Skip to main content

Advertisement

Log in

Genome-wide identification and characterization of microRNA genes and their targets in flax (Linum usitatissimum)

Characterization of flax miRNA genes

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small (20–24 nucleotide long) endogenous regulatory RNAs that play important roles in plant growth and development. They regulate gene expression at the post-transcriptional level by translational repression or target degradation and gene silencing. In this study, we identified 116 conserved miRNAs belonging to 23 families from the flax (Linum usitatissimum L.) genome using a computational approach. The precursor miRNAs varied in length; while most of the mature miRNAs were 21 nucleotide long, intergenic and showed conserved signatures of RNA polymerase II transcripts in their upstream regions. Promoter region analysis of the flax miRNA genes indicated prevalence of MYB transcription factor binding sites. Four miRNA gene clusters containing members of three phylogenetic groups were identified. Further, 142 target genes were predicted for these miRNAs and most of these represent transcriptional regulators. The miRNA encoding genes were expressed in diverse tissues as determined by digital expression analysis as well as real-time PCR. The expression of fourteen miRNAs and nine target genes was independently validated using the quantitative reverse transcription PCR (qRT-PCR). This study suggests that a large number of conserved plant miRNAs are also found in flax and these may play important roles in growth and development of flax.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexandrov NN, Troukhan ME, Brover VV, Tatarinova T, Flavell RB, Feldmann KA (2006) Features of Arabidopsis genes and genome discovered using full-length cDNAs. Plant Mol Biol 60:69–85

    Article  PubMed  CAS  Google Scholar 

  • Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margalit H (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33:2697–2706

    Article  PubMed  CAS  Google Scholar 

  • Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen XM, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003) A uniform system for microRNA annotation. RNA 9:277–279

    Article  PubMed  CAS  Google Scholar 

  • Arnaud D, Dejardin A, Leple JC, Lesage-Descauses MC, Boizot N, Villar M, Benedetti H, Pilate G (2012) Expression analysis of LIM gene family in poplar, toward an updated phylogenetic classification. BMC Res Notes 5:102

    Article  PubMed  CAS  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  PubMed  CAS  Google Scholar 

  • Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17:1658–1673

    Article  PubMed  CAS  Google Scholar 

  • Barakat A, Wall PK, Diloreto S, Depamphilis CW, Carlson JE (2007) Conservation and divergence of microRNAs in Populus. BMC Genomics 8:481

    Article  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bentwich I (2005) Prediction and validation of microRNAs and their targets. FEBS Lett 579:5904–5910

    Article  PubMed  CAS  Google Scholar 

  • Bonnet E, Wuyts J, Rouze P, Van de Peer Y (2004) Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics 20:2911–2917

    Article  PubMed  CAS  Google Scholar 

  • Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of MicroRNA-target recognition. PLoS Biol 3:404–418

    Article  CAS  Google Scholar 

  • Calvino M, Bruggmann R, Messing J (2011) Characterization of the small RNA component of the transcriptome from grain and sweet sorghum stems. BMC Genomics 12:356

    Article  PubMed  CAS  Google Scholar 

  • Cui X, Xu SM, Mu DS, Yang ZM (2009) Genomic analysis of rice microRNA promoters and clusters. Gene 431:61–66

    Article  PubMed  CAS  Google Scholar 

  • Dai XB, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:155–159

    Article  Google Scholar 

  • Deng W, Nickle DC, Learn GH, Maust B, Mullins JI (2007) ViroBLAST: a stand-alone BLAST web server for flexible queries of multiple databases and user’s datasets. Bioinformatics 23:2334–2336

    Article  PubMed  CAS  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang ZH, Su Z (2010) AgriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70

    Article  PubMed  CAS  Google Scholar 

  • Fenart S, Ndong YPA, Duarte J, Riviere N, Wilmer J, van Wuytswinkel O, Lucau A, Cariou E, Neutelings G, Gutierrez L, Chabbert B, Guillot X, Tavernier R, Hawkins S, Thomasset B (2010) Development and validation of a flax (Linum usitatissimum L.) gene expression oligo microarray. BMC Genomics 11:592

    Article  PubMed  Google Scholar 

  • Frazier TP, Xie FL, Freistaedter A, Burklew CE, Zhang BH (2010) Identification and characterization of microRNAs and their target genes in tobacco (Nicotiana tabacum). Planta 232:1289–1308

    Article  PubMed  CAS  Google Scholar 

  • Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW (2011) Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23:1512–1522

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Niu BF, Gao Y, Fu LM, Li WZ (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682

    Article  PubMed  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  PubMed  CAS  Google Scholar 

  • Jung JH, Seo PJ, Kang SK, Park CM (2011) miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant Mol Biol 76:35–45

    Article  PubMed  CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Meyers BC, Green PJ (2007) Construction of small RNA cDNA libraries for deep sequencing. Methods 43:110–117

    Article  PubMed  Google Scholar 

  • Masoudi-Nejad A, Tonomura K, Kawashima S, Moriya Y, Suzuki M, Itoh M, Kanehisa M, Endo T, Goto S (2006) EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Res 34:W459–W462

    Article  PubMed  CAS  Google Scholar 

  • Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  PubMed  CAS  Google Scholar 

  • McCarthy FM, Wang N, Magee GB, Nanduri B, Lawrence ML, Camon EB, Barrell DG, Hill DP, Dolan ME, Williams WP, Luthe DS, Bridges SM, Burgess SC (2006) AgBase: a functional genomics resource for agriculture. BMC Genomics 7:229

    Article  PubMed  Google Scholar 

  • Megraw M, Baev V, Rusinov V, Jensen ST, Kalantidis K, Hatzigeorgiou AG (2006) MicroRNA promoter element discovery in Arabidopsis. RNA 12:1612–1619

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen XM, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi YJ, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhui JK (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190

    Article  PubMed  CAS  Google Scholar 

  • Moss TY, Cullis CA (2012) Computational prediction of candidate microRNAs and their targets from the completed Linum usitatissimum genome and EST database. J Nucleic Acids Investig 3:e2

    Google Scholar 

  • Moxon S, Schwach F, Dalmay T, MacLean D, Studholme DJ, Moulton V (2008) A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics 24:2252–2253

    Article  PubMed  CAS  Google Scholar 

  • Neutelings G, Fenart S, Lucau-Danila A, Hawkins S (2012) Identification and characterization of miRNAs and their potential targets in flax. J Plant Physiol 169:1754–1766

    Article  PubMed  CAS  Google Scholar 

  • Prufer K, Stenzel U, Dannemann M, Green RE, Lachmann M, Kelso J (2008) PatMaN: rapid alignment of short sequences to large databases. Bioinformatics 24:1530–1531

    Article  PubMed  Google Scholar 

  • Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425

    Article  PubMed  CAS  Google Scholar 

  • Ruan MB, Zhao YT, Meng ZH, Wang XJ, Yang WC (2009) Conserved miRNA analysis in Gossypium hirsutum through small RNA sequencing. Genomics 94:263–268

    Article  PubMed  CAS  Google Scholar 

  • Smale ST (2001) Core promoters: active contributors to combinatorial gene regulation. Genes Dev 15:2503–2508

    Article  PubMed  CAS  Google Scholar 

  • Solovyev V, Salamov A (1997) The gene-finder computer tools for analysis of human and model organisms genome sequences. In: Rawling C, Clark D, Altman R, Hunter L, Lengauer T, Wodak S (eds) fifth international conference on intelligent systems for molecular biology, proceedings. AAAI Press, Halkidiki, Greece, pp 294–302

  • Song C, Jia Q, Fang J, Li F, Wang C, Zhang Z (2010) Computational identification of citrus microRNAs and target analysis in citrus expressed sequence tags. Plant Biology 12:927–934

    Article  PubMed  CAS  Google Scholar 

  • Sun G (2012) MicroRNAs and their diverse functions in plants. Plant Mol Biol 80:17–36

    Article  PubMed  CAS  Google Scholar 

  • Tang GL (2010) Plant microRNAs: an insight into their gene structures and evolution. Semin Cell Dev Biol 21:782–789

    Article  PubMed  CAS  Google Scholar 

  • Thakur V, Wanchana S, Xu M, Bruskiewich R, Quick WP, Mosig A, Zhu XG (2011) Characterization of statistical features for plant microRNA prediction. BMC Genomics 12:108

    Article  PubMed  CAS  Google Scholar 

  • Turner M, Yu O, Subramanian S (2012) Genome organization and characteristics of soybean microRNAs. BMC Genomics 13:169

    Article  PubMed  CAS  Google Scholar 

  • Unver T, Budak H (2009) Conserved microRNAs and their targets in model grass species Brachypodium distachyon. Planta 230:659–669

    Article  PubMed  CAS  Google Scholar 

  • Venglat P, Xiang D, Qiu S, Stone SL, Tibiche C, Cram D, Alting-Mees M, Nowak J, Cloutier S, Deyholos M, Bekkaoui F, Sharpe A, Wang E, Rowland G, Selvaraj G, Datla R (2011) Gene expression analysis of flax seed development. BMC Plant Biol 11:74

    Article  PubMed  CAS  Google Scholar 

  • Wang YP, Li KB (2009) Correlation of expression profiles between microRNAs and mRNA targets using NCI-60 data. BMC Genomics 10:218

    Google Scholar 

  • Wang JW, Czech B, Weigel D (2009) miR156-Regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, Yang L, Hawkins S, Neutelings G, Datla R, Lambert G, Galbraith DW, Grassa CJ, Geraldes A, Cronk QC, Cullis C, Dash PK, Kumar PA, Cloutier S, Sharpe A, Wong GK, Wang J, Deyholos MK (2012) The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 72:461–473

    Article  PubMed  Google Scholar 

  • Weber MJ (2005) New human and mouse microRNA genes found by homology search. FEBS J 272:59–73

    Article  PubMed  CAS  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    Article  PubMed  CAS  Google Scholar 

  • Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133:4211–4218

    Article  PubMed  CAS  Google Scholar 

  • Xie ZX, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC (2005) Expression of Arabidopsis MIRNA genes. Plant Physiol 138:2145–2154

    Article  PubMed  CAS  Google Scholar 

  • Xie FL, Xiao P, Zhang BH (2011) Target-align: a tool for plant MicroRNA target identification. In Vitro Cell Dev Biol-Animal 47:S71–S72

    Google Scholar 

  • Yang TW, Xue LG, An LZ (2007) Functional diversity of miRNA in plants. Plant Sci 172:423–432

    Article  CAS  Google Scholar 

  • Zeng CY, Wang WQ, Zheng Y, Chen X, Bo WP, Song S, Zhang WX, Peng M (2010) Conservation and divergence of microRNAs and their functions in Euphorbiaceous plants. Nucleic Acids Res 38:981–995

    Article  PubMed  CAS  Google Scholar 

  • Zhang BH, Pan XP, Anderson TA (2006a) Identification of 188 conserved maize microRNAs and their targets. FEBS Lett 580:3753–3762

    Article  PubMed  CAS  Google Scholar 

  • Zhang BH, Pan XP, Cannon CH, Cobb GP, Anderson TA (2006b) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  PubMed  CAS  Google Scholar 

  • Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA (2006c) Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci 63:246–254

    Article  PubMed  CAS  Google Scholar 

  • Zhang BH, Wang QL, Wang KB, Pan XP, Liu F, Guo TL, Cobb GP, Anderson TA (2007) Identification of cotton microRNAs and their targets. Gene 397:26–37

    Article  PubMed  CAS  Google Scholar 

  • Zhang BH, Pan XP, Stellwag EJ (2008) Identification of soybean microRNAs and their targets. Planta 229:161–182

    Article  PubMed  CAS  Google Scholar 

  • Zhang LF, Chia JM, Kumari S, Stein JC, Liu ZJ, Narechania A, Maher CA, Guill K, McMullen MD, Ware D (2009) A genome-wide characterization of microRNA genes in Maize. PLoS Genet 5:11

    Google Scholar 

  • Zhao BT, Ge LF, Liang RQ, Li W, Ruan KC, Lin HX, Jin YX (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol 10:29

    Google Scholar 

  • Zhong R, Ye ZH (2007) Regulation of HD-ZIP III Genes by MicroRNA 165. Plant Signal Behav 2:351–353

    Article  PubMed  Google Scholar 

  • Zhou M, Sun J, Wang QH, Song LQ, Zhao GA, Wang HZ, Yang HX, Li X (2011) Genome-wide analysis of clustering patterns and flanking characteristics for plant microRNA genes. FEBS J 278:929–940

    Article  PubMed  CAS  Google Scholar 

  • Zhu RS, Li X, Chen QS (2011) Discovering numerical laws of plant microRNA by evolution. Biochem Biophys Res Commun 415:313–318

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Sam Griffiths-Jones (miRbase administrator, University of Manchester, UK) for providing universal nomenclature to the flax microRNA genes. Dr. Martin Lott, University of East Anglia, UK is acknowledged for his support and help during this study. VTB, VCP and SMK acknowledge the Council of Scientific and Industrial Research (CSIR), India for providing fellowships. This work was supported by the NRC-DBT collaborative project on flax. The collaborative project at CSIR-National Chemical Laboratory, Pune, India was supported by Department of Biotechnology, Govt. of India; while at Plant Biotechnology Institute, Saskatoon, Canada, the project was supported by NRC Genomics, Genome Canada and Genome Prairie.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Y. Kadoo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 67 kb)

Supplementary material 2 (PDF 3781 kb)

Supplementary material 3 (XLSX 287 kb)

425_2012_1833_MOESM4_ESM.tif

Hierarchical representation of GO terms overrepresented in biological process (a), cellular component (b) and molecular function (c) categories generated by agriGO analysis. The boxes represent GO terms, GO id, term definition and statistical information and are color coded as per the level of significance (0.05). Non-significant terms are shown as white boxes. The degree of color saturation of a box is positively correlated to the enrichment level of the term. Solid, dashed, and dotted lines represent two, one and zero enriched terms at both ends connected by the line, respectively. The rank direction of the graph is set to from left to right (TIFF 3284 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barvkar, V.T., Pardeshi, V.C., Kale, S.M. et al. Genome-wide identification and characterization of microRNA genes and their targets in flax (Linum usitatissimum). Planta 237, 1149–1161 (2013). https://doi.org/10.1007/s00425-012-1833-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1833-5

Keywords

Navigation