Skip to main content
Log in

K2P channels in plants and animals

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Two-pore domain potassium (K2P) channels are membrane proteins widely identified in mammals, plants, and other organisms. A functional channel is a dimer with each subunit comprising two pore-forming loops and four transmembrane domains. The genome of the model plant Arabidopsis thaliana harbors five genes coding for K2P channels. Homologs of Arabidopsis K2P channels have been found in all higher plants sequenced so far. As with the K2P channels in mammals, plant K2P channels are targets of external and internal stimuli, which fine-tune the electrical properties of the membrane for specialized transport and/or signaling tasks. Plant K2P channels are modulated by signaling molecules such as intracellular H+ and calcium and physical factors like temperature and pressure. In this review, we ask the following: What are the similarities and differences between K2P channels in plants and animals in terms of their physiology? What is the nature of the last common ancestor (LCA) of these two groups of proteins? To answer these questions, we present physiological, structural, and phylogenetic evidence that discards the hypothesis proposing that the duplication and fusion that gave rise to the K2P channels occurred in a prokaryote LCA. Conversely, we argue that the K2P LCA was most likely a eukaryote organism. Consideration of plant and animal K2P channels in the same study is novel and likely to stimulate further exchange of ideas between students of these fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abagyan R, Totrov M, Kuznetsov D (1994) ICM—a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15:488–506. doi:10.1002/jcc.540150503

    Article  CAS  Google Scholar 

  2. Alpi A, Amrhein N, Bertl A, Blatt MR, Blumwald E, Cervone F, Dainty J, De Michelis MI, Epstein E, Galston AW, Goldsmith MH, Hawes C, Hell R, Hetherington A, Hofte H, Juergens G, Leaver CJ, Moroni A, Murphy A, Oparka K, Perata P, Quader H, Rausch T, Ritzenthaler C, Rivetta A, Robinson DG, Sanders D, Scheres B, Schumacher K, Sentenac H, Slayman CL, Soave C, Somerville C, Taiz L, Thiel G, Wagner R (2007) Plant neurobiology: no brain, no gain? Trends Plant Sci 12:135–136. doi:10.1016/j.tplants.2007.03.002

    Article  CAS  PubMed  Google Scholar 

  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool department of computer science. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  4. Anderson PA, Greenberg RM (2001) Phylogeny of ion channels: clues to structure and function. Comp Biochem Physiol B Biochem Mol Biol 129:17–28. doi:10.1016/S1096-4959(01)00376-1

    Article  CAS  PubMed  Google Scholar 

  5. Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF (1992) Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 89:3736–3740. doi:10.1073/pnas.89.9.3736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Anschütz U, Becker D, Shabala S (2014) Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. J Plant Physiol 171:670–687. doi:10.1016/j.jplph.2014.01.009

    Article  PubMed  Google Scholar 

  7. Aryal P, Abd-Wahab F, Bucci G, Sansom MSP, Tucker SJ (2014) A hydrophobic barrier deep within the inner pore of the TWIK-1 K2P potassium channel. Nat Commun 5:1–9. doi:10.1038/Ncomms5377

    Article  Google Scholar 

  8. Bagriantsev SN, Clark KA, Minor DL (2012) Metabolic and thermal stimuli control K(2P)2.1 (TREK-1) through modular sensory and gating domains. EMBO J 31:3297–3308. doi:10.1038/Emboj.2012.171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Bagriantsev SN, Minor DLJ (2013) Using yeast to study potassium channel function and interactions with small molecules. Methods Mol Biol 995:1–10. doi:10.1007/978-1-62703-345-9_3

    Google Scholar 

  10. Becker D, Geiger D, Dunkel M, Roller A, Bertl A, Latz A, Carpaneto A, Dietrich P, Roelfsema MRG, Voelker C, Schmidt D, Czempinski K, Hedrich R (2004) AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+−dependent manner. PNAS 101:15621–15626. doi:10.1073/pnas.0401502101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Bertl A, Reid JD, Sentenac H, Slayman CL (1997) Functional comparison of plant inward-rectifier channels expressed in yeast. J Exp Bot 48:405–413. doi:10.1093/jxb/48.Special_Issue.405

    Article  CAS  PubMed  Google Scholar 

  12. Bihler H, Eing C, Hebeisen S, Roller A, Czempinski K, Bertl A (2005) TPK1 is a vacuolar ion channel different from the slow-vacuolar cation channel 1. Plant Physiol 139:417–424. doi:10.1104/Pp.105.065599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Brohawn SG, Campbell EB, MacKinnon R (2013) Domain-swapped chain connectivity and gated membrane access in a Fab-mediated crystal of the human TRAAK K+ channel. Proc Natl Acad Sci U S A 110:2129–2134. doi:10.1073/pnas.1218950110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Brohawn SG, del Mármol J, MacKinnon R (2012) Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335:436–441. doi:10.1126/science.1213808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Brohawn SG, Su Z, MacKinnon R (2014) Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. Proc Natl Acad Sci U S A 111:3614–3619. doi:10.1073/Pnas.1320768111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Carraretto L, Formentin E, Teardo E, Checchetto V, Tomizioli M, Morosinotto T, Giacometti GM, Finazzi G, Szabó I (2013) A thylakoid-located two-pore K+ channel controls photosynthetic light utilization in plants. Science 342:114–118. doi:10.1126/science.1242113

    Article  CAS  PubMed  Google Scholar 

  17. Chowdhury S, Jarecki BW, Chanda B (2014) A molecular framework for temperature-dependent gating of ion channels. Cell 158:1148–1158. doi:10.1016/j.cell.2014.07.026

    Article  CAS  PubMed  Google Scholar 

  18. Cid LP, Roa-Rojas HA, Niemeyer MI, González W, Araki M, Araki K, Sepúlveda FV (2013) TASK-2: a K2P K+ channel with complex regulation and diverse physiological functions. Front Physiol 4:1–9. doi:10.3389/fphys.2013.00198

    Article  Google Scholar 

  19. Cohen A, Ben-Abu Y, Hen S, Zilberberg N (2008) A novel mechanism for human K2P2.1 channel gating. Facilitation of C-type gating by protonation of extracellular histidine residues. J Biol Chem 283:19448–19455. doi:10.1074/jbc.M801273200

    Article  CAS  PubMed  Google Scholar 

  20. Derst C, Karschin A (1998) Evolutionary link between prokaryotic and eukaryotic K+ channels. J Exp Biol 2799:2791–2799. http://jeb.biologists.org/content/201/20/2791.full.pdf+html

  21. Dunkel M, Latz A, Schumacher K, Müller T, Becker D, Hedrich R (2008) Targeting of vacuolar membrane localized members of the TPK channel family. Mol Plant 1:938–949. doi:10.1093/mp/ssn064

    Article  CAS  PubMed  Google Scholar 

  22. Enyedi P, Czirják G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90:559–605. doi:10.1152/physrev.00029.2009

    Article  CAS  PubMed  Google Scholar 

  23. Fritz-Laylin LK, Ginger ML, Walsh C, Dawson SC, Fulton C (2011) The Naegleria genome: a free-living microbial eukaryote lends unique insights into core eukaryotic cell biology. Res Microbiol 162:607–618. doi:10.1016/J.Resmic.2011.03.003

    Article  CAS  PubMed  Google Scholar 

  24. Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, Kuo A, Paredez A, Chapman J, Pham J, Shu S, Neupane R, Cipriano M, Mancuso J, Tu H, Salamov A, Lindquist E, Shapiro H, Lucas S, Grigoriev IV, Cande WZ, Fulton C, Rokhsar DS, Dawson SC (2010) The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140:631–642. doi:10.1016/j.cell.2010.01.032

    Article  CAS  PubMed  Google Scholar 

  25. Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257. doi:10.1111/j.1365-3040.2006.01614.x

    Article  CAS  PubMed  Google Scholar 

  26. Gajdanowicz P, Michard E, Sandmann M, Rocha M, Corrêa LGG, Ramírez-Aguilar SJ, Gomez-Porras JL, González W, Thibaud J-B, Van Dongen JT et al (2011) Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues. Proc Natl Acad Sci 108:864–869. doi:10.1073/pnas.1009777108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Gilbert W (1985) Genes-in-pieces revisited. Science 228:823–824. doi:10.1126/science.4001923

    Article  CAS  PubMed  Google Scholar 

  28. Gobert A, Isayenkov S, Voelker C, Czempinski K, Maathuis FJM (2007) The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc Natl Acad Sci U S A 104:10726–10731. doi:10.1073/pnas.0702595104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Goldstein SAN (2011) K2P potassium channels, mysterious and paradoxically exciting. Sci Signal 4:pe35. doi:10.1073/pnas.0702595104

    Article  CAS  PubMed  Google Scholar 

  30. Goldstein SAN, Bayliss DA, Kim D, Lesage F, Plant LD (2005) International union of pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol Rev 57:527–540. doi:10.1124/pr.57.4.12

    Article  CAS  PubMed  Google Scholar 

  31. González W, Riedelsberger J, Morales-Navarro SE, Caballero J, Alzate-Morales JH, González-Nilo FD, Dreyer I (2012) The pH sensor of the plant K+−uptake channel KAT1 is built from a sensory cloud rather than from single key amino acids. Biochem J 442:57–63. doi:10.1042/BJ20111498

    Article  PubMed  Google Scholar 

  32. González W, Zúñiga L, Cid LP, Arévalo B, Niemeyer MI, Sepúlveda FV (2013) An extracellular ion pathway plays a central role in the cooperative gating of a K(2P) K+ channel by extracellular pH. J Biol Chem 288:5984–5991. doi:10.1074/jbc.M112.445528

    Article  PubMed Central  PubMed  Google Scholar 

  33. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723, PMID: 9504803

    Article  CAS  PubMed  Google Scholar 

  34. Hamamoto S, Marui J, Matsuoka K, Higashi K, Igarashi K, Nakagawa T, Kuroda T, Mori Y, Murata Y, Nakanishi Y, Maeshima M, Yabe I, Uozumi N (2008) Characterization of a tobacco TPK-type K+ channel as a novel tonoplast K+ channel using yeast tonoplasts. J Biol Chem 283:1911–1920. doi:10.1074/Jbc.M708213200

    Article  CAS  PubMed  Google Scholar 

  35. Hedrich R (2012) Ion channels in plants. Physiol Rev 92:1777–1811. doi:10.1152/physrev.00038.2011

    Article  CAS  PubMed  Google Scholar 

  36. Hedrich R, Marten I (2011) TPC1-SV channels gain shape. Mol Plant 4:428–441. doi:10.1093/mp/ssr017

    Article  CAS  PubMed  Google Scholar 

  37. Honoré E (2007) The neuronal background K2P channels: focus on TREK1. Nat Rev Neurosci 8:251–261. doi:10.1038/nrn2117

    Article  PubMed  Google Scholar 

  38. Honoré E, Maingret F, Lazdunski M, Patel AJ (2002) An intracellular proton sensor commands lipid- and mechano-gating of the K(+) channel TREK-1. EMBO J 21:2968–2976. doi:10.1093/emboj/cdf288

    Article  PubMed Central  PubMed  Google Scholar 

  39. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. doi:10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  40. Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, de Castro E, Coggill P, Corbett M, Das U, Daugherty L, Duquenne L, Finn RD, Fraser M, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, McMenamin C, Mi H, Mutowo-Muellenet P, Mulder N, Natale D, Orengo C, Pesseat S, Punta M, Quinn AF, Rivoire C, Sangrador-Vegas A, Selengut JD, Sigrist CJ, Scheremetjew M, Tate J, Thimmajanarthanan M, Thomas PD, Wu CH, Yeats C, Yong S-Y (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40:D306–D312. doi:10.1093/nar/gkr948

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Isayenkov S, Isner J, Maathuis FJM (2011) Membrane localization diversity of TPK channels physiological role. Plant Signal Behav 6:1201–1204. doi:10.4161/psb.6.8.15808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Isayenkov S, Isner J-C, Maathuis FJM (2011) Rice two-pore K+ channels are expressed in different types of vacuoles. Plant Cell 23:756–768. doi:10.1105/tpc.110.081463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Ketchum KA, Joiner WJ, Sellers AJ, Kaczmarek LK, Goldstein SAN (1995) A new family of outwardly rectifying potassium channel proteins with two pre domains in tandem. Nature 376:690–695. doi:10.1038/376690a0

    Article  CAS  PubMed  Google Scholar 

  44. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  45. Lassmann T, Sonnhammer ELL (2005) Kalign—an accurate and fast multiple sequence alignment algorithm. BMC Bioinforma 6:298. doi:10.1186/1471-2105-6-298

    Article  Google Scholar 

  46. Latz A, Becker D, Hekman M, Müller T, Beyhl D, Marten I, Eing C, Fischer A, Dunkel M, Bertl A, Rapp UR, Hedrich R (2007) TPK1, a Ca(2+)-regulated Arabidopsis vacuole two-pore K(+) channel is activated by 14-3-3 proteins. Plant J 52:449–459. doi:10.1111/j.1365-313X.2007.03255.x

    Article  CAS  PubMed  Google Scholar 

  47. Latz A, Mehlmer N, Zapf S, Mueller TD, Wurzinger B, Pfister B, Csaszar E, Hedrich R, Teige M, Becker D (2013) Salt stress triggers phosphorylation of the Arabidopsis vacuolar K+ channel TPK1 by calcium-dependent protein kinases (CDPKs). Mol Plant 6:1274–1289. doi:10.1093/mp/sss158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, Barhanin J (1996) TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J 15:1004–1011. doi:10.1073/pnas.1201132109

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Maathuis FJM (2011) Vacuolar two-pore K+ channels act as vacuolar osmosensors. New Phytol 191:84–91. doi:10.1111/J.1469-8137.2011.03664.X

    Article  CAS  PubMed  Google Scholar 

  50. Maingret F, Lauritzen I, Patel AJ, Heurteaux C, Reyes R, Lesage F, Lazdunski M, Honoré E (2000) TREK-1 is a heat-activated background K+ channel. EMBO J 19:2483–2491. doi:10.1093/emboj/19.11.2483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Maîtrejean M, Wudick MM, Voelker C, Prinsi B, Mueller-Roeber B, Czempinski K, Pedrazzini E, Vitale A (2011) Assembly and sorting of the tonoplast potassium channel AtTPK1 and its turnover by internalization into the vacuole. Plant Physiol 156:1783–1796. doi:10.1104/Pp.111.177816

    Article  PubMed Central  PubMed  Google Scholar 

  52. Marcel D, Müller T, Hedrich R, Geiger D (2010) K+ transport characteristics of the plasma membrane tandem-pore channel TPK4 and pore chimeras with its vacuolar homologs. FEBS Lett 584:2433–2439. doi:10.1016/j.febslet.2010.04.038

    Article  CAS  PubMed  Google Scholar 

  53. Mathie A (2007) Neuronal two-pore-domain potassium channels and their regulation by G protein-coupled receptors. J Physiol 578:377–385. doi:10.1113/Jphysiol.2006.121582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Mathie A, Rees KA, El Hachmane MF, Veale EL (2010) Trafficking of neuronal two pore domain potassium channels. Curr Neuropharmacol 8:276–286. doi:10.2174/157015910792246146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Meyerowitz EM (2002) Plants compared to animals: the broadest comparative study of development. Science 295:1482–1485. doi:10.1126/science.1066609

    Article  CAS  PubMed  Google Scholar 

  56. Miller AN, Long SB (2012) Crystal structure of the human two-pore domain potassium channel K2P1. Sci (80−) 335:432–436. doi:10.1126/science.1213274

    Article  CAS  Google Scholar 

  57. Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013) Glutamate receptor-like genes mediate leaf-to-leaf wound signalling. Nature 500:422–426. doi:10.1038/nature12478

    Article  CAS  PubMed  Google Scholar 

  58. Niemeyer MI, González-Nilo FD, Zúñiga L, González W, Cid LP, Sepúlveda FV (2006) Gating of two-pore domain K+ channels by extracellular pH. Biochem Soc Trans 34:899–902. doi:10.1042/BST0340899

    Article  CAS  PubMed  Google Scholar 

  59. Niemeyer MI, González-Nilo FD, Zúñiga L, González W, Cid LP, Sepúlveda FV (2007) Neutralization of a single arginine residue gates open a two-pore domain, alkali-activated K+ channel. Proc Natl Acad Sci U S A 104:666–671. doi:10.1073/pnas.0606173104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. O’Kelly I, Butler MH, Zilberberg N, Goldstein SAN (2002) Forward transport. 14-3-3 binding overcomes retention in endoplasmic reticulum by dibasic signals. Cell 111:577–588. doi:10.1016/S0092-8674(02)01040-1

    Article  PubMed  Google Scholar 

  61. Patel AJ, Lazdunski M, Honoré E (2001) Lipid and mechano-gated 2P domain K(+) channels. Curr Opin Cell Biol 13:422–428. doi:10.1016/S0166-2236(00)01810-5

    Article  CAS  PubMed  Google Scholar 

  62. Philippar K, Büchsenschütz K, Abshagen M, Fuchs I, Geiger D, Lacombe B, Hedrich R (2003) The K+ channel KZM1 mediates potassium uptake into the phloem and guard cells of the C4 grass Zea mays. J Biol Chem 278:16973–16981. doi:10.1074/jbc.M212720200

    Article  CAS  PubMed  Google Scholar 

  63. Piechotta PL, Rapedius M, Stansfeld PJ, Bollepalli MK, Ehrlich G, Erhlich G, Andres-Enguix I, Fritzenschaft H, Decher N, Sansom MSP, Tucker SJ, Baukrowitz T (2011) The pore structure and gating mechanism of K2P channels. EMBO J 30:3607–3619. doi:10.1038/emboj.2011.268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Rice P, Longden I, Bleasby A (2000) EMBOSS: Eur Mol Biol Open Softw Suite 16:2–3, PMID: 10827456

    Google Scholar 

  65. Sandoz G, Douguet D, Chatelain F, Lazdunski M, Lesage F (2009) Extracellular acidification exerts opposite actions on TREK1 and TREK2 potassium channels via a single conserved histidine residue. Proc Natl Acad Sci U S A 106:14628–14633. doi:10.1073/pnas.0906267106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Schütze J, Krasko A, Custodio MR, Efremova SM, Müller IM, Müller WE (1999) Evolutionary relationships of Metazoa within the eukaryotes based on molecular data from Porifera. Proc Biol Sci 266:63–73. doi:10.1098/rspb.1999.0605

    Article  PubMed Central  PubMed  Google Scholar 

  67. Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon J, Gaymard F, Grignon C (1992) Cloning and expression in yeast of a plant potassium ion transport system. Science 256:663–665. doi:10.1126/science.1585180

    Article  CAS  PubMed  Google Scholar 

  68. Smart OS, Neduvelil JG, Wang X, Wallace BA, Sansom MSP (1996) HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J Mol Graph 14:354–360. doi:10.1016/S0263-7855(97)00009-X

    Article  CAS  PubMed  Google Scholar 

  69. Thiel G, Moroni A, Blanc G, Van Etten JL (2013) Potassium ion channels: could they have evolved from viruses? Plant Physiol 162:1215–1224. doi:10.1104/pp. 113.219360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Troufflard S, Mullen W, Larson TR, Graham IA, Crozier A, Amtmann A, Armengaud P (2010) Potassium deficiency induces the biosynthesis of oxylipins and glucosinolates in Arabidopsis thaliana. BMC Plant Biol 10:172. doi:10.1186/1471-2229-10-172

    Article  PubMed Central  PubMed  Google Scholar 

  71. Voelker C, Gomez-Porras JL, Becker D, Hamamoto S, Uozumi N, Gambale F, Mueller-Roeber B, Czempinski K, Dreyer I (2010) Roles of tandem-pore K+ channels in plants—a puzzle still to be solved. Plant Biol (Stuttg) 56(Suppl 1):56–63. doi:10.1111/J.1438-8677.2010.00353.X

    Article  Google Scholar 

  72. Wang X, Zhang X, Dong X-P, Samie M, Li X, Cheng X, Goschka A, Shen D, Zhou Y, Harlow J, Zhu MX, Clapham DE, Ren D, Xu H (2012) TPC proteins are phosphoinositide-activated sodium-selective ion channels in endosomes and lysosomes. Cell 151:372–383. doi:10.1016/j.cell.2012.08.036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, Hooper SD, Pati A, Lykidis A, Spring S, Anderson IJ, Patrik D, Zemla A, Singer M, Lapidus A, Nolan M, Han C, Chen F, Cheng J, Lucas S, Kerfeld C, Lang E, Gronow S, Chain P, Bruce D, Rubin EM, Nikos C, Klenk H, Eisen JA (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060. doi:10.1038/nature08656.A

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Zuzarte M, Heusser K, Renigunta V, Schlichthörl G, Rinné S, Wischmeyer E, Daut J, Schwappach B, Preisig-Müller R (2009) Intracellular traffic of the K+ channels TASK-1 and TASK-3: role of N- and C-terminal sorting signals and interaction with 14-3-3 proteins. J Physiol 587:929–952. doi:10.1113/jphysiol.2008.164756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Zuzarte M, Rinné S, Schlichthörl G, Schubert A, Daut J, Preisig-Müller R (2007) A di-acidic sequence motif enhances the surface expression of the potassium channel TASK-3. Traffic 8:1093–1100. doi:10.1111/j.1600-0854.2007.00593.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Comisión Nacional Científica y Tecnológica from Chile (grants DAAD-Conicyt-2012 to WG, JC, MJ, and DB; Fondecyt #1140624 to WG and BV; ACT1104 to WG and JR; Fondef Idea CA13I10223 to WG and LZ; and Fondecyt #11110217 to LZ. The Centro de Estudios Científicos (CECs) is funded by the Centres of Excellence Base Financing Programme of CONICYT). Funding of DB and MJ by the DFG Research Training Group (Graduiertenkolleg) GRK 1342 is greatly acknowledged. We thank Tracey Ann Cuin for the critical reading of and helpful comments on the manuscript and Javier Sánchez-Contreras for managing the bibliography.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wendy González or Dirk Becker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Pairwise global alignments of hK2Ps and AtTPKs. The alignments were generated using the EMBOSS implementation of the Needleman-Wunsh global alignment algorithm of Rice et al. [64]. The sequence identity is shown above the diagonal and the sequence similarity can be observed under the diagonal. For hK2Ps, the systematic (HUGO) name is indicated first, followed by the conventional name. The sequence identities and similarities between hK2Ps and AtTPKs are highlighted in boxes. (PDF 66 kb)

Online Resource 2

Transmembrane segments predictions for the NgKC and K2P channels selected for this study. The transmembrane segment prediction, done at the InterPro website by the TMhelix server, shows TM segments in all channels aligned with the two-pore domain potassium channel domain (IPR013099) annotated in InterPro (blue boxes). An additional TM domain is predicted for hK2Ps (except TASK-1) and NgKC, which could be a mistake of the TMhelix server (blue arrow). For the TOK1 channel, another four transmembrane domain prediction appears (red box), which corresponds to the four TM extra segments of the 2*2TM. For hK2Ps, the systematic (HUGO) name is indicated first, followed by the conventional name. (PDF 792 kb)

Online Resource 3

MSA of hK2Ps, NgKC, AtTPKs. The alignment was performed with Kalign [45] and colored by conservation in a ramp from white (not conserved) to dark blue (highly conserved). The secondary structure of the recently crystalized K2P channel TRAAK is indicated above the sequences and labeled with PD1 and PD2, signifying pore domain 1 and 2, respectively [14]. K+ selectivity filters are shown as green lines. Helices in pore domain 1 are colored blue and helices in pore domain 2, orange. The arrows colors are for the same positions in the aligment as in Fig. 2 and the hydrophobic positions of the PD2 inner helix found in TWIK-1 [7] are also with red arrows here. (PDF 1090 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, W., Valdebenito, B., Caballero, J. et al. K2P channels in plants and animals. Pflugers Arch - Eur J Physiol 467, 1091–1104 (2015). https://doi.org/10.1007/s00424-014-1638-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1638-4

Keywords

Navigation