Skip to main content
Log in

Reduction of polar auxin transport in tobacco by the tumorigenic Agrobacterium tumefaciens AK-6b gene

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The plant-tumorigenic 6b (AK-6b) gene of Agrobacterium tumefaciens strain AKE10 induces morphological alterations to tobacco plants, Nicotiana tabacum. To investigate the molecular mechanisms underlying these processes, we generated transgenic tobacco harboring the AK-6b gene under the control of a dexamethazone-inducible promoter. Upon induction, transgenic tobacco seedlings exhibited distinct classes of aberrant morphologies, most notably adventitious outgrowths and stunted epicotyls. Histological analysis revealed massive proliferation and altered venation in the newly established outgrowths. Prominent vascular development suggested that auxin metabolism or signaling had been altered. Indeed, basipetal auxin transport in the hypocotyls of the transgenic seedlings was reduced by 50–80%, whereas intracellular auxin contents were only slightly reduced. Analysis of cell extracts by HPLC revealed a large accumulation of phenolic compounds, including the flavonoid kaempferol-3-rutinoside, in transgenic plants compared with wild-type seedlings. As some naturally occurring flavonoids have been shown to affect auxin transport, we suggest that the AK-6b gene expression impairs auxin transport via modulation of phenylpropanoid metabolism, and ultimately results in the observed morphological alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CaPu:

Caffeoylputrescine

CGA:

Chlorogenic acid

C4H:

Cinnamate 4-hydroxylase

Dex:

Dexamethazone

HFCA:

9-hydroxyfluorene-9-caboxylic acid

hpt:

Hygromycin phosphotransferase

NPA:

N-1-naphthylphthalamic acid

Kp:

Kaempferol

K-3-R:

Kaempferol-3-rutinoside

PAL:

Phenylalanine ammonia-lyase

SCT:

Scopoletin

References

  • Akiyoshi DE, Klee H, Amasino RM, Nester EW, Gordon MP (1984) T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 81:5994–5998

    Article  PubMed  CAS  Google Scholar 

  • Aloni R, Pradel KS, Ullrich CI (1995) The three-dimensional structure of vascular tissues in Agrobacterium tumefaciens-induced crown galls and in the host stems of Ricinus communis L. Planta 196:597–605

    Article  CAS  Google Scholar 

  • Aoyama T, Chua N-H (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11:605–612

    Article  PubMed  CAS  Google Scholar 

  • Avsian-Kretchmer O, Cheng J-C, Chen L, Moctezuma E, Sung ZR (2002) Indole acetic acid distribution coincides with vascular differentiation pattern during Arabidopsis leaf ontogeny. Plant Physiol 130:199–209

    Article  PubMed  CAS  Google Scholar 

  • Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535

    Article  PubMed  CAS  Google Scholar 

  • Carland FM, McHale NA (1996) LOP1: a gene involved in auxin transport and vascular pattering in Arabidopsis. Development 122:1811–1819

    PubMed  CAS  Google Scholar 

  • Chilton M-D, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11: 263–271

    Article  PubMed  CAS  Google Scholar 

  • Fritig B, Hirth L, Ourisson G, (1970) Biosynthesis of the coumarins: scopoletin formation in tobacco tissue cultures. Phytochemistry 9: 1963–1975

    Article  CAS  Google Scholar 

  • Gális I, Šimek P, Macas, J, Zahradnčèková H, Vlasák J, Wabiko H, Van Dongen W, Van Onckelen HA, Ondøej M (1999) The Agrobacterium tumefaciens C58-6b gene confers resistance to N6(-benzyladenine without modifying cytokinin metabolism in tobacco seedlings. Planta 209:453–461

    Article  PubMed  Google Scholar 

  • Gális I, Šimek P, Van Onckelen HA, Kakiuchi Y, Wabiko H (2002) Resistance of transgenic tobacco seedlings expressing the Agrobacterium tumefaciens C58-6b gene, to growth-inhibitory levels of cytokinin is associated with elevated IAA levels and activation of phenylpropanoid metabolism. Plant Cell Physiol 43: 939–950

    Article  PubMed  Google Scholar 

  • Gális I, Kakiuchi Y, Šimek P, Wabiko H (2004) Agrobacterium tumefaciens AK-6b gene modulates phenolic compound metabolism in tobacco. Phytochemistry 65:169–179

    Article  PubMed  CAS  Google Scholar 

  • Grémillon L, Helfer A, Clément B, Otten L (2004) New plant growth-modifying properties of the Agrobacterium T-6b oncogene revealed by the use of a dexamethasone-inducible promoter. Plant J 37:218–228

    Article  PubMed  CAS  Google Scholar 

  • Harborne JB (1980) Plant phenolics. In: Bell EA, Charlwood BV (eds) Secondary plant products. Springer, Berlin Heidelberg New York, pp 329–402

    Google Scholar 

  • Helfer A, Clément B, Michler P, Otten L (2003) The Agrobacterium oncogene AB-6b causes a graft-transmissible enation syndrome in tobacco. Plant Mol Biol 52:483–493

    Article  PubMed  CAS  Google Scholar 

  • Hooykaas PJJ, den Dulk-Ras H, Schilperoort RA (1988) The Agrobacterium tumefaciens T-DNA gene 6b is an onc gene. Plant Mol Biol 11:791–794

    Article  CAS  Google Scholar 

  • Jacobs M, Rubery PH (1988) Naturally occurring auxin transport regulators. Science 241:346–349

    Article  PubMed  CAS  Google Scholar 

  • Kitakura S, Fujita T, Ueno Y, Terakura S, Wabiko H, Machida Y (2002) The protein encoded by oncogene 6b from Agrobacterium tumefaciens interacts with a nuclear protein of tobacco. Plant Cell 14: 451–463

    Article  PubMed  CAS  Google Scholar 

  • Koizumi K, Sugiyama M, Fukuda H (2000) A series of novel mutants of Arabidopsis thaliana that are defective in the formation of continuous vascular network: calling the auxin signal flow canalization hypothesis into question. Development 127:3197–3204

    PubMed  CAS  Google Scholar 

  • Kojima K (1999) Physiological studies on development in fruits and vegetables—Plant hormones in growth stage and softening mechanism in ripening stage [Japanese]. Chem Regul Plants 34:21–30

    CAS  Google Scholar 

  • Mattsson J, Sung ZR, Berleth T (1999) Responses of plant vascular systems to auxin transport inhibition. Development 126:2979–2991

    PubMed  CAS  Google Scholar 

  • Murphy A, Peer WA, Taiz L (2000) Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta 211:315–324

    Article  PubMed  CAS  Google Scholar 

  • Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3:677–684

    Article  PubMed  CAS  Google Scholar 

  • Peer WA, Brown DE, Tague BW, Muday GK, Taiz L, Murphy AS (2001) Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis. Plant Physiol 126:536–548

    Article  PubMed  CAS  Google Scholar 

  • Rakwal R, Tamogami S, Agrawal GK, Iwahashi H (2002) Octadecanoid signaling component "burst" in rice (Oryza sativa L.) seedling leaves upon wounding by cut and treatment with fungal elicitor chitosan. Biochem Biophys Res Commun 295:1041–1045

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12: 507–518

    Article  PubMed  CAS  Google Scholar 

  • Scanlon MJ (2003) The polar auxin transport inhibitor N-1-naphthylphthalamic acid disrupts leaf initiation, KNOX protein regulation, and formation of leaf margins in maize. Plant Physiol 133: 597–605

    Article  PubMed  CAS  Google Scholar 

  • Schoch G, Goepfert S, Morant M, Hehn A, Meyer D, Ullmann P, Werck-Reichhart D (2001) CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem 276:36566–36574

    Article  PubMed  CAS  Google Scholar 

  • Schröder G Waffenschmidt S, Weiler EW, Schröder J (1984) The T-region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur J Biochem 138:387–391

    Article  PubMed  Google Scholar 

  • Schwalm K, Aloni R, Langhans M, Heller W, Stich S, Ullrich CI (2003) Flavonoid-related regulation of auxin accumulation in Agrobacterium tumefaciens-induced plant tumors. Planta 218:163–178

    Article  PubMed  CAS  Google Scholar 

  • Sieburth LE (1999) Auxin is required for leaf vein pattern in Arabidopsis. Plant Physiol 121:1179–1190

    Article  PubMed  CAS  Google Scholar 

  • Spanier K, Schell J, Schreier PH (1989) A functional analysis of T-DNA gene 6b: The fine tuning of cytokinin effects on shoot development. Mol Gen Genet 219:209–216

    Article  PubMed  CAS  Google Scholar 

  • Steck W (1967) The biosynthetic pathway from caffeic acid to scopolin in tobacco leaves. Can J Biochem 45:1995–2003

    Article  PubMed  CAS  Google Scholar 

  • Stieger P, Reinhardt D, Kuhlemeier C (2002) The auxin influx carrier is essential for correct leaf positioning. Plant J 32:509–517

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Nagata T (1992) parB: An auxin-regulated gene encoding glutathione S-transferase. Proc Natl Acad Sci USA 89:56–59

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Sakai T, Ishida S, Nagata T (1995) Identification of auxin-responsive elements of parB and their expression in apices of shoot and root. Proc Natl Acad Sci USA 92:6359–6363

    Article  PubMed  CAS  Google Scholar 

  • Thomashow LS, Reeves S, Thomashow MF (1984) Crown gall oncogenesis: evidence that a T-DNA gene from the Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid. Proc Natl Acad Sci USA 81:5071–5075

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF, Hugly S, Buchholz WG, Thomashow LS (1986) Molecular basis for the auxin-independent phenotype of crown gall tumor tissues. Science 231:616–618

    Article  PubMed  CAS  Google Scholar 

  • Tinland B, Huss B, Paulus F, Bonnard, Otten L (1989) Agrobacterium tumefaciens 6b genes are strain-specific and affect the activity of auxin as well as cytokinin genes. Mol Gen Genet 219:217–224

    Article  CAS  Google Scholar 

  • Van Larebeke N, Engler G, Holsters M, Van Den Elsacker S, Zaenen I, Schilperoort RA, Schell J (1974) Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature 252: 169–170

    Article  PubMed  CAS  Google Scholar 

  • Van Onckelen H, Prinsen E, Inzé D, Rüdelsheim P, Van Lijsebettens M, Follin A, Schell J, Van Montagu M, De Greef J (1986) Agrobacterium T-DNA gene 1 codes for tryptophan-2-monooxygenase activity in tobacco crown gall cells. FEBS Lett 198:357–360

    Article  CAS  Google Scholar 

  • Vereecke D, Messens E, Klarskov K, De Bruyn A, Van Montagu M, Goethals K (1997) Patterns of phenolic compounds in leafy galls of tobacco. Planta 201:342–348

    Article  CAS  PubMed  Google Scholar 

  • Verhoeyen ME, Bovy A, Collins G, Muir S, Robinson S, de Vos CHR, Colliver S (2002) Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J Exp Bot 53: 2099–2106

    Article  PubMed  CAS  Google Scholar 

  • Veselov D, Langhans M, Hartung W, Aloni R, Feussner I, Götz C, Veselova S, Schlomski S, Dickler C, Bächmann K, Ullrich CI (2003) Development of Agrobacterium tumefaciens C58-induced plant tumors and impact on host shoots are controlled by a cascade of jasmonic acid, auxin, cytokinin, ethylene and abscisic acid. Planta 216:512–522

    PubMed  CAS  Google Scholar 

  • Wabiko H, Minemura M (1996) Exogenous phytohormone-independent growth and regeneration of tobacco plants transgenic for the 6b gene of Agrobacterium tumefaciens AKE10. Plant Physiol 112:939–951

    Article  PubMed  CAS  Google Scholar 

  • Wächter R, Langhans M, Aloni R, Götz S, Weilmünster A, Koops A, Temguia L, Mistrik I, Pavlovkin J, Rascher U, Schwalm K, Koch KE, Ullrich CI (2003) Vascularization, high-volume solution flow, and localized roles for enzymes of sucrose metabolism during tumorigenesis by Agrobacterium tumefaciens. Plant Physiol 133:1024–1037

    Article  PubMed  CAS  Google Scholar 

  • Wen-jun S, Forde BG (1989) Efficient transformation of Agrobacterium spp. by high voltage electroporation. Nucleic Acids Res 17:8385

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. N. Sakurai (Hiroshima University) for providing us with [13C]IAA and Dr. S. Youssefian (Akita Prefectural University) for critical reading of the manuscript. This work was supported by Grant-in-Aid for Scientific Research (13660055) from the Ministry of Education, Culture, Sports Science and Technology, Japan and by the Sasagawa Scientific Research Grant (No. 13–238) from the Japan Science Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroetsu Wabiko.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakiuchi, Y., Gàlis, I., Tamogami, S. et al. Reduction of polar auxin transport in tobacco by the tumorigenic Agrobacterium tumefaciens AK-6b gene. Planta 223, 237–247 (2006). https://doi.org/10.1007/s00425-005-0080-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0080-4

Keywords

Navigation