Skip to main content
Log in

The hormonal regulation of de-etiolation

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

De-etiolation involves a number of phenotypic changes as the plants shift from a dark-grown (etiolated) to a light-grown (de-etiolated) morphology. Whilst these light-induced, morphological changes are thought to be mediated by plant hormones, the precise mechanism/s are not yet fully understood. Here we provide further direct evidence that gibberellins (GAs) may play an important role in de-etiolation, because a similar light-induced reduction in bioactive GA levels was detected in barley (Hordeum vulgare L.), Arabidopsis (Arabidopsis thaliana L.), and pea (Pisum sativum L.). This is indicative of a highly conserved, negative-regulatory role for GAs in de-etiolation, in a range of taxonomically diverse species. In contrast, we found no direct evidence of a reduction in brassinosteroid (BR) levels during de-etiolation in any of these species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BR:

Brassinosteroid

CS:

Castasterone

BL:

Brassinolide

GA:

Gibberellin

GA1 :

Gibberellin A1

GA4 :

Gibberellin A4

References

  • Achard P, Liao L, Jiang C, Desnos T, Bartlett J, Fu X, Harberd NP (2007) DELLAs contribute to plant photomorphogenesis. Plant Physiol 143:1163–1172

    Article  PubMed  CAS  Google Scholar 

  • Ait-Ali T, Frances S, Weller JL, Reid JB, Kendrick RE, Kamiya Y (1999) Regulation of gibberellin 20-oxidase and gibberellin 3β-hydroxylase transcript accumulation during de-etiolation of pea seedlings. Plant Physiol 121:783–791

    Article  PubMed  CAS  Google Scholar 

  • Alabadi D, Gil J, Blazquez MA, Garcia-Martinez JL (2004) Gibberellins repress photomorphogenesis in darkness. Plant Physiol 134:1–8

    Article  CAS  Google Scholar 

  • Alvey L, Harberd NP (2005) DELLA proteins: integrators of multiple plant growth regulatory inputs. Physiol Plant 123:153–160

    Article  CAS  Google Scholar 

  • Asami T, Oh K, Jikumaru Y, Shimada Y, Kaneko I, Nakano T, Takatsuto S, Fujioka S, Yoshida S (2004) A mammalian steroid action inhibitor spironolactone retards plant growth by inhibition of brassinosteroid action and induces light-induced gene expression in the dark. J Steroid Biochem Mol Biol 91:41–47

    Article  PubMed  CAS  Google Scholar 

  • Azpiroz R, Wu Y, LoCascio JC, Feldmann KA (1998) An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell 10:219–230

    Article  PubMed  CAS  Google Scholar 

  • Bancos S, Nomura T, Sato T, Molnar G, Bishop GJ, Koncz C, Yokota T, Nagy F, Szekeres M (2002) Regulation of transcript levels of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis. Plant Physiol 130:1–10

    Article  CAS  Google Scholar 

  • Bancos S, Szatmári A-M, Castle J, Kozma-Bognár L, Shibata K, Yokota T, Bishop GJ, Nagy F, Szekeres M (2006) Diurnal regulation of the brassinosteroid-biosynthetic CPD gene in Arabidopsis. Plant Physiol 141:299–309

    Article  PubMed  CAS  Google Scholar 

  • Behringer FJ, Davies PJ (1992) Indole-3-acetic acid levels after phytochrome-mediated changes in the stem elongation rate of dark- and light-grown Pisum seedlings. Planta 188:85–92

    Article  CAS  Google Scholar 

  • Behringer FJ, Davies PJ, Reid PJ (1990) Genetic analysis of the role of gibberellin in the red light inhibition of stem elongation in etiolated seedlings. Plant Physiol 94:432–439

    PubMed  CAS  Google Scholar 

  • Chory J, Li J (1997) Gibberellins, brassinosteroids and light-regulated development. Plant Cell Environ 20:801–806

    Article  CAS  Google Scholar 

  • Chory J, Chatterjee M, Cook RK, Elich T, Fankhauser C, Li J, Nagpal P, Neff M, Pepper A, Poole D, Reed J, Vitart V (1996) From seed germination to flowering, light controls plant development via the pigment phytochrome. Proc Natl Acad Sci USA 93:12066–12071

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD (2001) Integration of light and brassinosteroid signals in etiolated seedling growth. Trends Plant Sci 6:443–445

    Article  PubMed  CAS  Google Scholar 

  • De Grauwe L, Vandenbussche F, Teitz O, Palme K, Van Der Straeten D (2005) Auxin, ethylene and brassinosteroids; tripartite control of growth in the Arabidopsis hypocotyl. Plant Cell Physiol 46:927–836

    Article  CAS  Google Scholar 

  • Du L, Poovaiah BW (2005) Ca2+/calmodulin is critical for brassinosteroid biosynthesis and plant growth. Nature 437:741–744

    Article  PubMed  CAS  Google Scholar 

  • Foo E, Platten D, Weller JW, Reid JB (2006) PhyA and cry1 act redundantly to regulate gibberellin levels during de-etiolation in blue light. Physiol Plant 127:149–156

    Article  CAS  Google Scholar 

  • Gil J, Garcia-Martinez JL (2000) Light regulation of gibberellin A1 content and expression of genes coding for GA 20-oxidase and GA 3 beta-hydroxylase in etiolated pea seedlings. Physiol Plant 180:223–229

    Article  Google Scholar 

  • Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 130:1319–1334

    Article  PubMed  CAS  Google Scholar 

  • Jager CE, Symons GM, Nomura T, Yamada Y, Smith JJ, Yamaguchi S, Kamiya Y, Weller JL, Yokota T, Reid JB (2007) Characterisation of two castasterone-synthase genes in pea. Plant Physiol 143:1894–1904

    Article  PubMed  CAS  Google Scholar 

  • Jeong D-H, Lee S, Kim SL, Hwang I, An G (2007) Regulation of brassinosteroid responses by phytochrome B in rice. Plant Cell Environ 30:590–599

    Article  PubMed  CAS  Google Scholar 

  • Kim G-T, Fujioka S, Kozuka T, Tax FE, Takatsuto S, Yoshida S, Tsukaya H (2005) CYP90C1 and CP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana. Plant J 41:710–721

    Article  PubMed  CAS  Google Scholar 

  • Kim HB, Kwon M, Ryu H, Fujioka S, Takatsuto S, Yoshida S, An CS, Lee I, Hwang I, Choe S (2006) The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol 140:548–557

    Article  PubMed  CAS  Google Scholar 

  • Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272:398–401

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Li J, Qu L, Harger J, Chen Z, Zhao H, Deng XW (2001) Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13:2589–2607

    Article  PubMed  CAS  Google Scholar 

  • Montoya T, Nomura T, Yokota T, Farrar K, Harrison K, Jones JGD, Kaneta T, Kamiya Y, Szekeres M, Bishop GJ (2005) Patterns of Dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. Plant J 42:262–269

    Article  PubMed  CAS  Google Scholar 

  • Nagata N, Min K, Nakano T, Asami T, Yoshida S (2000) Treatment of dark-grown Arabidopsis thaliana with a brassinosteroid-biosynthesis inhibitor, brassinazole, induces some characteristics of light grown plants. Planta 211:781–790

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Satoh T, Tanaka S-I, Mochizuki N, Yokota T, Nagatani A (2005) Activation of the cytochrome P450 gene, CYP72C1, reduces the levels of active brassinosteroids in vivo. J Exp Bot 56:833–840

    Article  PubMed  CAS  Google Scholar 

  • Neff MM, Street IH, Turk EM, Ward JM (2005) Interaction of light and hormone signaling to mediate photomorphogenesis. In: Schäfer E, Nagy F (eds) Photomorphogenesis in plants and bacteria––function and signal transduction mechanisms, 3rd edn. Springer, Dordrecht, pp 441–445

    Google Scholar 

  • Nemhauser J, Chory J (2002) Photomorphogenesis. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville. doi:/10.1199/tab.0054, http://www.aspb.org/publications/arabidopsis/

  • Nemhauser J, Maloof JN, Chory J (2003) Building integrated models of plant growth and development. Plant Physiol 132:436–439

    Article  PubMed  CAS  Google Scholar 

  • Nomura T, Bishop GJ, Kaneta T, Reid JB, Chory J, Yokota T (2003) The LKA gene is a BRASSINOSTEROID INSENSITIVE 1 homolog of pea. Plant J 36:291–300

    Article  PubMed  CAS  Google Scholar 

  • Nomura T, Jager CE, Kitasaka Y, Takeuchi K, Fukami M, Yoneyama K, Matsushita Y, Nyunoya H, Takatsuto S, Fujioka S, Smith JJ, Kerckhoffs LHJ, Reid JB, Yokota T (2004) Brassinosteroid deficiency due to truncated steroid 5α-reductase causes dwarfism in the lk mutant of pea. Plant Physiol 135:2220–2229

    Article  PubMed  CAS  Google Scholar 

  • Nomura T, Kushiro T, Yokota T, Kamiya Y, Bishop GJ, Yamaguchi S (2005) The last reaction producing brassinolide is catalyzed by cytochrome P450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. J Biol Chem 280:17873–17879

    Article  PubMed  CAS  Google Scholar 

  • Nomura T, Ueno M, Yamada Y, Takatsuto S, Takeuchi Y, Yokota T (2007) Roles of brassinosteroids and related mRNAs in pea seed growth and germination. Plant Physiol 143:1680–1688

    Article  PubMed  CAS  Google Scholar 

  • Nozue K, Maloof JN (2006) Diurnal regulation of plant growth. Plant Cell Environ 29:396–408

    Article  PubMed  CAS  Google Scholar 

  • O’Neill DP, Ross JJ, Reid JB (2000) Changes in gibberellin A1 levels and response during de-etiolation of pea seedlings. Plant Physiol 124:805–812

    Article  PubMed  CAS  Google Scholar 

  • Oh E, Yamaguchi S, Kamiya Y, Bae G, Chung W-I, Choi G (2006) Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant J 47:124–139

    Article  PubMed  CAS  Google Scholar 

  • Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I, Lee H-S, Sun T-P, Kamiya Y, Choi G (2007) PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19:1192–1208

    Article  PubMed  CAS  Google Scholar 

  • Parks BM, Spalding EP (1999) Sequential and coordinated action of phytochromes A and B during Arabidopsis stem growth revealed by kinetic analysis. Proc Natl Acad Sci USA 96:14142–14146

    Article  PubMed  CAS  Google Scholar 

  • Poulson R, Beevers L (1970) Effects of light and growth regulators on leaf unrolling in barley. Plant Physiol 46:509–514

    PubMed  CAS  Google Scholar 

  • Reed JW, Forster KR, Morgan PW, Chory J (1996) Phytochrome B affects responsiveness to gibberellins in Arabidopsis. Plant Physiol 112:337–342

    Article  PubMed  CAS  Google Scholar 

  • Reid JB (1983) Internode length in Pisum. Plant Physiol 72:759–763

    Article  PubMed  Google Scholar 

  • Reid JB, Botwright NA, Smith JJ, O’Neill DP, Kerckhoffs LHJ (2002) Control of gibberellin levels and gene expression during de-etiolation in pea. Plant Physiol 128:734–741

    Article  PubMed  CAS  Google Scholar 

  • Ross JJ, Reid JB, Weller JL, Symons GM (2005) Shoot architecture 1––regulation of stem length. In: Turnbull CGN (ed) Plant architecture and its manipulation, Blackwell, Oxford, pp 57–91

    Google Scholar 

  • Symons GM, Reid JB (2003a) Hormone levels and response during de-etiolation in pea. Planta 216:422–431

    PubMed  CAS  Google Scholar 

  • Symons GM, Reid JB (2003b) Interactions between light and plant hormones during de-etiolation. J Plant Growth Regul 22:3–14

    Article  CAS  Google Scholar 

  • Symons GM, Schultz L, Kerckhoffs LHJ, Davies NW, Gregory D, Reid JB (2002) Uncoupling brassinosteroid levels and de-etiolation in pea. Physiol Plant 115:311–319

    Article  PubMed  CAS  Google Scholar 

  • Szekeres M, Nemeth K, Koncz-Kalman A, Mathur J, Kauschmann A, Altman T, Redei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182

    Article  PubMed  CAS  Google Scholar 

  • Tamaki Y, Takeuchi K, Nomura T, Yoneyama K, Takeuchi Y, Nyunoya H, Matsushita Y, Takatsuto S, Bishop GJ, Yokota T (2002) Effect of light quality on the level of endogenous brassinosteroids in rice, and the rice DWARF gene. Plant Cell Physiol 43:s185

    Google Scholar 

  • Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Denzel MA, Torres QI, Neff MM (2003) CYP72B1 inactivates brassinosteroid hormones: an intersection between photomorphogenesis and plant steroid signal transduction. Plant Physiol 133:1–11

    Article  CAS  Google Scholar 

  • Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Wang H, Torres QI, Ward JM, Murthy G, Zhang J, Walker JC, Neff MM (2005) BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. Plant J 42:23–34

    Article  PubMed  CAS  Google Scholar 

  • Vert G, Nemhauser JL, Geldner N, Hong F, Chory J (2005) Molecular mechanisms of steroid hormone signalling in plants. Annu Rev Cell Dev Biol 21:177–201

    Article  PubMed  CAS  Google Scholar 

  • Vriezen WH, Achard P, Harberd N, Van Der Straeten D (2004) Ethylene-mediated enhancement of apical hook formation in etiolated Arabidopsis thaliana seedlings is gibberellin dependent. Plant J 37:505–516

    Article  PubMed  CAS  Google Scholar 

  • Weller JL, Ross JJ, Reid JB (1994) Gibberellins and phytochrome regulation of stem elongation in pea. Planta 192:489–496

    Article  CAS  Google Scholar 

  • Zhao X, Yu X, Foo E, Symons GM, Lopez J, Bendehakkalu KT, Xiang J, Weller JL, Liu X, Reid JB, Lin C (2007) A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation. Plant Physiol 145:106–118

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Dr. Suguru Takatsuto (Joetsu University of Education, Japan) for provision of 2H6 labelled BRs. We also thank Ian Cummings and Tracey Winterbottom for technical assistance. This research was supported by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory M. Symons.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(TIF 747 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Symons, G.M., Smith, J.J., Nomura, T. et al. The hormonal regulation of de-etiolation. Planta 227, 1115–1125 (2008). https://doi.org/10.1007/s00425-007-0685-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0685-x

Keywords

Navigation