatial and temporal expression patterns of longan pre-miRNAs during the early stages of somatic embryogenesis (SE) and in different longan organs/tissues. This is the first report regarding the molecular characterization of miRNA genes and their expression profiles in longan. The generated data may serve as a foundation for future research aimed at clarifying the longan miRNA gene functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CpECGE:

Compact pro-embryogenic cultures globular embryos

EC:

Embryogenic callus

GE:

Globular embryos

ICpEC:

Incomplete compact pro-embryogenic cultures

MIR genes:

MiRNA genes

NEC:

Non-embryonic callus

pre-miRNAs:

Precursor miRNAs

pri-miRNAs:

Primary miRNAs

SE:

Somatic embryogenesis

TSSs:

Transcription start sites

RLM-RACE:

RNA ligase-mediated rapid amplification of cDNA ends

References

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  CAS  PubMed  Google Scholar 

  • Andriankaja M, Dhondt S, Debodt S, Vanhaeren H, Coppens F, Demilde L, Mühlenbock P, Skirycz A, Gonzalez N, Beemster GS (2012) Exit from proliferation during leaf development in Arabidopsis thaliana : a not-so-gradual process. Dev Cell 22:64–78

    Article  CAS  PubMed  Google Scholar 

  • Archak S, Nagaraju J (2007) Computational prediction of rice (Oryza sativa) miRNA targets. Genom Proteom Bioinform 5:196–206

    Article  CAS  Google Scholar 

  • Bai B, Bian H, Zeng Z, Hou N, Shi B, Wang J, Zhu M, Han N (2017) MiR393-mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley. Plant Cell Physiol 58:426–439

    CAS  PubMed  Google Scholar 

  • Barik S, SarkarDas S, Singh A, Gautam V, Kumar P, Majee M, Sarkar AK (2014) Phylogenetic analysis reveals conservation and diversification of microRNA166 genes among diverse plant species. Genomics 103:114–121

    Article  CAS  PubMed  Google Scholar 

  • Barvkar VT, Pardeshi VC, Kale SM, Qiu S, Rollins M, Datla R, Gupta VS, Kadoo NY (2013) Genome-wide identification and characterization of microRNA genes and their targets in flax (Linum usitatissimum). Planta 237:1149–1161

    Article  CAS  PubMed  Google Scholar 

  • Bouvy-Liivrand M, Hernández de Sande A, Pölönen P, Mehtonen J, Vuorenmaa T et al (2017) Analysis of primary microRNA loci from nascent transcriptomes reveals regulatory domains governed by chromatin architecture. Nucleic Acids Res 17:9837–9849

    Article  Google Scholar 

  • Carbone F, Bruno L, Perrotta G, Bitonti MB, Muzzalupo I, Chiappetta A (2019) Identification of miRNAs involved in fruit ripening by deep sequencing of Olea europaea L. transcriptome. PLoS ONE 14:e0221460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cesar L, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605–1619

    Article  Google Scholar 

  • Chang TH, Horng JT, Huang HD (2008) RNALogo: a new approach to display structural RNA alignment. Nucleic Acids Res 36:W91–W96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chávez-Hernández EC, Alejandri-Ramírez ND, Juárez-González VT, Dinkova TD (2015) Maize miRNA and target regulation in response to hormone depletion and light exposure during somatic embryogenesis. Front Plant Sci 6:555

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Zeng YJ, Wang JY, Xu XP, Li HS, Zhang ZH, Chen YK, Lai ZX, Wang TC, Lin YL (2017) Evolutionary characteristics of miR159 gene family in Dimocarpus longan Lour., and their spatial and temporal expression. Chin J Appl Environ Biol 23:602–608

    Google Scholar 

  • Cui KR, Xing GS, Zhou GK, Liu XM, Wang YF (2000) The induced and regulatory effects of plant hormones in somatic embryogenesis. Hereditas 22:349–354

    CAS  Google Scholar 

  • Cui X, Xu SM, Mu DS, Yang ZM (2009) Genomic analysis of rice microRNA promoters and clusters. Gene 431:61–66

    Article  CAS  PubMed  Google Scholar 

  • Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432(7014):231–235

    Article  CAS  PubMed  Google Scholar 

  • Diao Z, Yu M, Bu S, Duan Y, Zhang L, Wu W (2018) Functional characterization of OsmiR396a in rice (Oryza sativa L.). Plant Growth Regul 85:351–361

    Article  CAS  Google Scholar 

  • Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48:1493–1509

    CAS  Google Scholar 

  • Dong CH, Pei H (2014) Over-expression of miR397 improves plant tolerance to cold stress in Arabidopsis thaliana. J Plant Biol 57:209–217

    Article  CAS  Google Scholar 

  • Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC (2006) Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16:939–944

    Article  CAS  PubMed  Google Scholar 

  • Han YQ, Hu Z, Zheng DF, Gao YM (2014) Analysis of promoters of microRNAs from a Glycine max degradome library. J Zhejiang University Sci B 15:125–132

    Article  CAS  Google Scholar 

  • Hervé V, Franck V, Patrice C, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18:1187–1197

    Article  Google Scholar 

  • Huo X, Chao W, Teng Y, Liu X (2015) Identification of miRNAs associated with dark-induced senescence in Arabidopsis. BMC Plant Biol 15:266

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang D, Yin C, Yu A, Zhou X, Liang W, Yuan Z, Xu Y, Yu Q, Wen T, Zhang D (2006) Duplication and expression analysis of multicopy miRNA gene family members in Arabidopsis and rice. Cell Res 16:507–518

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Chen Q, Zhang Q, Yi Z, Hao N, Ou C, Fei W, Li T (2018) Pyr-miR171f-targeted PyrSCL6 and PyrSCL22 genes regulate shoot growth by responding to IAA signaling in pear. Tree Genet Genom 14:20

    Article  Google Scholar 

  • Jing Z, Bingyang X, Meizhu G, Shengli S, Nana J, Hongmei S (2017) Small RNA and transcriptome sequencing reveal a potential miRNA-mediated interaction network that functions during somatic embryogenesis in Lilium pumilum DC. Fisch Front Plant Sci 8:566

    Article  Google Scholar 

  • Kim VN, Nam JW (2006) Genomics of microRNA. Trends Genet 22:165–173

    Article  CAS  PubMed  Google Scholar 

  • Kong WW, Yang ZM (2010) Identification of iron-deficiency responsive microRNA genes and cis-elements in Arabidopsis. Plant Physiol Biochem 48:153–159

    Article  CAS  PubMed  Google Scholar 

  • Lai Z, Chen C, Chen Z (2000) Progress in biotechnology research in longan. Paper presented at the I International Symposium on Litchi and Longan: 558

  • Lai R, Lin Y, Lai Z (2016) Cloning of auxin receptor gene TIR1 and its interaction with miR393 in Dimocarpus longan Lour. Chin J Appl Environ Biol 22:95–102

    CAS  Google Scholar 

  • Lee R, Feinbaum R, Ambros V (1993) Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K et al (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung AKL, Sharp PA (2010) MicroRNA functions in stress responses. Mol Cell 40:280–293

    Article  Google Scholar 

  • Li W, Cui X, Meng ZL, Huang XH, Xie Q, Wu H, Jin HL, Zhang DB, Liang WQ (2012) Transcriptional regulation of Arabidopsis MIR168a and ARGONAUTRE1 homeostasis in abscisic acid and abiotic stress responses. Plant Physiol 158:1279–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Liu YX, Han YP, Li YG, Guo MG, Li WB (2013) MicroRNA primary transcripts and promoter elements analysis in soybean (Glycine max L. Merril.). J Integr Agric 12:1522–1529

    Article  Google Scholar 

  • Li ZX, Li SG, Zhang LF, Han SY, Li WF, Xu HY, Yang WH, Liu YL, Fan YR, Qi LW (2016) Over-expression of miR166a inhibits cotyledon formation in somatic embryos and promotes lateral root development in seedlings of Larix leptolepis. Plant Cell Tiss Organ Cult 127:461–473

    Article  CAS  Google Scholar 

  • Li ZX, Zhang LF, Li WF, Qi LW, Han SY (2017) MiR166a affects the germination of somatic embryos in Larix leptolepis by modulating IAA biosynthesis and signaling genes. J Plant Growth Regul 36:889–896

    Article  CAS  Google Scholar 

  • Lian C, Yao K, Hui D, Li Q, Chao L, Yin W, Xia X (2018) Exploration of ABA responsive miRNAs reveals a new hormone signaling crosstalk pathway regulating root growth of Populus euphratica. Int J Mol Sci 19:1481

    Article  PubMed Central  Google Scholar 

  • Lin YL, Lai ZX (2010) Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree. Plant Sci 178:359–365

    Article  CAS  Google Scholar 

  • Lin YL, Lai ZX (2011) Cloning of miR398a precursor gene from embryogenic callus and its expression analysis during somatic embryogenesis in longan. Chin J Trop Crops 32:668–672

    Google Scholar 

  • Lin YL, Lai ZX (2013a) Cloning of miR398b precursor gene from embryogenic callus and its expression analysis during somatic embryogenesis in longan. Chin J Trop Crops 33:2012–2017

    Google Scholar 

  • Lin YL, Lai ZX (2013b) Comparative analysis reveals dynamic changes in miRNAs and their targets and expression during somatic embryogenesis in longan (Dimocarpus longan Lour.). PLoS ONE 8:e60337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YL, Lai ZX (2013c) Superoxide dismutase multigene family in longan somatic embryos, a comparison of CuZn-SOD, Fe-SOD, and Mn-SOD gene structure, splicing, phylogeny, and expression. Mol Breeding 32:595–615

    Article  CAS  Google Scholar 

  • Lin YL, Lai ZX, Lin L, Lai R, Tian Q, Ye W, Zhang D, Yang M, Chen Y, Zhang Z (2015a) Endogenous target mimics, microRNA167, and its targets ARF6 and ARF8 during somatic embryo development in Dimocarpus longan Lour. Mol Breeding 35:227

    Article  Google Scholar 

  • Lin YL, Lin L, Lai R, Liu W, Chen Y, Zhang Z, Xuhan X, Lai Z (2015b) MicroRNA390-directed TAS3 cleavage leads to the production of tasiRNA-ARF3/4 during somatic embryogenesis in Dimocarpus longan Lour. Front Plant Sci 6:1119

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin YL, Lai ZX, Tian QL, Lin LX, Lai RL, Yang MM, Zhang DM, Chen YK, Zhang ZH (2015c) Endogenous target mimics down-regulate miR160 mediation of ARF10, -16, and -17 cleavage during somatic embryogenesis in Dimocarpus longan Lour. Front Plant Sci 6:956

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin YL, Min J, Lai RL, Wu Z, Chen Y, Yu L, Cheng C, Jin Y, Tian Q, Liu Q, Liu W, Zhang C, Lin L, Hu Y, Zhang D, Thu M, Zhang Z, Liu S, Zhong C, Fang X, Wang J, Yang H, Varshney RK, Yin Y, Lai Z (2017a) Genome-wide sequencing of longan (Dimocarpus longan Lour.) provides insights into molecular basis of its polyphenol-rich characteristics. Gigascience 6:1–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Zhang Q, Zeng Y, Chen X, Zhang Z, Chen Y, Lai Z (2017b) Analysis on evolutionary characteristics and the temporal and spatial expression patterns of miR166 gene family in Dimocarpus longan. Acta Horticulturae Sinica 44:2285–2295

    Google Scholar 

  • Liu D, Song Y, Chen Z, Yu D (2010a) Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant 136:223–236

    Article  Google Scholar 

  • Liu XD, Huang J, Wang Y, Khanna K, Xie ZX, Owen HA, Zhao DZ (2010b) The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression. Plant J 62:416–428

    Article  PubMed  Google Scholar 

  • Long JM, Liu CY, Feng MQ, Liu Y, Wu XM, Guo WW (2018) MiR156-SPLs module regulates somatic embryogenesis induction in citrus callus. J Exp Bot 69:2979–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Megraw M, Baev V, Rusinov V, Jensen ST, Kalantidis K, Hatzigeorgiou AG (2006) MicroRNA promoter element discovery in Arabidopsis. RNA 12:1612–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng Y, Huang F, Shi Q, Cao J, Chen D, Zhang J, Ni J, Wu P, Chen M (2009) Genome-wide survey of rice microRNAs and microRNA—target pairs in the root of a novel auxin-resistant mutant. Planta 230:883–898

    Article  CAS  PubMed  Google Scholar 

  • Min C, Ming W, Dong Z, Hai B, Wang Y (2016) Genomic identification of microRNA promoters and their cis-acting elements in Populus. Genes Genom 38:377–387

    Article  Google Scholar 

  • Nag A, King S, Jack T (2009) MiR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci USA 106:22534–22539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naqvi AR, Sarwat M, Hasan S, Roychodhury N (2012) Biogenesis, functions and fate of plant microRNAs. J Cell Physiol 227:3163–3168

    Article  CAS  PubMed  Google Scholar 

  • Nie H, Wang Y, Su Y, Hua J (2018) Exploration of miRNAs and target genes of cytoplasmic male sterility line in cotton during flower bud development. Funct Integr Genom 18:457–476

    Article  CAS  Google Scholar 

  • Ning LH, Du WK, Song HN, Shao HB, Qi WC, Sheteiwy MSA, Yu DY (2019) Identification of responsive miRNAs involved in combination stresses of phosphate starvation and salt stress in soybean root. Environ Exp Bot 167:103823

    Article  CAS  Google Scholar 

  • Qin Z, Chen J, Jin L, Duns GJ, Ouyang P (2015) Differential expression of miRNAs under salt stress in Spartina alterniflora leaf tissues. J Nanosci Nanotechnol 15:1554–1561

    Article  CAS  PubMed  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez RE, Mecchia MA, Debernardi JM, Carla S, Detlef W, Palatnik JF (2010) Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137:103–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saenen E, Horemans N, Vanhoudt N, Vandenhove H, Biermans G, Hees MV, Wannijn J, Vangronsveld J, Cuypers A (2015) MiRNA398b and miRNA398c are involved in the regulation of the SOD response in uranium-exposed Arabidopsis thaliana roots. Environ Exp Bot 116:12–19

    Article  CAS  Google Scholar 

  • Shamimuzzaman M, Vodkin L (2012) Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing. BMC Genom 13:310

    Article  CAS  Google Scholar 

  • Singh AK, Singh N, Kumar S, Kumari J, Kumar R (2020) Identification and evolutionary analysis of polycistronic miRNA clusters in domesticated and wild wheat. Genomics 112(3):2334–2348

    Article  CAS  PubMed  Google Scholar 

  • Su L, Zhang S, Chen X, Xu X, Lai Z, Lin Y (2018) Molecular characteristics of miR171 family members and analysis of the expression pattern of miR171b regulatory targets during early somatic embryogenesis in longan. J Fruit Sci 35:18–28

    Google Scholar 

  • Szyrajew K, Bielewicz D, Dolata J, Wojcik AM et al (2017) MicroRNAs are intensively regulated during induction of somatic embryogenesis in Arabidopsis. Front Plant Sci 8:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarek H, Baum TJ (2012) Complex feedback regulations govern the expression of miRNA396 and its GRF target genes. Plant Signal Behav 7:749–751

    Article  Google Scholar 

  • Wang Y (2013) Studies on cloning of the primary transcripts and function analyses of some microRNAs from embryonic callus in Dimocarpus longan Lour. Fujian Agriculture and Forestry University, Fuzhou

    Google Scholar 

  • Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11(3):228–234

    Article  CAS  PubMed  Google Scholar 

  • Wójcik AM, Nodine MD, Gaj MD (2017) MiR160 and miR166/165 contribute to the LEC2-mediated auxin response involved in the somatic embryogenesis induction in Arabidopsis. Front Plant Sci 8:2024

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu XM, Liu MY, Ge XX, Xu Q, Guo WW (2011) Stage and tissue-specific modulation of ten conserved miRNAs and their targets during somatic embryogenesis of Valencia sweet orange. Planta 233:495–505

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wang D, Liu Y, Wang L, Qiao X, Zhang S (2014) Identification of miRNAs involved in pear fruit development and quality. BMC Genom 15:953

    Article  Google Scholar 

  • Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC (2005) Expression of Arabidopsis miRNA genes. Plant Physiol 138:2145–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu XP, Liao B, Chen X, Chen XH, Lin YL, Lai ZX (2019) Molecular characteristics and expression analysis of miR397 family members during the early somatic embryogenesis in Dimocarpus longan Lour. J Fruit Sci 36:33–43

    Google Scholar 

  • Xu XP, Chen XH, Chen Y, Zhang QL, Su LY, Chen X, Chen YK, Zhang ZH, Lin YL, Lai ZX (2020) Genome-wide identification of miRNAs and their targets during early somatic embryogenesis in Dimocarpus longan Lour. Sci Rep 10:4626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Wang L, Yuan D, Lindsey K, Zhang X (2013) Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. J Exp Bot 64:1521–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye K, Yao C, Hu X, Guo J (2013) Computational identification of microRNAs and their targets in apple. Genes Genom 35:377–385

    Article  CAS  Google Scholar 

  • Zeng YJ, Lin YL, Cui TT, Chen XH, Xu XP, Zhang ZH, Cheng CZ, Chen YK, Lai ZX (2017) Evolutionary characterization and expression of miR171 family in Dimocarpus longan Lour. Acta Botan Boreali-Occiden Sin 37:258–265

    Google Scholar 

  • Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006b) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Pan X, Anderson TA (2006a) Identification of 188 conserved maize microRNAs and their targets. FEBS Lett 580:3753–3762

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Pan X, Stellwag EJ (2008) Identification of soybean microRNAs and their targets. Planta 229:161–182

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Chia JM, Kumari S, Stein JC, Liu Z, Narechania A, Maher CA, Guill K, Mcmullen MD, Ware D (2009) A genome-wide characterization of microRNA genes in maize. PLoS Genet 5:e1000716

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang JH, Zhang SG, Han SY, Wu T, Li XM, Li WF, Qi LW (2012) Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis. Planta 236:647–657

    Article  CAS  PubMed  Google Scholar 

  • Zhang ST, Zhu C, Wang PY, Chen X, Chen XX, Bai Y, Zhang ZH, Chen YK, Lai ZX, Lin YL (2017) Analysis of evolutionary characteristics of miR172 gene family and their spatial and temporal expression in Dimocarpus longan Lour. J Fruit Sci 34:1385–1393

    Google Scholar 

  • Zhang QL, Su LY, Li X, Zhang ST, Xu XP, Chen XH, Wang PY, Li R, Zhang ZH, Chen YK, Lai ZX, Lin YL (2018) Cloning and expression analysis of miR166 primary gene during the early stage of somatic embryogenesis of longan. Acta Horticulturae Sinica 45:1501–1512

    Google Scholar 

  • Zhao X, Li L (2013) Comparative analysis of microRNA promoters in Arabidopsis and rice. Genom Proteom Bioinform 11:56–60

    Article  CAS  Google Scholar 

  • Zhou M, Sun J, Wang QH, Song LQ, Zhao G, Wang HZ, Yang HX, Li X (2015) Genome-wide analysis of clustering patterns and flanking characteristics for plant microRNA genes. FEBS J 278:929–940

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31672127), the Constructions of Plateau Discipline of Fujian Province (102/71201801101), the Technology Innovation Fund of Fujian agriculture and forestry university (CXZX2017187 and CXZX2018078). We thank Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac) for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

ZXL and YLL conceived the idea and designed the experiments. YLL, YJZ, YKC, and YC performed the experiments. STZ, ZHZ, and JWG prepared the materials. YLL and YC wrote the manuscript, and ZXL finalized the manuscript.

Corresponding author

Correspondence to Zhongxiong Lai.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

425_2021_3564_MOESM1_ESM.png

Supplementary file1 Suppl. Fig. S1 Consensus structures of pre-miRNA families in D .longan, the consensus structure is generated by RNAalifold. a pre-miR156 family; b pre-miR160 family; c pre-miR167 family; d pre-miR171 family; e pre-miR319 family; f pre-miR390 family; g pre-miR393 family; h pre-miR394 family; i pre-miR395 family; j pre-miR398 family; k pre-miR399 family; l pre-miR477 family; m pre-miR482 family; n pre-miR1863 family; o pre-miR3627 family. (PNG 1137 KB)

425_2021_3564_MOESM2_ESM.png

Supplementary file2 Suppl. Fig. S2 Gel electrophoresis of the cloned sequence of longan pri-miRNA. a pri-miR156(scaffold29); b pri-miR156(Unigene5849); c pri-miR166(scaffold338); d pri-miR395(scaffold6); e pri-miR396(scaffold38); f pri-miR170(scaffold1266); g pri-miR390(scaffold24); h pri-miR398b(scaffold58); i pri-miR394(scaffold3884); j pri-miR482(scaffold26); k pri-miR170(scaffold1266); l pri-miR408(Unigene40210); m pri-miR156(scaffold38). (PNG 425 KB)

425_2021_3564_MOESM3_ESM.png

Supplementary file3 Suppl. Fig. S3 Analysis of stem-loop hairpin structures of pri-miRNAs in D. longan. a pri-miR156(scaffold29); b pri-miR398a; c pri-miR160; d pri-miR167; e pri-miR482(scaffold26); f pri-miR156(scaffold38); g pri-miR156(Unigene5849); h pri-miR166(scaffold78); i pri-miR166(scaffold338); j pri-miR168(scaffold2621); k pri-miR170(scaffold1266); l pri-miR170 (scaffold1537); m pri-miR319(Unigene13717); n pri-miR398b(scaffold58); o pri-miR390(scaffold24); p pri-miR393(scaffold978); q pri-miR394(scaffold3884); r pri-miR395(scaffold6); s pri-miR396(scaffold38); t pri-miR397(scaffold21); u pri-miR408(Unigene40210). The green font is the position of the miRNA-5p and miRNA-3p. (PNG 1032 KB)

425_2021_3564_MOESM4_ESM.pdf

Supplementary file4 Suppl. Fig. S4 The location of a single transcription start site (TSSs) in D. longan. Red letter on behalf the TSS is G; blue represent TSSs as A; purple represent TSSs as T. (PDF 31 KB)

Supplementary file5 Suppl. Table S1 Primers and related information of 16 pri-miRNAs. (XLSX 40 KB)

Supplementary file6 Suppl. Table S2 Primer information of 19 pre-miRNAs for qRT-PCR. (XLSX 38 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Chen, Y., Zeng, Y. et al. Molecular characterization of miRNA genes and their expression in Dimocarpus longan Lour. Planta 253, 41 (2021). https://doi.org/10.1007/s00425-021-03564-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-021-03564-w

Keywords

Navigation