Skip to main content

Advertisement

Log in

Root diversity in sesame (Sesamum indicum L.): insights into the morphological, anatomical and gene expression profiles

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Sesame harbors a large diversity in root morphological and anatomical traits and a high root biomass improves the plant aboveground biomass as well as the seed yield.

Sesame provides one of the most nutritious and healthy vegetable oils, sparking an increasing demand of its seeds. However, with the low yield and productivity of sesame, there is still a huge gap between the seed demand and supply. Improving the root system has a high potential to increase crop productivity, but information on the diversity of the sesame root systems is still lacking. In this study, 40 diverse sesame varieties were grown in soil and hydroponics systems and the diversity of the root system was investigated. The results showed that sesame holds a large root morphological and anatomical diversity, which can be harnessed in breeding programmes. Based on the clustering of the genotypes in hydroponics and soil culture systems, we found that similar genotypes were commonly clustered either in the small-root or in the big-root group, indicating that the hydroponics system can be employed for a large-scale root phenotyping. Our results further revealed that the root biomass positively contributes to increased seed yield in sesame, based on multi-environmental trials. By comparing the root transcriptome of two contrasting genotypes, 2897 differentially expressed genes were detected and they were enriched in phenylpropanoid biosynthesis, starch and sucrose metabolism, stilbenoid, diarylheptanoid and gingerol biosynthesis, flavonoid biosynthesis, suggesting that these pathways are crucial for sesame root growth and development. Overall, this study sheds light on the diversity of sesame root system and offers the basis for improving root traits and increasing sesame seed yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files. The raw RNA-seq data are freely available at NCBI Sequence Read Archive: www.ncbi.nlm.nih.gov/bioproject/PRJNA552167.

Abbreviations

SDW:

Shoot dry weight (g)

RDW:

Root dry weight (g)

RSR:

Root-shoot ratio (–)

RL:

Root length (cm)

SA:

Root surface area (cm2)

RN:

Root number (–)

RV:

Root volume (cm3)

MRL:

Main root length (cm)

MRD:

Main root diameter (cm)

References

  • Ali ML, Luetchens J, Singh A et al (2016) Greenhouse screening of maize genotypes for deep root mass and related root traits and their association with grain yield under water-deficit conditions in the field. Euphytica 207(1):79–94

    Article  CAS  Google Scholar 

  • Anilakumar K, Pal A, Khanum F et al (2010) Nutritional, medicinal and industrial uses of sesame (Sesamum indicum L.) seeds—an overview. Agric Conspec Sci 75(4):677–685

    Google Scholar 

  • Arro J, Yang Y, Song GQ et al (2019) RNA-Seq reveals new DELLA targets and regulation in transgenic GA-insensitive grapevines. BMC Plant Biol 19(1):80

    Article  PubMed  PubMed Central  Google Scholar 

  • Atkinson JA, Pound MP, Bennett MJ, Wells DM (2019) Uncovering the hidden half of plants using new advances in root phenotyping. Curr Opin Biotechnol 55:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beyer S, Daba S, Tyagi P et al (2019) Loci and candidate genes controlling root traits in wheat seedlings—a wheat root GWAS. Funct Integr Genom 19(1):91–107

    Article  CAS  Google Scholar 

  • Chen L, Bian J, Shi S et al (2018) Genetic analysis for the grain number heterosis of a super-hybrid rice WFYT025 combination using RNA-Seq. Rice 11(1):37–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng FC, Jinn T-R, Hou RCW et al (2006) Neuroprotective effects of sesamin and sesamolin on gerbil brain in cerebral Ischemia. Int J Biomed Sci 2(3):284–288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Q, Bai S, Ge G et al (2018) Study on differentially expressed genes related to defoliation traits in two alfalfa varieties based on RNA-Seq. BMC Genom 19(1):807–815

    Article  CAS  Google Scholar 

  • Dossa K, Wei X, Li D et al (2016) Insight into the AP2/ERF transcription factor superfamily in sesame (Sesamum indicum) and expression profiling of the DREB subfamily under drought stress. BMC Plant Biol 16:171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dossa K, Li D, Wang L et al (2017) Dynamic transcriptome landscape of sesame (Sesamum indicum L.) under progressive drought and after rewatering. Genom Data 11:122–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Dossa K, Li D, Yu J et al (2019) The genetic basis of drought tolerance in the high oil crop Sesamum indicum. Plant Biotechnol J. https://doi.org/10.1111/pbi.13100

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng ZJ, Xu SC, Liu N et al (2018) Soybean TCP transcription factors: evolution, classification, protein interaction and stress and hormone responsiveness. Plant Physiol Biochem 127:129–142

    Article  CAS  PubMed  Google Scholar 

  • Fried HG, Narayanan S, Fallen B et al (2018) Characterization of a soybean (Glycine max L. Merr.) germplasm collection for root traits. PLoS One 13(7):e0200463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gebregergis Z, Assefa D, Fitwy I (2018) Sesame sowing date and insecticide application frequency to control sesame webworm Antigastra catalaunalis (Duponchel) in Humera, Northern Ethiopia. Agric Food Secur 7:39

    Article  Google Scholar 

  • Gharby S, Harhar H, Bouzoubaa Z et al (2017) Chemical characterization and oxidative stability of seeds and oil of sesame grown in Morocco. J Saudi Soc Agric Sci 33(D5):256–289

    Google Scholar 

  • Gujjar RS, Akhtar M, Singh M (2014) Transcription factors in abiotic stress tolerance. Ind J Plant Physiol 19(4):306–316

    Article  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347(5406):357–359

    Google Scholar 

  • Hsu DZ, Su SB, Chien SP et al (2005) Effect of sesame oil on oxidative stress associated renal injury in endotoxemic rats: involvement of nitric oxide and proinflammatory cytokines. Shock 24(3):276–280

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Liao Q, Zou Y et al (2017) Transcriptome analysis reveals the genetic basis underlying the biosynthesis of volatile oil, gingerols, and diarylheptanoids in ginger (Zingiber officinale Rosc.). Bot Stud 58:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ju C, Zhang W, Liu Y et al (2018) Genetic analysis of seedling root traits reveals the association of root trait with other agronomic traits in maize. BMC Plant Biol 18:171–186

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo M, Aguilar A, Abe J et al (2000) Anatomy of nodal roots in tropical upland and lowland rice varieties. Plant Prod Sci 3(4):437–445

    Article  Google Scholar 

  • Kuijken RCP, Eeuwijk FAV, Marcelis LFM et al (2015) Root phenotyping: from component trait in the lab to breeding. J Exp Bot 66(18):389–401

    Article  CAS  Google Scholar 

  • Lalitha S (2000) Primer premier 5. Biotechnol Softw Internet Rep 1:270–272

    Article  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323–339

    Article  CAS  Google Scholar 

  • Li XQ, Zhang D (2003) Gene expression activity and pathway selection for sucrose metabolism in developing storage root of sweet potato. Plant Cell Physiol 44(6):630–636

    Article  CAS  PubMed  Google Scholar 

  • Li D, Wang L, Zhang Y et al (2012) Biological characteristics of Fusarium Wilt pathogens in main sesame production areas of China. Chin Agric Sci Bull 28(03):245–252 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Li GG, Wan YS, Liu FZ et al (2014) Root morphology and physiological characteristics of peanut varieties with different drought resistance. Acta Agron Sin 40(3):531–541 (in Chinese with English abstract)

    Article  CAS  Google Scholar 

  • Liu Z, Gao K, Shan S et al (2017) Comparative analysis of root traits and the associated QTLs for maize seedlings grown in paper roll, hydroponics and vermiculite culture system. Front Plant Sci 8:436–449

    PubMed  PubMed Central  Google Scholar 

  • Liu K, He A, Ye C et al (2018) Root morphological traits and spatial distribution under different nitrogen treatments and their relationship with grain yield in super hybrid rice. Sci Rep 8(1):1–9

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{{ - \Delta \Delta C_{\text{T}} }}\) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Nakano D, Kurumazuka D, Nagai Y et al (2010) Dietary sesamin suppresses aortic NADPH oxidase in DOCA salt hypertensive rats. Clin Exp Pharmacol Physiol 35(3):324–326

    Article  CAS  Google Scholar 

  • Paez-Garcia A, Motes CM, Scheible W-R, Chen RJ, Blancaflor EB, Monteros MJ (2015) Root traits and phenotyping strategies for plant improvement. Plants 4(2):334–355

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandhu N, Subedi SR, Yadaw RB et al (2017) Root traits enhancing rice grain yield under alternate wetting and drying condition. Front Plant Sci 8:1879. https://doi.org/10.3389/fpls.2017.01879

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkar PK, Khatun A, Singha A (2016) Effect of duration of water-logging on crop stand and yield of sesame. Int J Innov Appl Stud 14(1):1–6

    Google Scholar 

  • Shiotsu F, Abe J, Doi T et al (2015) Root morphology and anatomy of field-grown Erianthus arundinaceus. Am J Plant Sci 6(1):103–112

    Article  Google Scholar 

  • Singh A, Shamim M, Singh KN (2013) Genotypic variation in root anatomy, starch accumulation, and protein induction in upland rice (Oryza sativa) varieties under water stress. Agric Res 2(1):24–30

    Article  CAS  Google Scholar 

  • Sun LF, Xing SC, Zhang J et al (2009) Function of the transcription factors in plant domestication and stress resistance. Genom Appl Biol 28(03):569–577

    CAS  Google Scholar 

  • Sun P, Xiao X, Duan L et al (2015) Dynamic transcriptional profiling provides insights into tuberous root development in Rehmannia glutinosa. Front Plant Sci 6:396–410

    PubMed  PubMed Central  Google Scholar 

  • Svacina P, Streda T, Chloupek O (2014) Uncommon selection by root system size increases barley yield. Agron Sustain Dev 34(2):545–551

    Article  Google Scholar 

  • Tarazona S, Garcia-Alcalde F, Dopazo J et al (2011) Differential expression in RNA-seq: a matter of depth. Genome Res 21(12):2213–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan L, Li B, Lei Y et al (2018) Transcriptomic profiling reveals pigment regulation during peanut testa development. Plant Physiol Biochem 125:116–125

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Yu S, Tong C et al (2014) Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 15(2):R39

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang ZG, Ma B-L, Gao J, Sun J (2015) Effects of different management systems on root distribution of maize. Can J Plant Sci 95:21–28

    Article  Google Scholar 

  • Wang X, Chen Y, Thomas CL et al (2017) Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply. DNA Res 24(4):407–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Qu H, Zhang H et al (2019) Hormone and RNA-seq analyses reveal the mechanisms underlying differences in seed vigour at different maize ear positions. Plant Mol Biol 99(4–5):461–476

    Article  CAS  PubMed  Google Scholar 

  • Wasson AP, Rebetzke GJ, Kirkegaard JA et al (2014) Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding. J Exp Bot 65(21):6231–6249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Liu K, Zhang Y et al (2015) Genetic discovery for oil production and quality in sesame. Nat Commun 33:8609

    Article  CAS  Google Scholar 

  • Witcombe JR, Hollington PA, Howarth CJ et al (2008) Breeding for abiotic stresses for sustainable agriculture. Philos Trans B 363(1492):703–716

    Article  CAS  Google Scholar 

  • Wu H, Shi N, An X et al (2018) Candidate genes for yellow leaf color in common wheat (Triticum aestivum L.) and major related metabolic pathways according to transcriptome profiling. Int J Mol Sci 19(6):1594

    Article  PubMed Central  CAS  Google Scholar 

  • Xiao Y, Du Z, Qi X et al (2019) RNA-sequencing analysis reveals transcriptional changes in the roots of low-cadmium-accumulating winter wheat under cadmium stress. Acta Physiol Plant 41:13

    Article  CAS  Google Scholar 

  • Xie Q, Fernando KMC, Mayes S et al (2017) Identifying seedling root architectural traits associated with yield and yield components in wheat. Ann Bot 119(7):1115–1129

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu G, Lu D, Wang H et al (2018a) Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate. Agric Water Manag 203:385–394

    Article  Google Scholar 

  • Xu T, Yang R, Hua X et al (2018b) Improvement of the yield and flavour quality of sesame oil from aqueous extraction process by moisture conditioning before roasting. Int J Food Sci Technol 54(2):471–479

    Article  CAS  Google Scholar 

  • Yang M, Huang FH (2009) Current situation, existing problems, development trend and countermeasures of sesame industry in China. China Oils Fats 34(1):7–12 (in Chinese with English abstract)

    CAS  Google Scholar 

  • You F-L, Zhao S-N (2016) Comparison of the root structures of Sansevieria trifasciata in Hydroponic culture and soil culture. J Anhui Agric Sci 44(16):18–19

    Google Scholar 

  • Zeng H, Zhang X, Zhang X et al (2018) Early transcriptomic response to phosphate deprivation in soybean leaves as revealed by RNA-sequencing. Int J Mol Sci 19(7):21–45

    Article  CAS  Google Scholar 

  • Zhu J, Brown KM, Lynch JP (2010) Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.). Plant Cell Environ 33(5):740–749

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Agriculture Research System (CARS-14), the Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2016-OCRI), the Central Public-interest Scientific Institution Basal Research Fund (1610172018007) and the Peanut and Sesame Industry Technology System of Jiangxi, China (JXARS-18).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiurong Zhang or Komivi Dossa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, R., Zhou, R., Mmadi, M.A. et al. Root diversity in sesame (Sesamum indicum L.): insights into the morphological, anatomical and gene expression profiles. Planta 250, 1461–1474 (2019). https://doi.org/10.1007/s00425-019-03242-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-019-03242-y

Keywords

Navigation