Skip to main content
Log in

Ovary-drip transformation: a simple method for directly generating vector- and marker-free transgenic maize (Zea mays L.) with a linear GFP cassette transformation

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The presence of selectable marker genes and vector backbone sequences has affected the safe assessment of transgenic plants. In this study, the ovary-drip method for directly generating vector- and selectable marker-free transgenic plants was described, by which maize was transformed with a linear GFP cassette (Ubi-GFP-nos). The key features of this method center on the complete removal of the styles and the subsequent application of a DNA solution directly to the ovaries. The movement of the exogenous DNA was monitored using fluorescein isothiocyanate-labeled DNA, which showed that the time taken by the exogenous DNA to enter the ovaries was shortened compared to that of the pollen-tube pathway. This led to an improved transformation frequency of 3.38% compared to 0.86% for the pollen-tube pathway as determined by PCR analysis. The use of 0.05% surfactant Silwet L-77 + 5% sucrose as a transformation solution further increased the transformation frequency to 6.47%. Southern blot analysis showed that the transgenic plants had low transgene copy number and simple integration pattern. Green fluorescence was observed in roots and immature embryos of transgenic plants by fluorescence microscopy. Progeny analysis showed that GFP insertions were inherited in T1 generation. The ovary-drip method would become a favorable choice for directly generating vector- and marker-free transgenic maize expressing functional genes of agronomic interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

FITC:

Fluorescein isothiocyanate

GFP:

Green fluorescent protein

Ubi promoter:

Ubiquitin promoter

Nos terminator:

Nopaline synthase terminator

References

  • Agrawal PK, Kohli A, Twyman RM, Christou P (2005) Transformation of plants with multiple cassettes generates simple transgene integration patterns and high expression levels. Mol Breed 16:247–260

    Article  CAS  Google Scholar 

  • Bent AF (2000) Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol 124:1540–1547

    Article  PubMed  CAS  Google Scholar 

  • Christou P (1996) Transformation technology. Trends Plant Sci 1:423–431

    Article  Google Scholar 

  • Clough S, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Cluster PD, O’Dell M, Metzlaff RB (1994) Details of T-DNA structural organization from a transgenic Petunia population exhibiting co-suppression. Plant Mol Biol 32:1197–1203

    Article  Google Scholar 

  • Daniell H (1999) GM crops: public perception and scientific solutions. Trends Plant Sci 4:467–469

    Article  PubMed  Google Scholar 

  • Demeke T, Hucl P, Båga M, Caswell K, Leung N, Chibbar RN (1999) Transgene inheritance and silencing in hexaploid wheat. Theor Appl Genet 99:947–953

    Article  CAS  Google Scholar 

  • De Vetten N, Wolters AM, Raemakers K, Van Der Meer I, Ter Stege R, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442

    Article  PubMed  CAS  Google Scholar 

  • Filipecki M, Malepszy S (2006) Unintended consequences of pant transformation: a molecular insight. J Appl Genet 4:277–286

    Google Scholar 

  • Fu XD, Duc LT, Fontana S, Bong BB, Tinjuangjun P, Sudhakar D, Twyman RM, Christou P, Kohli A (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res 9:11–19

    Article  PubMed  CAS  Google Scholar 

  • Gao XR, Wang GK, Su Q, Wang Y, An LJ (2007) Phytase expression in transgenic soybeans: stable transformation with a vector-less construct. Biotechnol Lett 29:1781–1787

    Article  PubMed  CAS  Google Scholar 

  • Horvath H, Jensen LG, Wong OT, Kohl E, Ullrich SE, Cochren J, Kannangars CG, Von Wettstein D (2001) Stability of transgene expression, field performance and recombination breeding of transformed barley lines. Theor Appl Genet 102:1–11

    Article  CAS  Google Scholar 

  • Hou WS, Guo SD, Lu M (2003) Development of transgenic wheat with Galanthus nivalis agglutinin gene (sgna) via the pollen tube pathway. Chin Bull Bot 20:198–204

    Google Scholar 

  • Hu CY, Wang LJ (1999) In planta soybean transformation technologies developed in China: procedure, confirmation and field performance. In Vitro Cell Dev Biol Plant 35:417–420

    Google Scholar 

  • Kohli A, Griffiths S, Palacios N, Twyman RM, Vain P, Laurie DA, Christou P (1999) Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology-mediated recombination. Plant J 17:591–601

    Article  PubMed  CAS  Google Scholar 

  • Kondrak M, Ingrid M, Meer VD, Banfalvi Z (2006) Generation of marker- and backbone-free transgenic potatoes by site-specific recombination and a bi-functional marker gene in a non-regular one-border Agrobacterium transformation vector. Transgenic Res 15:729–737

    Article  PubMed  CAS  Google Scholar 

  • Kononov ME, Bassuner B, Gelvin SB (1997) Integration of T-DNA binary vector “backbone” sequence into the tobacco genome: evidence for multiple complex patterns of integration. Plant J 11:945–957

    Article  PubMed  CAS  Google Scholar 

  • Loc NT, Tinjuangjun P, Gatehouse AMR, Christou P, Gatehouse JA (2002) Linear transgene constructs lacking vector backbone sequences generate transgenic rice plants which accumulate higher levels of proteins conferring insect resistance. Mol Breed 9:231–244

    Article  CAS  Google Scholar 

  • Luo ZX, Wu RA (1988) Simple method for the transformation of rice via the pollen-tube pathway. Plant Mol Biol Rep 6:165–174

    Article  CAS  Google Scholar 

  • Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232

    Article  PubMed  CAS  Google Scholar 

  • Poirier Y, Ventre G, Nawrath C (2000) High-frequency linkage of co-expressing T-DNA in transgenic Arabidopsis thaliana transformed by vacuum-infiltration of Agrobacterium tumefaciens. Theor Appl Genet 100:487–493

    Article  CAS  Google Scholar 

  • Puchta H (2000) Removing selectable marker genes: taking the shortcut. Trends Plant Sci 5:273–274

    Article  PubMed  CAS  Google Scholar 

  • Ramanathan V, Veluthambi K (1996) Transfer of non-T-DNA portions of Agrobacterium tumefaciens Ti plamid pTIA6 from the left terminus of T-L-DNA. Plant Mol Biol 28:1149–1154

    Article  Google Scholar 

  • Rasco GS, Riley R, Cannell M, Barcelo P, Lazzeri PA (2001) Procedures allowing the transformation of range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment. J Exp Bot 52:865–874

    Google Scholar 

  • Reichandt M, Rogers S (1994) Preparation of plant DNA using CTAB. In: Ausubel FM, Bernt R, Struhl K (eds) Current protocols in molecular biology [M]. Sarah Greene, Brooklyn, NY, pp 233–237

    Google Scholar 

  • Romano A, Raemakers K, Bernardi J, Visser R, Mooibroek H (2003) Transgene organization in potato after particle bombardment-mediated (co-)transformation using plasmids and gene cassettes. Transgenic Res 12:461–473

    Article  PubMed  CAS  Google Scholar 

  • Sachs ES, Benedict JH, Stelly DM (1998) Expression and segregation of genes encoding Cry1A insecticidal proteins in cotton. Crop Sci 38:1–11

    Article  CAS  Google Scholar 

  • Shen JH, Li HR, Li YF, Yin H, Lian YQ (1987) Cytologic observations on the double fertilization in maize. Acta Bot Sin 29:480–485

    Google Scholar 

  • Siemens J, Schieder O (1996) Transgenic plants: genetic transformation—recent developments and state of the art. Plant Tissue Cult Biotechnol 2:66–75

    Google Scholar 

  • Tangmitcharoen S, Owens JN (1997) Floral biology, pollination, pistil receptivity, and pollen tube growth of teak (Tectona grandis Linn f.). Ann Bot 79:227–241

    Article  Google Scholar 

  • Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thomas S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376

    Article  CAS  Google Scholar 

  • Ulian EC, Magill JM, Smith RH (1994) Expression and inheritance pattern of two foreign genes in petunia. Theor Appl Genet 88:433–440

    Article  CAS  Google Scholar 

  • Vain P, James VA, Worland B, Snape JW (2002) Transgene behavior across two generation in a large random population of transgenic rice plants produced by particle bombardment. Theor Appl Genet 105:878–889

    Article  PubMed  CAS  Google Scholar 

  • Volodymyr VR, Dang TV, Evelyn K (2005) Multiple gene co-integration in Arabidopsis thaliana predominantly occurs in the same genetic locus after simultaneous in planta transformation with distinct Agrobacterium tumefaciens strains. Plant Sci 168:1515–1523

    Article  CAS  Google Scholar 

  • Wu W, Su Q, Xia XY, Wang Y, Luan YS, An LJ (2008) The Suaeda liaotungensis Kitag betaine aldehyde dehydrogenase gene improves salt tolerance of transgenic maize mediated with minimum linear length of DNA fragment. Euphytica 159:17–25

    Article  CAS  Google Scholar 

  • Yin ZM, Plader W, Malepszy S (2004) Transgene inheritance in plants. J Appl Genet 45:127–144

    PubMed  Google Scholar 

  • Zechendorf B (1994) What the public thinks about biotechnology. Biotechnology 12:870–875

    Article  PubMed  CAS  Google Scholar 

  • Zeng JZ, Wang DJ, Wu YQ, Zhang J, Zhou WJ, Zhu XP, Xu NJ (1994) Transgenic wheat plants obtained with pollen tube pathway method. Sci Chin 37:319–325

    CAS  Google Scholar 

  • Zhang YS, Yin XY, Yang AF, Li GS, Zhang JR (2005) Stability of inheritance of transgenes in maize (Zea mays L.) line produced using different transformation methods. Euphytica 144:11–22

    Article  CAS  Google Scholar 

  • Zhao L, Wang CL, Zong SY, Huang JL, Gong ZZ (2003) Herbicide resistant transgenic rice (Oryza sativa L.) transformed by pollen-tube pathway method and its inheritance. Chin Biotechnol 23:92–97

    CAS  Google Scholar 

  • Zhou GY, Weng J, Zeng Y, Huang J, Qian S, Liu G (1983) Introduction of exogenous DNA into cotton embryos. Methods Enzymol 101:433–481

    Article  PubMed  CAS  Google Scholar 

  • Zhou GY, Weng J, Gong Z, Zeng Y, Yang W, Shen W (1988) Molecular breeding of agriculture: a technique for introducing exogenous DNA into plants after self-pollination. Sci Agric Sin 21:1–6

    CAS  Google Scholar 

  • Zhou J, Mi XJ, Cui JZ (2006) Non-Mendelian inheritance of transgene in plant. Mol Plant Breed 4:614–620

    CAS  Google Scholar 

  • Zuo KJ, Zhang XL, Nie YC (2002) Sequence analysis of Bt insertion flanking fragments in transgenic Bt cotton. Acta Genet Sin 29:735–740

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Key Projects of Science and Technology Council of Liaoning Province (no. 2006208001). The authors specially thank Dr. Alan K. Chang (Dalian University of Technology) for critically reviewing this manuscript and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiao Su or Lijia An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, A., Su, Q. & An, L. Ovary-drip transformation: a simple method for directly generating vector- and marker-free transgenic maize (Zea mays L.) with a linear GFP cassette transformation. Planta 229, 793–801 (2009). https://doi.org/10.1007/s00425-008-0871-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0871-5

Keywords

Navigation