Skip to main content

Advertisement

Log in

Stage and tissue-specific modulation of ten conserved miRNAs and their targets during somatic embryogenesis of Valencia sweet orange

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Somatic embryogenesis (SE) is a remarkable process of plant somatic cells developing into an embryo capable of forming a complete plant. MiRNAs play important roles in plant development by regulating expression of their target genes, but its function in SE has rarely been studied. Herein, ten conserved miRNAs with critical functions in plant development are detected by stem-loop qRT-PCR in the SE system of Valencia sweet orange. Sixteen unigenes from citrus are predicted to be targeted by six of the miRNAs. Cleavage sites on 15 of these target mRNAs are mapped by 5′RACE, of which ten are reported in this study. Transcript abundances of the 16 target unigenes are detected by qRT-PCR during SE process. Stage and tissue-specific expressions of miRNAs and their targets suggest their possible modulation on SE of citrus callus: miR156, 168 and 171 exert regulatory function during somatic embryo induction process; miR159, 164, 390 and 397 are related to globular-shaped embryo formation; miR166, 167 and 398 are required for cotyledon-shaped embryo morphogenesis; in addition, target genes of miR164, 166 and 397 are associated with SE disability of nonembryogenic callus. Exploration of miRNA-mediated modulation on SE is expected to provide new insights into plant cell totipotency, as well as how to maintain and enhance the embryogenic capacity of somatic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

miRNA:

MicroRNA

SE:

Somatic embryogenesis

NEC:

Nonembryogenic callus

EC:

Embryogenic callus

E1/2/3/4:

Embryogenic callus induced for 1/2/3/4 weeks

GE:

Globular-shaped somatic embryo

CE:

Cotyledon-shaped somatic embryo

qRT-PCR:

Quantitative reverse transcription-polymerase chain reaction

5′RACE:

5′ Rapid amplification of cDNA ends

References

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MiRNAs: genomics, biogenesis, mechanism and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bonnet E, He Y, Billiau K, Van de Peer Y (2010) TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 26:1566–1568

    Article  CAS  PubMed  Google Scholar 

  • Cangahuala-Inocente GC, Villarino A, Seixas D, Dumas-Gaudot E, Terenzi H, Guerra MP (2009) Differential proteomic analysis of developmental stages of Acca sellowiana somatic embryos. Acta Physiol Plant 31:501–514

    Article  CAS  Google Scholar 

  • Deng XX (1987) Studies on the isolation, regeneration and fusion of protoplasts in citrus. PhD dissertation of Huazhong Agricultural University

  • Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC (2006) Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16:939–944

    Article  CAS  PubMed  Google Scholar 

  • Gandikota M, Birkenbihl RP, Höhmann S, Cardon GH, Heinz S, Huijser P (2007) The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49:683–693

    Article  CAS  PubMed  Google Scholar 

  • Ge XX, Fan GE, Chai LJ, Guo WW (2010) Cloning, molecular characterization and expression analysis of a SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE gene (CitSERK1-like) in Valencia sweet orange. Acta Physiol Plant 32:1197–1207

    Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    Article  CAS  PubMed  Google Scholar 

  • Gmitter FG Jr, Soneji JR, Rao MN (2009) Citrus breeding. In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops: temperate species. Springer, New York, pp 105–134

    Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  CAS  PubMed  Google Scholar 

  • Guan YC, Ren HB, Xie H, Ma ZY, Chen F (2009) Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis. Plant J 60:207–217

    Article  CAS  PubMed  Google Scholar 

  • Guo WW, Cai XD, Cheng YJ, Grosser JW, Deng XX (2007) Protoplast technology and citrus improvement. In: Xu ZH, Li JY, Xue YB, Yang WC (eds) Biotechnology and sustainable agriculture 2006 and beyond. In: Proc 11th IAPTC&B Congress. Springer, pp 461–464

  • Hofacker IL, Fontana W, Stadler PF, Bonhoeffer S, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatshefte Chemie 125:167–188

    Article  CAS  Google Scholar 

  • Imin N, Goffard N, Nizamidin M, Rolfe BG (2008) Genome-wide transcriptional analysis of super-embryogenic Medicago truncatula explant cultures. BMC Plant Biol 8:110

    Article  PubMed  Google Scholar 

  • Kalendar R, Lee D, Schulman AH (2009) FastPCR software for PCR primer and probe design and repeat search. Genes Genomes Genomics 3:1–14

    Google Scholar 

  • Kayim M, Koc NK (2006) The effects of some carbohydrates on growth and somatic embryogenesis in citrus callus culture. Sci Hortic 109:29–34

    Article  CAS  Google Scholar 

  • Kikuchi A, Sanuki N, Higashi K, Koshiba T, Kamada H (2006) Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. Planta 223:637–645

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Jung JH, Reyes JL, Kim YS, Kim SY, Chung KS, Kim JA, Lee M, Lee Y, Kim VN, Chua NH, Park CM (2005) MicroRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J 42:84–94

    Article  CAS  PubMed  Google Scholar 

  • Lalitha S (2000) Primer Premier 5. Biotech Softw Internet Rep 1:270–272

    Article  Google Scholar 

  • Liu Q, Xu J, Liu Y, Zhao X, Deng X, Guo L, Gu J (2007) A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). J Exp Bot 58:4161–4171

    Article  CAS  PubMed  Google Scholar 

  • Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  CAS  PubMed  Google Scholar 

  • Luo YC, Zhou H, Li Y, Chen JY, Yang JH, Chen YQ, Qu LH (2006) Rice embryogenic calli express a unique set of miRNAs, suggesting regulatory roles of miRNAs in plant post-embryogenic development. FEBS Lett 580:5111–5116

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38:S31–S36

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Dugas DV, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14:1035–1046

    Article  CAS  PubMed  Google Scholar 

  • Maul P, Bausher M, McCollum G, Mozoruk J, Niedz R (2006) CsHPt1, a putative histidine-containing phosphotransmitter protein induced during early somatic embryogenesis in Valencia sweet orange. Plant Sci 170:44–53

    Article  CAS  Google Scholar 

  • Murashige T, Tucker DPH (1969) Growth factors requirement of citrus tissue cultures. In: Chapman HD (ed) Proceedings of the international citrus symposium, vol 3. Riverside, California, pp 1155–1161

  • Oh TJ, Wartell RM, Cairney J, Pullman GS (2008) Evidence for stage-specific modulation of specific microRNAs (miRNAs) and miRNA processing components in zygotic embryo and female gametophyte of loblolly pine (Pinus taeda). New Phytol 179:67–80

    Article  CAS  PubMed  Google Scholar 

  • Pan ZY, Guan R, Zhu SP, Deng XX (2009) Proteomic analysis of somatic embryogenesis in Valencia sweet orange (Citrus sinensis Osbeck). Plant Cell Rep 28:281–289

    Article  PubMed  Google Scholar 

  • Reyes JL, Chua N-H (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49:592–606

    Article  CAS  PubMed  Google Scholar 

  • Ru P, Xu L, Ma H, Huang H (2006) Plant fertility defects induced by the enhanced expression of microRNA167. Cell Res 16:457–465

    Article  CAS  PubMed  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527

    Article  CAS  PubMed  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  CAS  PubMed  Google Scholar 

  • Shimada T, Hirabayashi T, Endo T, Fujii H, Kita M, Omura M (2005) Isolation and characterization of the somatic embryogenesis receptor-like kinase gene homologue (CitSERK1) from Citrus unshiu Marc. Sci Hortic 103:233–238

    Article  CAS  Google Scholar 

  • Sieber P, Wellmer F, Gheyselinck J, Riechmann JL, Meyerowitz EM (2007) Redundancy and specialization among plant microRNAs: role of the miR164 family in developmental robustness. Development 134:1051–1060

    Article  CAS  PubMed  Google Scholar 

  • Smita R, Thomas G, Alexis P, Thomas B, Patrick L, Klaus T (2008) Interplay of miR164, CUP-SHAPED COTYLEDON genes and LATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana. Plant J 55:65–76

    Article  Google Scholar 

  • Song C, Fang J, Li X, Liu H, Thomas Chao C (2009) Identification and characterization of 27 conserved microRNAs in citrus. Planta 230:671–685

    Article  CAS  PubMed  Google Scholar 

  • Song C, Jia Q, Fang J, Li F, Wang C, Zhang Z (2010) Computational identification of citrus microRNAs and target analysis in citrus expressed sequence tags. Plant Biol 12:927–934

    Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down regulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  CAS  PubMed  Google Scholar 

  • Takahata K (2008) Isolation of carrot Argonaute1 from subtractive somatic embryogenesis cDNA library. Biosci Biotechnol Biochem 72:900–904

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H, Mallory AC, Bartel DP (2006) AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell 22:129–136

    Article  CAS  PubMed  Google Scholar 

  • Vernoux T, Benfey PN (2005) Signals that regulate stem cell activity during plant development. Curr Opin Genet Dev 15:388–394

    Article  CAS  PubMed  Google Scholar 

  • Wang JW, Czech B, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749

    Article  CAS  PubMed  Google Scholar 

  • Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC (2005) Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development 132:3657–3668

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547

    Article  CAS  PubMed  Google Scholar 

  • Wu XB, Wang J, Liu JH, Deng XX (2009) Involvement of polyamine biosynthesis in somatic embryogenesis of Valencia sweet orange (Citrus sinensis) induced by glycerol. J Plant Physiol 166:52–62

    Article  CAS  PubMed  Google Scholar 

  • Wu XM, Liu MY, Xu Q, Guo WW (2010) Identification and characterization of miRNAs from citrus expressed sequence tags. Tree Genet Genomes. doi:10.1007/s11295-010-0319-5

  • Xu Q, Liu YL, Zhu AD, Wu XM, Ye JL, Yu KQ, Guo WW, Deng XX (2010) Discovery and comparative profiling of microRNAs in a sweet orange red-flesh mutant and its wild type. BMC Genomics 11:246

    Article  PubMed  Google Scholar 

  • Yang XY, Zhang XL (2010) Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci 29:36–57

    Article  CAS  Google Scholar 

  • Zhang Y (2005) miRU: an automated plant miRNA target prediction server. Nucleic Acids Res 33:w701–w704

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Basic Research Program of China (2011CB100600), the National Natural Science Foundation (No. 30921002), and the Hubei provincial Natural Science Foundation (No. 2008CDA069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Wu Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 110 kb)

Supplementary material 2 (DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, XM., Liu, MY., Ge, XX. et al. Stage and tissue-specific modulation of ten conserved miRNAs and their targets during somatic embryogenesis of Valencia sweet orange. Planta 233, 495–505 (2011). https://doi.org/10.1007/s00425-010-1312-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1312-9

Keywords

Navigation