Skip to main content
Log in

CNG channel structure, function, and gating: a tale of conformational flexibility

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Cyclic nucleotide–gated (CNG) channels are key to the signal transduction machinery of certain sensory modalities both in vertebrate and invertebrate organisms. They translate a chemical change in cyclic nucleotide concentration into an electrical signal that can spread through sensory cells. Despite CNG and voltage-gated potassium channels sharing a remarkable amino acid sequence homology and basic architectural plan, their functional properties are dramatically different. While voltage-gated potassium channels are highly selective and require membrane depolarization to open, CNG channels have low ion selectivity and are not very sensitive to voltage. In the last few years, many high-resolution structures of intact CNG channels have been released. This wealth of new structural information has provided enormous progress toward the understanding of the molecular mechanisms and driving forces underpinning CNG channel activation. In this review, we report on the current understanding and controversies surrounding the gating mechanism in CNG channels, as well as the deep intertwining existing between gating, the ion permeation process, and its modulation by membrane voltage. While the existence of this powerful coupling was recognized many decades ago, its direct structural demonstration, and ties to the CNG channel inherent pore flexibility, is a recent achievement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adzhubei AA, Sternberg MJE, Makarov AA (2013) Polyproline-II helix in proteins: structure and function. J Mol Biol 425:2100–2132. https://doi.org/10.1016/j.jmb.2013.03.018

    Article  CAS  PubMed  Google Scholar 

  2. Aggarwal SK, MacKinnon R (1996) Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16:1169–1177. https://doi.org/10.1016/s0896-6273(00)80143-9

    Article  CAS  PubMed  Google Scholar 

  3. Altieri SL, Clayton GM, Silverman WR, Olivares AO, De la Cruz EM, Thomas LR, Morais-Cabral JH (2008) Structural and energetic analysis of activation by a cyclic nucleotide binding domain. J Mol Biol 381:655–669. https://doi.org/10.1016/j.jmb.2008.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Anderson PA, Greenberg RM (2001) Phylogeny of ion channels: clues to structure and function. Comp Biochem Physiol B Biochem Mol Biol 129:17–28. https://doi.org/10.1016/s1096-4959(01)00376-1

    Article  CAS  PubMed  Google Scholar 

  5. Ando T, Uchihashi T, Scheuring S (2014) Filming biomolecular processes by high-speed atomic force microscopy. Chem Rev 114:3120–3188. https://doi.org/10.1021/cr4003837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arcangeletti M, Marchesi A, Mazzolini M, Torre V (2013) Multiple mechanisms underlying rectification in retinal cyclic nucleotide-gated (CNGA1) channels. Physiol Rep 1:e00148. https://doi.org/10.1002/phy2.148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Armstrong CM, Bezanilla F (1977) Inactivation of the sodium channel. II. Gating current experiments J Gen Physiol 70:567–590. https://doi.org/10.1085/jgp.70.5.567

    Article  CAS  PubMed  Google Scholar 

  8. Arrigoni C, Schroeder I, Romani G, Van Etten JL, Thiel G, Moroni A (2013) The voltage-sensing domain of a phosphatase gates the pore of a potassium channel. J Gen Physiol 141:389–395. https://doi.org/10.1085/jgp.201210940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bai X, McMullan G, Scheres SHW (2015) How cryo-EM is revolutionizing structural biology. Trends Biochem Sci 40:49–57. https://doi.org/10.1016/j.tibs.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  10. Balleza D, Rosas ME, Romero-Romero S (2019) Voltage vs. Ligand I: structural basis of the intrinsic flexibility of S3 segment and its significance in ion channel activation. Channels (Austin) 13:455–476. https://doi.org/10.1080/19336950.2019.1674242

    Article  Google Scholar 

  11. Barnstable CJ, Wei J-Y, Han M-H (2004) Modulation of synaptic function by cGMP and cGMP-gated cation channels. Neurochem Int 45:875–884. https://doi.org/10.1016/j.neuint.2004.03.018

    Article  CAS  PubMed  Google Scholar 

  12. Benndorf K, Koopmann R, Eismann E, Kaupp UB (1999) Gating by cyclic GMP and voltage in the alpha subunit of the cyclic GMP-gated channel from rod photoreceptors. J Gen Physiol 114:477–490. https://doi.org/10.1085/jpg.114.4.447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bezanilla F (2000) The voltage sensor in voltage-dependent ion channels. Physiol Rev 80:555–592. https://doi.org/10.1152/physrev.2000.80.2.555

    Article  CAS  PubMed  Google Scholar 

  14. Brams M, Kusch J, Spurny R, Benndorf K, Ulens C (2014) Family of prokaryote cyclic nucleotide-modulated ion channels. Proc Natl Acad Sci USA 111:7855–7860. https://doi.org/10.1073/pnas.1401917111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bucossi G, Nizzari M, Torre V (1997) Single-channel properties of ionic channels gated by cyclic nucleotides. Biophys J 72:1165–1181. https://doi.org/10.1016/S0006-3495(97)78765-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chakrabarti N, Ing C, Payandeh J, Zheng N, Catterall WA, Pomès R (2013) Catalysis of Na+ permeation in the bacterial sodium channel NaVAb. Proc Natl Acad Sci USA 110:11331–11336. https://doi.org/10.1073/pnas.1309452110

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen TY, Peng YW, Dhallan RS, Ahamed B, Reed RR, Yau KW (1993) A new subunit of the cyclic nucleotide-gated cation channel in retinal rods. Nature 362:764–767. https://doi.org/10.1038/362764a0

    Article  CAS  PubMed  Google Scholar 

  18. Colamartino G, Menini A, Torre V (1991) Blockage and permeation of divalent cations through the cyclic GMP-activated channel from tiger salamander retinal rods. J Physiol 440:189–206. https://doi.org/10.1113/jphysiol.1991.sp018703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Contreras JE, Holmgren M (2006) Access of quaternary ammonium blockers to the internal pore of cyclic nucleotide-gated channels: implications for the location of the gate. J Gen Physiol 127:481–494. https://doi.org/10.1085/jgp.200509440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Contreras JE, Srikumar D, Holmgren M (2008) Gating at the selectivity filter in cyclic nucleotide-gated channels. Proc Natl Acad Sci USA 105:3310–3314. https://doi.org/10.1073/pnas.0709809105

    Article  PubMed  PubMed Central  Google Scholar 

  21. Craven KB, Zagotta WN (2006) CNG and HCN channels: two peas, one pod. Annu Rev Physiol 68:375–401. https://doi.org/10.1146/annurev.physiol.68.040104.134728

    Article  CAS  PubMed  Google Scholar 

  22. Dzeja C, Hagen V, Kaupp UB, Frings S (1999) Ca2+ permeation in cyclic nucleotide-gated channels. EMBO J 18:131–144. https://doi.org/10.1093/emboj/18.1.131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eismann E, Müller F, Heinemann SH, Kaupp UB (1994) A single negative charge within the pore region of a cGMP-gated channel controls rectification, Ca2+ blockage, and ionic selectivity. Proc Natl Acad Sci U S A 91:1109–1113. https://doi.org/10.1073/pnas.91.3.1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Evans EGB, Morgan JLW, DiMaio F, Zagotta WN, Stoll S (2020) Allosteric conformational change of a cyclic nucleotide-gated ion channel revealed by DEER spectroscopy. Proc Natl Acad Sci U S A 117:10839–10847. https://doi.org/10.1073/pnas.1916375117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Flynn GE, Zagotta WN (2001) Conformational changes in S6 coupled to the opening of cyclic nucleotide-gated channels. Neuron 30:689–698. https://doi.org/10.1016/s0896-6273(01)00324-5

    Article  CAS  PubMed  Google Scholar 

  26. Fodor AA, Black KD, Zagotta WN (1997) Tetracaine reports a conformational change in the pore of cyclic nucleotide-gated channels. J Gen Physiol 110:591–600. https://doi.org/10.1085/jgp.110.5.591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Frings S, Lynch JW, Lindemann B (1992) Properties of cyclic nucleotide-gated channels mediating olfactory transduction. Activation, selectivity, and blockage. J Gen Physiol 100:45–67. https://doi.org/10.1085/jgp.100.1.45

    Article  CAS  PubMed  Google Scholar 

  28. Gamel K, Torre V (2000) The interaction of Na(+) and K(+) in the pore of cyclic nucleotide-gated channels. Biophys J 79:2475–2493. https://doi.org/10.1016/S0006-3495(00)76490-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gavazzo P, Picco C, Eismann E, Kaupp UB, Menini A (2000) A point mutation in the pore region alters gating, Ca(2+) blockage, and permeation of olfactory cyclic nucleotide-gated channels. J Gen Physiol 116:311–326. https://doi.org/10.1085/jgp.116.3.311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. González W, Valdebenito B, Caballero J, Riadi G, Riedelsberger J, Martínez G, Ramírez D, Zúñiga L, Sepúlveda FV, Dreyer I, Janta M, Becker D (2015) K2p channels in plants and animals. Pflugers Arch 467:1091–1104. https://doi.org/10.1007/s00424-014-1638-4

    Article  CAS  PubMed  Google Scholar 

  31. Hackos DH, Korenbrot JI (1999) Divalent cation selectivity is a function of gating in native and recombinant cyclic nucleotide-gated ion channels from retinal photoreceptors. J Gen Physiol 113:799–818. https://doi.org/10.1085/jgp.113.6.799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harpole TJ, Grosman C (2014) Side-chain conformation at the selectivity filter shapes the permeation free-energy landscape of an ion channel. Proc Natl Acad Sci U S A 111:E3196–E3205. https://doi.org/10.1073/pnas.1408950111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Holmgren M (2003) Influence of permeant ions on gating in cyclic nucleotide-gated channels. J Gen Physiol 121:61–72. https://doi.org/10.1085/jgp.20028722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. James ZM, Borst AJ, Haitin Y, Frenz B, DiMaio F, Zagotta WN, Veesler D (2017) CryoEM structure of a prokaryotic cyclic nucleotide-gated ion channel. Proc Natl Acad Sci USA 114:4430–4435. https://doi.org/10.1073/pnas.1700248114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. James ZM, Zagotta WN (2018) Structural insights into the mechanisms of CNBD channel function. J Gen Physiol 150:225–244. https://doi.org/10.1085/jgp.201711898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jegla T, Busey G, Assmann SM (2018) Evolution and structural characteristics of plant voltage-gated K+ channels. Plant Cell 30:2898–2909. https://doi.org/10.1105/tpc.18.00523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jegla T, Salkoff L (1994) Molecular evolution of K+ channels in primitive eukaryotes. Soc Gen Physiol Ser 49:213–222

    CAS  PubMed  Google Scholar 

  38. Johnson JP, Zagotta WN (2001) Rotational movement during cyclic nucleotide-gated channel opening. Nature 412:917–921. https://doi.org/10.1038/35091089

    Article  CAS  PubMed  Google Scholar 

  39. Karpen JW, Zimmerman AL, Stryer L, Baylor DA (1988) Gating kinetics of the cyclic-GMP-activated channel of retinal rods: flash photolysis and voltage-jump studies. Proc Natl Acad Sci USA 85:1287–1291. https://doi.org/10.1073/pnas.85.4.1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaupp UB, Niidome T, Tanabe T, Terada S, Bönigk W, Stühmer W, Cook NJ, Kangawa K, Matsuo H, Hirose T (1989) Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 342:762–766. https://doi.org/10.1038/342762a0

    Article  CAS  PubMed  Google Scholar 

  41. Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824. https://doi.org/10.1152/physrev.00008.2002

    Article  CAS  PubMed  Google Scholar 

  42. Kelliher KR, Ziesmann J, Munger SD, Reed RR, Zufall F (2003) Importance of the CNGA4 channel gene for odor discrimination and adaptation in behaving mice. Proc Natl Acad Sci U S A 100:4299–4304. https://doi.org/10.1073/pnas.0736071100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim DM, Nimigean CM (2016) Voltage-gated potassium channels: a structural examination of selectivity and gating. Cold Spring Harb Perspect Biol 8.https://doi.org/10.1101/cshperspect.a029231

  44. Kuo MM-C, Haynes WJ, Loukin SH, Kung C, Saimi Y (2005) Prokaryotic K(+) channels: from crystal structures to diversity. FEMS Microbiol Rev 29:961–985. https://doi.org/10.1016/j.femsre.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  45. Kurata HT, Rapedius M, Kleinman MJ, Baukrowitz T, Nichols CG (2010) Voltage-dependent gating in a “voltage sensor-less” ion channel. PLoS Biol 8.https://doi.org/10.1371/journal.pbio.1000315

  46. Kusch J, Nache V, Benndorf K (2004) Effects of permeating ions and cGMP on gating and conductance of rod-type cyclic nucleotide-gated (CNGA1) channels. J Physiol 560:605–616. https://doi.org/10.1113/jphysiol.2004.070193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee C-H, MacKinnon R (2017) Structures of the human HCN1 hyperpolarization-activated channel. Cell 168:111-120.e11. https://doi.org/10.1016/j.cell.2016.12.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee S-Y, Lee A, Chen J, MacKinnon R (2005) Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane. Proc Natl Acad Sci U S A 102:15441–15446. https://doi.org/10.1073/pnas.0507651102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li M, Zhou X, Wang S, Michailidis I, Gong Y, Su D, Li H, Li X, Yang J (2017) Structure of a eukaryotic cyclic-nucleotide-gated channel. Nature 542:60–65. https://doi.org/10.1038/nature20819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li X, Martinson AS, Layden MJ, Diatta FH, Sberna AP, Simmons DK, Martindale MQ, Jegla TJ (2015) Ether-à-go-go family voltage-gated K+ channels evolved in an ancestral metazoan and functionally diversified in a cnidarian-bilaterian ancestor. J Exp Biol 218:526–536. https://doi.org/10.1242/jeb.110080

    Article  PubMed  PubMed Central  Google Scholar 

  51. Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903. https://doi.org/10.1126/science.1116269

    Article  CAS  PubMed  Google Scholar 

  52. Long SB, Campbell EB, Mackinnon R (2005) Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309:903–908. https://doi.org/10.1126/science.1116270

    Article  CAS  PubMed  Google Scholar 

  53. Lu Z, Klem AM, Ramu Y (2001) Ion conduction pore is conserved among potassium channels. Nature 413:809–813. https://doi.org/10.1038/35101535

    Article  CAS  PubMed  Google Scholar 

  54. Maity S, Marchesi A, Torre V, Mazzolini M (2016) Structural heterogeneity of CNGA1 channels revealed by electrophysiology and single-molecule force spectroscopy. ACS Omega 1:1205–1219. https://doi.org/10.1021/acsomega.6b00202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Marchesi A, Arcangeletti M, Mazzolini M, Torre V (2015) Proton transfer unlocks inactivation in cyclic nucleotide-gated A1 channels. J Physiol (Lond) 593:857–870. https://doi.org/10.1113/jphysiol.2014.284216

    Article  CAS  Google Scholar 

  56. Marchesi A, Gao X, Adaixo R, Rheinberger J, Stahlberg H, Nimigean C, Scheuring S (2018) An iris diaphragm mechanism to gate a cyclic nucleotide-gated ion channel. Nat Commun 9:3978. https://doi.org/10.1038/s41467-018-06414-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marchesi A, Mazzolini M, Torre V (2012) A ring of threonines in the inner vestibule of the pore of CNGA1 channels constitutes a binding site for permeating ions. J Physiol (Lond) 590:5075–5090. https://doi.org/10.1113/jphysiol.2012.238352

    Article  CAS  Google Scholar 

  58. Marchesi A, Mazzolini M, Torre V (2012) Gating of cyclic nucleotide-gated channels is voltage dependent. Nat Commun 3:973. https://doi.org/10.1038/ncomms1972

    Article  CAS  PubMed  Google Scholar 

  59. Martínez-François JR, Xu Y, Lu Z (2009) Mutations reveal voltage gating of CNGA1 channels in saturating cGMP. J Gen Physiol 134:151–164. https://doi.org/10.1085/jgp.200910240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Martínez-François JR, Xu Y, Lu Z (2010) Extracellular protons titrate voltage gating of a ligand-gated ion channel. J Gen Physiol 136:179–187. https://doi.org/10.1085/jgp.201010444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Matulef K, Zagotta WN (2003) Cyclic nucleotide-gated ion channels. Annu Rev Cell Dev Biol 19:23–44. https://doi.org/10.1146/annurev.cellbio.19.110701.154854

    Article  CAS  PubMed  Google Scholar 

  62. Mazzolini M, Arcangeletti M, Marchesi A, Napolitano LMR, Grosa D, Maity S, Anselmi C, Torre V (2018) The gating mechanism in cyclic nucleotide-gated ion channels. Sci Rep 8:45. https://doi.org/10.1038/s41598-017-18499-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mazzolini M, Marchesi A, Giorgetti A, Torre V (2010) Gating in CNGA1 channels. Pflugers Arch 459:547–555. https://doi.org/10.1007/s00424-009-0751-2

    Article  CAS  PubMed  Google Scholar 

  64. Menini A (1990) Currents carried by monovalent cations through cyclic GMP-activated channels in excised patches from salamander rods. J Physiol 424:167–185. https://doi.org/10.1113/jphysiol.1990.sp018061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Moran Y, Barzilai MG, Liebeskind BJ, Zakon HH (2015) Evolution of voltage-gated ion channels at the emergence of Metazoa. J Exp Biol 218:515–525. https://doi.org/10.1242/jeb.110270

    Article  PubMed  Google Scholar 

  66. Nache V, Kusch J, Hagen V, Benndorf K (2006) Gating of cyclic nucleotide-gated (CNGA1) channels by cGMP jumps and depolarizing voltage steps. Biophys J 90:3146–3154. https://doi.org/10.1529/biophysj.105.078667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nair AV, Nguyen CHH, Mazzolini M (2009) Conformational rearrangements in the S6 domain and C-linker during gating in CNGA1 channels. Eur Biophys J 38:993–1002. https://doi.org/10.1007/s00249-009-0491-4

    Article  CAS  PubMed  Google Scholar 

  68. Napolitano LMR, Bisha I, De March M, Marchesi A, Arcangeletti M, Demitri N, Mazzolini M, Rodriguez A, Magistrato A, Onesti S, Laio A, Torre V (2015) A structural, functional, and computational analysis suggests pore flexibility as the base for the poor selectivity of CNG channels. Proc Natl Acad Sci USA 112:E3619-3628. https://doi.org/10.1073/pnas.1503334112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Napolitano LMR, Marchesi A, Rodriguez A, De March M, Onesti S, Laio A, Torre V (2018) The permeation mechanism of organic cations through a CNG mimic channel. PLoS Comput Biol 14:e1006295. https://doi.org/10.1371/journal.pcbi.1006295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nizzari M, Sesti F, Giraudo MT, Virginio C, Cattaneo A, Torre V (1993) Single-channel properties of cloned cGMP-activated channels from retinal rods. Proc Biol Sci 254:69–74. https://doi.org/10.1098/rspb.1993.0128

    Article  CAS  PubMed  Google Scholar 

  71. Picco C, Menini A (1993) The permeability of the cGMP-activated channel to organic cations in retinal rods of the tiger salamander. J Physiol 460:741–758. https://doi.org/10.1113/jphysiol.1993.sp019497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pifferi S, Boccaccio A, Menini A (2006) Cyclic nucleotide-gated ion channels in sensory transduction. FEBS Lett 580:2853–2859. https://doi.org/10.1016/j.febslet.2006.03.086

    Article  CAS  PubMed  Google Scholar 

  73. Puljung MC, Zagotta WN (2013) A secondary structural transition in the C-helix promotes gating of cyclic nucleotide-regulated ion channels. J Biol Chem 288:12944–12956. https://doi.org/10.1074/jbc.M113.464123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rangl M, Miyagi A, Kowal J, Stahlberg H, Nimigean CM, Scheuring S (2016) Real-time visualization of conformational changes within single MloK1 cyclic nucleotide-modulated channels. Nat Commun 7:12789. https://doi.org/10.1038/ncomms12789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rheinberger J, Gao X, Schmidpeter PA, Nimigean CM (2018) Ligand discrimination and gating in cyclic nucleotide-gated ion channels from apo and partial agonist-bound cryo-EM structures. Elife 7.https://doi.org/10.7554/eLife.39775

  76. Righetto RD, Biyani N, Kowal J, Chami M, Stahlberg H (2019) Retrieving high-resolution information from disordered 2D crystals by single-particle cryo-EM. Nat Commun 10.https://doi.org/10.1038/s41467-019-09661-5

  77. Romero-Romero S, Martínez-Delgado G, Balleza D (2019) Voltage vs. Ligand II: structural insights of the intrinsic flexibility in cyclic nucleotide-gated channels. Channels (Austin) 13:382–399. https://doi.org/10.1080/19336950.2019.1666456

    Article  Google Scholar 

  78. Ruan Y, Kao K, Lefebvre S, Marchesi A, Corringer P-J, Hite RK, Scheuring S (2018) Structural titration of receptor ion channel GLIC gating by HS-AFM. Proc Natl Acad Sci USA 115:10333–10338. https://doi.org/10.1073/pnas.1805621115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sautter A, Zong X, Hofmann F, Biel M (1998) An isoform of the rod photoreceptor cyclic nucleotide-gated channel β subunit expressed in olfactory neurons. Proc Natl Acad Sci USA 95:4696–4701. https://doi.org/10.1073/pnas.95.8.4696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schewe M, Nematian-Ardestani E, Sun H, Musinszki M, Cordeiro S, Bucci G, de Groot BL, Tucker SJ, Rapedius M, Baukrowitz T (2016) A non-canonical voltage-sensing mechanism controls gating in K2P K(+) channels. Cell 164:937–949. https://doi.org/10.1016/j.cell.2016.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schmidpeter PAM, Gao X, Uphadyay V, Rheinberger J, Nimigean CM (2018) Ligand binding and activation properties of the purified bacterial cyclic nucleotide-gated channel SthK. J Gen Physiol 150:821–834. https://doi.org/10.1085/jgp.201812023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schönknecht G, Chen W-H, Ternes CM, Barbier GG, Shrestha RP, Stanke M, Bräutigam A, Baker BJ, Banfield JF, Garavito RM, Carr K, Wilkerson C, Rensing SA, Gagneul D, Dickenson NE, Oesterhelt C, Lercher MJ, Weber APM (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339:1207–1210. https://doi.org/10.1126/science.1231707

    Article  CAS  PubMed  Google Scholar 

  83. Schünke S, Stoldt M, Lecher J, Kaupp UB, Willbold D (2011) Structural insights into conformational changes of a cyclic nucleotide-binding domain in solution from Mesorhizobium loti K1 channel. Proc Natl Acad Sci USA 108:6121–6126. https://doi.org/10.1073/pnas.1015890108

    Article  PubMed  PubMed Central  Google Scholar 

  84. Schünke S, Stoldt M, Novak K, Kaupp UB, Willbold D (2009) Solution structure of the Mesorhizobium loti K1 channel cyclic nucleotide-binding domain in complex with cAMP. EMBO Rep 10:729–735. https://doi.org/10.1038/embor.2009.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sesti F, Straforini M, Lamb TD, Torre V (1994) Gating, selectivity and blockage of single channels activated by cyclic GMP in retinal rods of the tiger salamander. J Physiol 474:203–222. https://doi.org/10.1113/jphysiol.1994.sp020014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Strong M, Chandy KG, Gutman GA (1993) Molecular evolution of voltage-sensitive ion channel genes: on the origins of electrical excitability. Mol Biol Evol 10:221–242. https://doi.org/10.1093/oxfordjournals.molbev.a039986

    Article  CAS  PubMed  Google Scholar 

  87. Stryer L (1986) Cyclic GMP cascade of vision. Annu Rev Neurosci 9:87–119. https://doi.org/10.1146/annurev.ne.09.030186.000511

    Article  CAS  PubMed  Google Scholar 

  88. Sumbul F, Marchesi A, Rico F (2018) History, rare, and multiple events of mechanical unfolding of repeat proteins. J Chem Phys 148:123335. https://doi.org/10.1063/1.5013259

    Article  CAS  PubMed  Google Scholar 

  89. Sumbul F, Marchesi A, Takahashi H, Scheuring S, Rico F (2018) High-speed force spectroscopy for single protein unfolding. Methods Mol Biol 1814:243–264. https://doi.org/10.1007/978-1-4939-8591-3_15

    Article  CAS  PubMed  Google Scholar 

  90. Sun ZP, Akabas MH, Goulding EH, Karlin A, Siegelbaum SA (1996) Exposure of residues in the cyclic nucleotide-gated channel pore: P region structure and function in gating. Neuron 16:141–149. https://doi.org/10.1016/s0896-6273(00)80031-8

    Article  CAS  PubMed  Google Scholar 

  91. Tang CY, Papazian DM (1997) Transfer of voltage independence from a rat olfactory channel to the Drosophila ether-à-go-go K+ channel. J Gen Physiol 109:301–311. https://doi.org/10.1085/jpg.109.3.301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang W, MacKinnon R (2017) Cryo-EM structure of the open human Ether-à-go-go-related K+ channel hERG. Cell 169:422-430.e10. https://doi.org/10.1016/j.cell.2017.03.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Weitz D, Ficek N, Kremmer E, Bauer PJ, Kaupp UB (2002) Subunit stoichiometry of the CNG channel of rod photoreceptors. Neuron 36:881–889. https://doi.org/10.1016/s0896-6273(02)01098-x

    Article  CAS  PubMed  Google Scholar 

  94. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. PNAS 87:4576–4579. https://doi.org/10.1073/pnas.87.12.4576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xu Y, Ramu Y, Lu Z (2010) A shaker K+ channel with a miniature engineered voltage sensor. Cell 142:580–589. https://doi.org/10.1016/j.cell.2010.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yu FH, Yarov-Yarovoy V, Gutman GA, Catterall WA (2005) Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol Rev 57:387–395. https://doi.org/10.1124/pr.57.4.13

    Article  CAS  PubMed  Google Scholar 

  97. Zakon HH (2012) Adaptive evolution of voltage-gated sodium channels: the first 800 million years. Proc Natl Acad Sci USA 109:10619–10625. https://doi.org/10.1073/pnas.1201884109

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zheng J, Zagotta WN (2004) Stoichiometry and assembly of olfactory cyclic nucleotide-gated channels. Neuron 42:411–421. https://doi.org/10.1016/s0896-6273(04)00253-3

    Article  CAS  PubMed  Google Scholar 

  99. Zheng X, Fu Z, Su D, Zhang Y, Li M, Pan Y, Li H, Li S, Grassucci RA, Ren Z, Hu Z, Li X, Zhou M, Li G, Frank J, Yang J (2020) Mechanism of ligand activation of a eukaryotic cyclic nucleotide-gated channel. Nat Struct Mol Biol 27:625–634. https://doi.org/10.1038/s41594-020-0433-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zuttion F, Redondo-Morata L, Marchesi A, Casuso I (2018) High-resolution and high-speed atomic force microscope imaging. Methods Mol Biol 1814:181–200. https://doi.org/10.1007/978-1-4939-8591-3_11

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arin Marchesi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Function and Dysfunction in Vertebrate Photoreceptor Cells in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Napolitano, L.M.R., Torre, V. & Marchesi, A. CNG channel structure, function, and gating: a tale of conformational flexibility. Pflugers Arch - Eur J Physiol 473, 1423–1435 (2021). https://doi.org/10.1007/s00424-021-02610-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-021-02610-6

Keywords

Navigation