Skip to main content

Comparison of K+ Channel Families

  • Chapter
  • First Online:
Pharmacology of Potassium Channels

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 267))

Abstract

K+ channels enable potassium to flow across the membrane with great selectivity. There are four K+ channel families: voltage-gated K (Kv), calcium-activated (KCa), inwardly rectifying K (Kir), and two-pore domain potassium (K2P) channels. All four K+ channels are formed by subunits assembling into a classic tetrameric (4x1P = 4P for the Kv, KCa, and Kir channels) or tetramer-like (2x2P = 4P for the K2P channels) architecture. These subunits can either be the same (homomers) or different (heteromers), conferring great diversity to these channels. They share a highly conserved selectivity filter within the pore but show different gating mechanisms adapted for their function. K+ channels play essential roles in controlling neuronal excitability by shaping action potentials, influencing the resting membrane potential, and responding to diverse physicochemical stimuli, such as a voltage change (Kv), intracellular calcium oscillations (KCa), cellular mediators (Kir), or temperature (K2P).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EKG:

Electrocardiogram

GIRK:

G protein-gated inwardly rectifying potassium channel

KATP:

ATP-sensitive inwardly rectifying potassium channel

TALK:

Two-pore ALkaline-activated K+ channel

TASK:

Two-pore acid-sensitive K+ channel

THIK:

Two-pore halothane-inhibited K+ channel

TRAAK:

TWIK-related arachidonic acid-stimulated K+ channel

TREK:

TWIK-related K+ channel

TRESK:

TWIK-related spinal-cord K+ channel

TWIK:

Two-pore weak inward-rectifying K+ channel

References

  • Abbott GW, Butler MH, Bendahhou S, Dalakas MC, Ptacek LJ, Goldstein SAN (2001) MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis. Cell 104:217–231

    Article  CAS  PubMed  Google Scholar 

  • Abbott GW, Butler MH, Goldstein SAN (2006) Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis. FASEB J 20:293–301

    Article  CAS  PubMed  Google Scholar 

  • Adelman JP (2016) SK channels and calmodulin. Channels (Austin) 10:1–6

    Article  Google Scholar 

  • Adelman JP, Maylie J, Sah P (2012) Small-conductance Ca2+−activated K+ channels: form and function. Annu Rev Physiol 74:245–269

    Article  CAS  PubMed  Google Scholar 

  • A-González N, Castrillo A (2011) Liver X receptors as regulators of macrophage inflammatory and metabolic pathways. Biochim Biophys Acta (BBA) Mol Basis Dis 1812:982–994

    Article  CAS  Google Scholar 

  • Aguilar-Bryan L, Clement JPt, Gonzalez G, Kunjilwar K, Babenko A, Bryan J (1998) Toward understanding the assembly and structure of KATP channels. Physiol Rev 78:227–245

    Article  CAS  PubMed  Google Scholar 

  • Ahern CA, Horn R (2004) Specificity of charge-carrying residues in the voltage sensor of potassium channels. J Gen Physiol 123:205–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahern CA, Horn R (2005) Focused electric field across the voltage sensor of potassium channels. Neuron 48:25–29

    Article  CAS  PubMed  Google Scholar 

  • Albrecht B, Weber K, Pongs O (1995) Characterization of a voltage-activated K-channel gene cluster on human chromosome 12p13. Receptors Channels 3:213–220

    CAS  PubMed  Google Scholar 

  • Aldrich RW (2001) Fifty years of inactivation. Nature 411:643–644

    Article  CAS  PubMed  Google Scholar 

  • Allen D, Fakler B, Maylie J, Adelman JP (2007) Organization and regulation of small conductance Ca2+−activated K+ channel multiprotein complexes. J Neurosci 27:2369–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Sabi A, Lennartz D, Ferber M, Gulyas J, Rivier JEF, Olivera BM, Carlomagno T, Terlau H (2004) κM-conotoxin RIIIK, structural and functional novelty in a K+channel antagonist†. Biochemistry 43:8625–8635

    Article  CAS  PubMed  Google Scholar 

  • Anazco C, Pena-Munzenmayer G, Araya C, Cid LP, Sepulveda FV, Niemeyer MI (2013) G protein modulation of K2P potassium channel TASK-2: a role of basic residues in the C terminus domain. Pflügers Arch 465:1715–1726

    Article  CAS  PubMed  Google Scholar 

  • Anderson NJ, Slough S, Watson WP (2006) In vivo characterisation of the small-conductance KCa (SK) channel activator 1-ethyl-2-benzimidazolinone (1-EBIO) as a potential anticonvulsant. Eur J Pharmacol 546:48–53

    Article  CAS  PubMed  Google Scholar 

  • Andres-Enguix I, Shang L, Stansfeld PJ, Morahan JM, Sansom MS, Lafreniere RG, Roy B, Griffiths LR, Rouleau GA, Ebers GC et al (2012) Functional analysis of missense variants in the TRESK (KCNK18) K channel. Sci Rep 2:237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Åqvist J, Luzhkov V (2000) Ion permeation mechanism of the potassium channel. Nature 404:881–884

    Article  PubMed  Google Scholar 

  • Ashcroft FM (2005) ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest 115:2047–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashcroft FM, Harrison DE, Ashcroft SJ (1984) Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature 312:446–448

    Article  CAS  PubMed  Google Scholar 

  • Ashfield R, Gribble FM, Ashcroft SJ, Ashcroft FM (1999) Identification of the high-affinity tolbutamide site on the SUR1 subunit of the K(ATP) channel. Diabetes 48:1341–1347

    Article  CAS  PubMed  Google Scholar 

  • Ashford ML, Boden PR, Treherne JM (1990) Glucose-induced excitation of hypothalamic neurones is mediated by ATP-sensitive K+ channels. Pflugers Arch 415:479–483

    Article  CAS  PubMed  Google Scholar 

  • Augustine GJ, Santamaria F, Tanaka K (2003) Local calcium signaling in neurons. Neuron 40:331–346

    Article  CAS  PubMed  Google Scholar 

  • Aziz Q, Thomas AM, Gomes J, Ang R, Sones WR, Li Y, Ng KE, Gee L, Tinker A (2014) The ATP-sensitive potassium channel subunit, Kir6.1, in vascular smooth muscle plays a major role in blood pressure control. Hypertension 64:523–529

    Article  CAS  PubMed  Google Scholar 

  • Bagetta G, Nistico G, Dolly JO (1992) Production of seizures and brain damage in rats by alpha-dendrotoxin, a selective K+ channel blocker. Neurosci Lett 139:34–40

    Article  CAS  PubMed  Google Scholar 

  • Bagriantsev SN, Peyronnet R, Clark KA, Honore E, Minor DL Jr (2011) Multiple modalities converge on a common gate to control K2P channel function. EMBO J 30:3594–3606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker OS, Larsson HP, Mannuzzu LM, Isacoff EY (1998) Three transmembrane conformations and sequence-dependent displacement of the S4 domain in shaker K+ channel gating. Neuron 20:1283–1294

    Article  CAS  PubMed  Google Scholar 

  • Baronas VA, Kurata HT (2014) Inward rectifiers and their regulation by endogenous polyamines. Front Physiol 5:325

    Article  PubMed  PubMed Central  Google Scholar 

  • Baukrowitz T, Schulte U, Oliver D, Herlitze S, Krauter T, Tucker SJ, Ruppersberg JP, Fakler B (1998) PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 282:1141–1144

    Article  CAS  PubMed  Google Scholar 

  • Behrens R, Nolting A, Reimann F, Schwarz M, Waldschutz R, Pongs O (2000) hKCNMB3 and hKCNMB4, cloning and characterization of two members of the large-conductance calcium-activated potassium channel beta subunit family. FEBS Lett 474:99–106

    Article  CAS  PubMed  Google Scholar 

  • Bentrop D, Beyermann M, Wissmann R, Fakler B (2001) NMR structure of the "ball-and-chain" domain of KCNMB2, the beta 2-subunit of large conductance Ca2+− and voltage-activated potassium channels. J Biol Chem 276:42116–42121

    Article  CAS  PubMed  Google Scholar 

  • Berg AP, Talley EM, Manger JP, Bayliss DA (2004) Motoneurons express heteromeric TWIK-related acid-sensitive K+ (TASK) channels containing TASK-1 (KCNK3) and TASK-3 (KCNK9) subunits. J Neurosci 24:6693–6702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berkefeld H, Sailer CA, Bildl W, Rohde V, Thumfart JO, Eble S, Klugbauer N, Reisinger E, Bischofberger J, Oliver D et al (2006) BKCa-Cav channel complexes mediate rapid and localized Ca2+−activated K+ signaling. Science 314:615–620

    Article  CAS  PubMed  Google Scholar 

  • Berkefeld H, Fakler B, Schulte U (2010) Ca2+−activated K+ channels: from protein complexes to function. Physiol Rev 90:1437–1459

    Article  CAS  PubMed  Google Scholar 

  • Bernèche S, Roux B (2001) Energetics of ion conduction through the K+ channel. Nature 414:73–77

    Article  PubMed  Google Scholar 

  • Bezanilla F (2000) The voltage sensor in voltage-dependent ion channels. Physiol Rev 80:555–592

    Article  CAS  PubMed  Google Scholar 

  • Bichet D, Haass FA, Jan LY (2003) Merging functional studies with structures of inward-rectifier K(+) channels. Nat Rev Neurosci 4:957–967

    Article  CAS  PubMed  Google Scholar 

  • Bildl W, Strassmaier T, Thurm H, Andersen J, Eble S, Oliver D, Knipper M, Mann M, Schulte U, Adelman JP et al (2004) Protein kinase CK2 is coassembled with small conductance ca(2+)-activated K+ channels and regulates channel gating. Neuron 43:847–858

    Article  CAS  PubMed  Google Scholar 

  • Blatz AL, Magleby KL (1984) Ion conductance and selectivity of single calcium-activated potassium channels in cultured rat muscle. J Gen Physiol 84:1–23

    Article  CAS  PubMed  Google Scholar 

  • Bockenhauer D, Zilberberg N, Goldstein SA (2001) KCNK2: reversible conversion of a hippocampal potassium leak into a voltage-dependent channel. Nat Neurosci 4:486–491

    Article  CAS  PubMed  Google Scholar 

  • Brenner R, Jegla TJ, Wickenden A, Liu Y, Aldrich RW (2000a) Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J Biol Chem 275:6453–6461

    Article  CAS  PubMed  Google Scholar 

  • Brenner R, Perez GJ, Bonev AD, Eckman DM, Kosek JC, Wiler SW, Patterson AJ, Nelson MT, Aldrich RW (2000b) Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature 407:870–876

    Article  CAS  PubMed  Google Scholar 

  • Brereton MF, Ashcroft FM (2013) Mouse models of beta-cell KATP channel dysfunction. Drug Discov Today Dis Models 10:e101–e109

    Article  PubMed  PubMed Central  Google Scholar 

  • Bretschneider F, Wrisch A, Lehmann-Horn F, Grissmer S (1999) External tetraethylammonium as a molecular caliper for sensing the shape of the outer vestibule of potassium channels. Biophys J 76:2351–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brohawn SG, del Marmol J, MacKinnon R (2012) Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335:436–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brohawn SG, Campbell EB, MacKinnon R (2014) Physical mechanism for gating and mechanosensitivity of the human TRAAK K+ channel. Nature 516:126–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broomand A, Elinder F (2008) Large-scale movement within the voltage-sensor paddle of a potassium channel-support for a helical-screw motion. Neuron 59:770–777

    Article  CAS  PubMed  Google Scholar 

  • Brugada R, Hong K, Dumaine R, Cordeiro J, Gaita F, Borggrefe M, Menendez TM, Brugada J, Pollevick GD, Wolpert C et al (2004) Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation 109:30–35

    Article  CAS  PubMed  Google Scholar 

  • Bukiya AN, Liu J, Toro L, Dopico AM (2007) Beta1 (KCNMB1) subunits mediate lithocholate activation of large-conductance Ca2+−activated K+ channels and dilation in small, resistance-size arteries. Mol Pharmacol 72:359–369

    Article  CAS  PubMed  Google Scholar 

  • Bukiya AN, McMillan J, Liu J, Shivakumar B, Parrill AL, Dopico AM (2014) Activation of calcium- and voltage-gated potassium channels of large conductance by leukotriene B4. J Biol Chem 289:35314–35325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler A, Tsunoda S, McCobb DP, Wei A, Salkoff L (1993) mSlo, a complex mouse gene encoding "maxi" calcium-activated potassium channels. Science 261:221–224

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Dreixler JC, Roizen JD, Roberts MT, Houamed KM (2001) Modulation of recombinant small-conductance ca(2+)-activated K(+) channels by the muscle relaxant chlorzoxazone and structurally related compounds. J Pharmacol Exp Ther 296:683–689

    CAS  PubMed  Google Scholar 

  • Carmeliet E (1992) Voltage- and time-dependent block of the delayed K+ current in cardiac myocytes by dofetilide. J Pharmacol Exp Ther 262:809–817

    CAS  PubMed  Google Scholar 

  • Casamassima M, D'Adamo MC, Pessia M, Tucker SJ (2003) Identification of a heteromeric interaction that influences the rectification, gating, and pH sensitivity of Kir4.1/Kir5.1 potassium channels. J Biol Chem 278:43533–43540

    Article  CAS  PubMed  Google Scholar 

  • Castle NA, London DO, Creech C, Fajloun Z, Stocker JW, Sabatier JM (2003) Maurotoxin: a potent inhibitor of intermediate conductance Ca2+−activated potassium channels. Mol Pharmacol 63:409–418

    Article  CAS  PubMed  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  PubMed  Google Scholar 

  • Chakrapani S, Cuello LG, Cortes DM, Perozo E (2008) Structural dynamics of an isolated voltage-sensor domain in a lipid bilayer. Structure 16:398–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatelain FC, Bichet D, Douguet D, Feliciangeli S, Bendahhou S, Reichold M, Warth R, Barhanin J, Lesage F (2012) TWIK1, a unique background channel with variable ion selectivity. Proc Natl Acad Sci U S A 109:5499–5504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chemin J, Patel AJ, Duprat F, Lauritzen I, Lazdunski M, Honore E (2005) A phospholipid sensor controls mechanogating of the K+ channel TREK-1. EMBO J 24:44–53

    Article  CAS  PubMed  Google Scholar 

  • Chemin J, Patel AJ, Duprat F, Sachs F, Lazdunski M, Honore E (2007) Up- and down-regulation of the mechano-gated K(2P) channel TREK-1 by PIP (2) and other membrane phospholipids. Pflügers Arch 455:97–103

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Talley EM, Patel N, Gomis A, McIntire WE, Dong B, Viana F, Garrison JC, Bayliss DA (2006) Inhibition of a background potassium channel by Gq protein alpha-subunits. Proc Natl Acad Sci U S A 103:3422–3427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark RB, Mangoni ME, Lueger A, Couette B, Nargeot J, Giles WR (2004) A rapidly activating delayed rectifier K+ current regulates pacemaker activity in adult mouse sinoatrial node cells. Am J Physiol Heart Circ Physiol 286:H1757–H1766

    Article  CAS  PubMed  Google Scholar 

  • Clarke OB, Caputo AT, Hill AP, Vandenberg JI, Smith BJ, Gulbis JM (2010) Domain reorientation and rotation of an intracellular assembly regulate conduction in Kir potassium channels. Cell 141:1018–1029

    Article  CAS  PubMed  Google Scholar 

  • Clement JPt, Kunjilwar K, Gonzalez G, Schwanstecher M, Panten U, Aguilar-Bryan L, Bryan J (1997) Association and stoichiometry of K(ATP) channel subunits. Neuron 18:827–838

    Article  CAS  PubMed  Google Scholar 

  • Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, Morena H, Nadal MS, Ozaita A, Pountney D et al (1999) Molecular diversity of K+ channels. Ann N Y Acad Sci 868:233–255

    Article  CAS  PubMed  Google Scholar 

  • Cohen A, Ben-Abu Y, Hen S, Zilberberg N (2008) A novel mechanism for human K2P2.1 channel gating. Facilitation of C-type gating by protonation of extracellular histidine residues. J Biol Chem 283:19448–19455

    Article  CAS  PubMed  Google Scholar 

  • Coleman SK, Newcombe J, Pryke J, Dolly JO (1999) Subunit composition of Kv1 channels in human CNS. J Neurochem 73:849–858

    Article  CAS  PubMed  Google Scholar 

  • Cuello LG (2004) Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer. Science 306:491–495

    Article  CAS  PubMed  Google Scholar 

  • Cui J (2016) Voltage-dependent gating: novel insights from KCNQ1 channels. Biophys J 110:14–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui J, Cox DH, Aldrich RW (1997) Intrinsic voltage dependence and Ca2+ regulation of mslo large conductance ca-activated K+ channels. J Gen Physiol 109:647–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czirjak G, Enyedi P (2002) Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain potassium channel subunits. J Biol Chem 277:5426–5432

    Article  CAS  PubMed  Google Scholar 

  • D’Alessandro G, Limatola C, Catalano M (2018) Functional roles of the Ca2+−activated K+ channel, KCa3.1, in brain tumors. Curr Neuropharmacol 16:636–643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dauplais M, Lecoq A, Song J, Cotton J, Jamin N, Gilquin B, Roumestand C, Vita C, De Medeiros CLC, Rowan EG et al (1997) On the convergent evolution of animal toxins. J Biol Chem 272:4302–4309

    Article  CAS  PubMed  Google Scholar 

  • Devor DC, Singh AK, Frizzell RA, Bridges RJ (1996) Modulation of cl- secretion by benzimidazolones. I. Direct activation of a ca(2+)-dependent K+ channel. Am J Phys 271:L775–L784

    CAS  Google Scholar 

  • Diaz L, Meera P, Amigo J, Stefani E, Alvarez O, Toro L, Latorre R (1998) Role of the S4 segment in a voltage-dependent calcium-sensitive potassium (hSlo) channel. J Biol Chem 273:32430–32436

    Article  CAS  PubMed  Google Scholar 

  • Dodson PD, Barker MC, Forsythe ID (2002) Two heteromeric Kv1 potassium channels differentially regulate action potential firing. J Neurosci 22:6953–6961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dogan MF, Yildiz O, Arslan SO, Ulusoy KG (2019) Potassium channels in vascular smooth muscle: a pathophysiological and pharmacological perspective. Fundam Clin Pharmacol 33:504–523

    Article  CAS  PubMed  Google Scholar 

  • Dong YY, Pike AC, Mackenzie A, McClenaghan C, Aryal P, Dong L, Quigley A, Grieben M, Goubin S, Mukhopadhyay S et al (2015) K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac. Science 347:1256–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dopico AM, Bukiya AN (2017) Regulation of ca(2+)-sensitive K(+) channels by cholesterol and bile acids via distinct channel subunits and sites. Curr Top Membr 80:53–93

    Article  CAS  PubMed  Google Scholar 

  • Doring F, Derst C, Wischmeyer E, Karschin C, Schneggenburger R, Daut J, Karschin A (1998) The epithelial inward rectifier channel Kir7.1 displays unusual K+ permeation properties. J Neurosci 18:8625–8636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doupnik CA (2017) Venom-derived peptides inhibiting Kir channels: past, present, and future. Neuropharmacology 127:161–172

    Article  CAS  PubMed  Google Scholar 

  • Doyle ME, Egan JM (2003) Pharmacological agents that directly modulate insulin secretion. Pharmacol Rev 55:105–131

    Article  CAS  PubMed  Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  CAS  PubMed  Google Scholar 

  • Du X, Zhang H, Lopes C, Mirshahi T, Rohacs T, Logothetis DE (2004) Characteristic interactions with phosphatidylinositol 4,5-bisphosphate determine regulation of kir channels by diverse modulators. J Biol Chem 279:37271–37281

    Article  CAS  PubMed  Google Scholar 

  • Dworetzky SI, Boissard CG, Lum-Ragan JT, McKay MC, Post-Munson DJ, Trojnacki JT, Chang CP, Gribkoff VK (1996) Phenotypic alteration of a human BK (hSlo) channel by hSlobeta subunit coexpression: changes in blocker sensitivity, activation/relaxation and inactivation kinetics, and protein kinase A modulation. J Neurosci 16:4543–4550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson MAL, Roux B (2002) Modeling the structure of agitoxin in complex with the shaker K+ channel: a computational approach based on experimental distance restraints extracted from thermodynamic mutant cycles. Biophys J 83:2595–2609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fakler B, Adelman JP (2008) Control of K(ca) channels by calcium nano/microdomains. Neuron 59:873–881

    Article  CAS  PubMed  Google Scholar 

  • Fanger CM, Ghanshani S, Logsdon NJ, Rauer H, Kalman K, Zhou J, Beckingham K, Chandy KG, Cahalan MD, Aiyar J (1999) Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel. IKCa1 J Biol Chem 274:5746–5754

    Article  CAS  PubMed  Google Scholar 

  • Ferreira R, Lively S, Schlichter LC (2014) IL-4 type 1 receptor signaling up-regulates KCNN4 expression, and increases the KCa3.1 current and its contribution to migration of alternative-activated microglia. Front Cell Neurosci 8:183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fink M, Duprat F, Lesage F, Reyes R, Romey G, Heurteaux C, Lazdunski M (1996) Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. EMBO J 15:6854–6862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finley M, Arrabit C, Fowler C, Suen KF, Slesinger PA (2004) betaL-betaM loop in the C-terminal domain of G protein-activated inwardly rectifying K(+) channels is important for G(betagamma) subunit activation. J Physiol 555:643–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finol-Urdaneta RK, StrüVer N, Terlau H (2006) Molecular and functional differences between heart mKv1.7 channel isoforms. J Gen Physiol 128:133–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finol-Urdaneta RK, Belovanovic A, Micic-Vicovac M, Kinsella GK, McArthur JR, Al-Sabi A (2020) Marine toxins targeting Kv1 channels: pharmacological tools and therapeutic scaffolds. Mar Drugs 18:173

    Article  CAS  PubMed Central  Google Scholar 

  • Forte M, Satow Y, Nelson D, Kung C (1981) Mutational alteration of membrane phospholipid composition and voltage-sensitive ion channel function in paramecium. Proc Natl Acad Sci 78:7195–7199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furukawa Y, Miyashita Y, Nakajima K, Hirose M, Kurogouchi F, Chiba S (1999) Effects of verapamil, zatebradine, and E-4031 on the pacemaker location and rate in response to sympathetic stimulation in dog hearts. J Pharmacol Exp Ther 289:1334–1342

    CAS  PubMed  Google Scholar 

  • Gada K, Plant LD (2019) Two-pore domain potassium channels: emerging targets for novel analgesic drugs: IUPHAR review 26. Br J Pharmacol 176:256–266

    Article  CAS  PubMed  Google Scholar 

  • Galvez A, Gimenez-Gallego G, Reuben JP, Roy-Contancin L, Feigenbaum P, Kaczorowski GJ, Garcia ML (1990) Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus. J Biol Chem 265:11083–11090

    Article  CAS  PubMed  Google Scholar 

  • Gandhi CS, Isacoff EY (2002) Molecular models of voltage sensing. J Gen Physiol 120:455–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y-D, Garcia ML (2003) Interaction of agitoxin2, charybdotoxin, and iberiotoxin with potassium channels: selectivity between voltage-gated and maxi-K channels. Proteins Struct Funct Genet 52:146–154

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Valdes J, Zamudio FZ, Toro L, Possani LD (2001) Slotoxin, alphaKTx1.11, a new scorpion peptide blocker of MaxiK channels that differentiates between alpha and alpha+beta (beta1 or beta4) complexes. FEBS Lett 505:369–373

    Article  CAS  PubMed  Google Scholar 

  • Gardos G (1958) The function of calcium in the potassium permeability of human erythrocytes. Biochim Biophys Acta 30:653–654

    Article  CAS  PubMed  Google Scholar 

  • Gilquin B, Racapé J, Wrisch A, Visan V, Lecoq A, Grissmer S, Ménez A, Gasparini S (2002) Structure of the BgK-Kv1.1 complex based on distance restraints identified by double mutant cycles. J Biol Chem 277:37406–37413

    Article  CAS  PubMed  Google Scholar 

  • Girard CA, Wunderlich FT, Shimomura K, Collins S, Kaizik S, Proks P, Abdulkader F, Clark A, Ball V, Zubcevic L et al (2009) Expression of an activating mutation in the gene encoding the KATP channel subunit Kir6.2 in mouse pancreatic beta cells recapitulates neonatal diabetes. J Clin Invest 119:80–90

    CAS  PubMed  Google Scholar 

  • Glaaser IW, Slesinger PA (2017) Dual activation of neuronal G protein-gated inwardly rectifying potassium (GIRK) channels by cholesterol and alcohol. Sci Rep 7:4592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gloyn AL, Pearson ER, Antcliff JF, Proks P, Bruining GJ, Slingerland AS, Howard N, Srinivasan S, Silva JM, Molnes J et al (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350:1838–1849

    Article  CAS  PubMed  Google Scholar 

  • Golding NL, Jung HY, Mickus T, Spruston N (1999) Dendritic calcium spike initiation and repolarization are controlled by distinct potassium channel subtypes in CA1 pyramidal neurons. J Neurosci 19:8789–8798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein SA, Price LA, Rosenthal DN, Pausch MH (1996) ORK1, a potassium-selective leak channel with two pore domains cloned from Drosophila melanogaster by expression in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93:13256–13261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein SA, Bockenhauer D, O'Kelly I, Zilberberg N (2001) Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci 2:175–184

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Perez V, Xia XM, Lingle CJ (2014) Functional regulation of BK potassium channels by gamma1 auxiliary subunits. Proc Natl Acad Sci U S A 111:4868–4873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Perez V, Xia XM, Lingle CJ (2015) Two classes of regulatory subunits coassemble in the same BK channel and independently regulate gating. Nat Commun 6:8341

    Article  CAS  PubMed  Google Scholar 

  • Goodman AD, Brown TR, Krupp LB, Schapiro RT, Schwid SR, Cohen R, Marinucci LN, Blight AR (2009) Sustained-release oral fampridine in multiple sclerosis: a randomised, double-blind, controlled trial. Lancet 373:732–738

    Article  CAS  PubMed  Google Scholar 

  • Gribkoff VK, Starrett JE Jr, Dworetzky SI, Hewawasam P, Boissard CG, Cook DA, Frantz SW, Heman K, Hibbard JR, Huston K et al (2001) Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-K potassium channels. Nat Med 7:471–477

    Article  CAS  PubMed  Google Scholar 

  • Griguoli M, Sgritta M, Cherubini E (2016) Presynaptic BK channels control transmitter release: physiological relevance and potential therapeutic implications. J Physiol 594:3489–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grover GJ, Garlid KD (2000) ATP-sensitive potassium channels: a review of their cardioprotective pharmacology. J Mol Cell Cardiol 32:677–695

    Article  CAS  PubMed  Google Scholar 

  • Grunnet M, Kaufmann WA (2004) Coassembly of big conductance Ca2+−activated K+ channels and L-type voltage-gated Ca2+ channels in rat brain. J Biol Chem 279:36445–36453

    Article  CAS  PubMed  Google Scholar 

  • Grunnet M, Jensen BS, Olesen SP, Klaerke DA (2001) Apamin interacts with all subtypes of cloned small-conductance Ca2+−activated K+ channels. Pflugers Arch 441:544–550

    Article  CAS  PubMed  Google Scholar 

  • Gu C, Gu Y (2011) Clustering and activity tuning of Kv1 channels in myelinated hippocampal axons. J Biol Chem 286:25835–25847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu N, Vervaeke K, Storm JF (2007) BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. J Physiol 580:859–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stuhmer W et al (2005) International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev 57:473–508

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara S, Miyazaki S, Rosenthal NP (1976) Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish. J Gen Physiol 67:621–638

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara S, Miyazaki S, Moody W, Patlak J (1978) Blocking effects of barium and hydrogen ions on the potassium current during anomalous rectification in the starfish egg. J Physiol 279:167–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanner M, Schmalhofer WA, Munujos P, Knaus HG, Kaczorowski GJ, Garcia ML (1997) The beta subunit of the high-conductance calcium-activated potassium channel contributes to the high-affinity receptor for charybdotoxin. Proc Natl Acad Sci U S A 94:2853–2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen SB, Tao X, MacKinnon R (2011) Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477:495–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey AL, Anderson AJ (1985) Dendrotoxins: snake toxins that block potassium channels and facilitate neurotransmitter release. Pharmacol Ther 31:33–55

    Article  CAS  PubMed  Google Scholar 

  • Harvey AL, Robertson B (2004) Dendrotoxins: structure-activity relationships and effects on potassium ion channels. Curr Med Chem 11:3065–3072

    Article  CAS  PubMed  Google Scholar 

  • He C, Zhang H, Mirshahi T, Logothetis DE (1999) Identification of a potassium channel site that interacts with G protein bg subunits to mediate agonist-induced signaling. J Biol Chem 274:12517–12524

    Article  CAS  PubMed  Google Scholar 

  • Hebert B, Pietropaolo S, Meme S, Laudier B, Laugeray A, Doisne N, Quartier A, Lefeuvre S, Got L, Cahard D et al (2014) Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by a BKCa channel opener molecule. Orphanet J Rare Dis 9:124

    Article  PubMed  PubMed Central  Google Scholar 

  • Heginbotham L, Lu Z, Abramson T, MacKinnon R (1994) Mutations in the K+ channel signature sequence. Biophys J 66:1061–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hibino H, Kurachi Y (2006) Molecular and physiological bases of the K+ circulation in the mammalian inner ear. Physiology (Bethesda) 21:336–345

    CAS  Google Scholar 

  • Hibino H, Horio Y, Inanobe A, Doi K, Ito M, Yamada M, Gotow T, Uchiyama Y, Kawamura M, Kubo T et al (1997) An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential. J Neurosci 17:4711–4721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hibino H, Fujita A, Iwai K, Yamada M, Kurachi Y (2004a) Differential assembly of inwardly rectifying K+ channel subunits, Kir4.1 and Kir5.1, in brain astrocytes. J Biol Chem 279:44065–44073

    Article  CAS  PubMed  Google Scholar 

  • Hibino H, Higashi-Shingai K, Fujita A, Iwai K, Ishii M, Kurachi Y (2004b) Expression of an inwardly rectifying K+ channel, Kir5.1, in specific types of fibrocytes in the cochlear lateral wall suggests its functional importance in the establishment of endocochlear potential. Eur J Neurosci 19:76–84

    Article  PubMed  Google Scholar 

  • Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90:291–366

    Article  CAS  PubMed  Google Scholar 

  • Hille B (1986) Ionic channels: molecular pores of excitable membranes. Harvey Lect 82:47–69

    CAS  PubMed  Google Scholar 

  • Hirschberg B, Maylie J, Adelman JP, Marrion NV (1999) Gating properties of single SK channels in hippocampal CA1 pyramidal neurons. Biophys J 77:1905–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hite RK, Tao X, MacKinnon R (2017) Structural basis for gating the high-conductance ca(2+)-activated K(+) channel. Nature 541:52–57

    Article  CAS  PubMed  Google Scholar 

  • Ho IH, Murrell-Lagnado RD (1999) Molecular determinants for sodium-dependent activation of G protein-gated K+ channels. J Biol Chem 274:8639–8648

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1945) Resting and action potentials in single nerve fibres. J Physiol 104:176–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtzclaw JD, Grimm PR, Sansom SC (2011) Role of BK channels in hypertension and potassium secretion. Curr Opin Nephrol Hypertens 20:512–517

    Article  CAS  PubMed  Google Scholar 

  • Horinaka S (2011) Use of nicorandil in cardiovascular disease and its optimization. Drugs 71:1105–1119

    Article  CAS  PubMed  Google Scholar 

  • Horrigan FT, Aldrich RW (2002) Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels. J Gen Physiol 120:267–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath GA, Zhao Y, Tarailo-Graovac M, Boelman C, Gill H, Shyr C, Lee J, Blydt-Hansen I, Drogemoller BI, Moreland J et al (2018) Gain-of-function KCNJ6 mutation in a severe hyperkinetic movement disorder phenotype. Neuroscience 384:152–164

    Article  CAS  PubMed  Google Scholar 

  • Hoshi T, Armstrong CM (2013) C-type inactivation of voltage-gated K+ channels: pore constriction or dilation? J Gen Physiol 141:151–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshi T, Wissuwa B, Tian Y, Tajima N, Xu R, Bauer M, Heinemann SH, Hou S (2013) Omega-3 fatty acids lower blood pressure by directly activating large-conductance ca(2)(+)-dependent K(+) channels. Proc Natl Acad Sci U S A 110:4816–4821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hougaard C, Eriksen BL, Jorgensen S, Johansen TH, Dyhring T, Madsen LS, Strobaek D, Christophersen P (2007) Selective positive modulation of the SK3 and SK2 subtypes of small conductance Ca2+−activated K+ channels. Br J Pharmacol 151:655–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CL, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature 391:803–806

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Sindic A, Hill CE, Hujer KM, Chan KW, Sassen M, Wu Z, Kurachi Y, Nielsen S, Romero MF et al (2007) Interaction of the Ca2+−sensing receptor with the inwardly rectifying potassium channels Kir4.1 and Kir4.2 results in inhibition of channel function. Am J Physiol Renal Physiol 292:F1073–F1081

    Article  CAS  PubMed  Google Scholar 

  • Hughes BA, Kumar G, Yuan Y, Swaminathan A, Yan D, Sharma A, Plumley L, Yang-Feng TL, Swaroop A (2000) Cloning and functional expression of human retinal kir2.4, a pH-sensitive inwardly rectifying K(+) channel. Am J Physiol Cell Physiol 279:C771–C784

    Article  CAS  PubMed  Google Scholar 

  • Hwang EM, Kim E, Yarishkin O, Woo DH, Han KS, Park N, Bae Y, Woo J, Kim D, Park M et al (2014) A disulphide-linked heterodimer of TWIK-1 and TREK-1 mediates passive conductance in astrocytes. Nat Commun 5:3227

    Article  PubMed  CAS  Google Scholar 

  • Imlach WL, Finch SC, Dunlop J, Dalziel JE (2009) Structural determinants of lolitrems for inhibition of BK large conductance Ca2+−activated K+ channels. Eur J Pharmacol 605:36–45

    Article  CAS  PubMed  Google Scholar 

  • Imredy JP, Chen C, MacKinnon R (1998) A snake toxin inhibitor of inward rectifier potassium channel ROMK1. Biochemistry 37:14867–14874

    Article  CAS  PubMed  Google Scholar 

  • Inda MC, Defelipe J, Munoz A (2006) Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier. Cell 103:2920–2925

    CAS  Google Scholar 

  • Ishida IG, Rangel-Yescas GE, Carrasco-Zanini J, Islas LD (2015) Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel. J Gen Physiol 145:345–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP, Maylie J (1997) A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci U S A 94:11651–11656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii M, Fujita A, Iwai K, Kusaka S, Higashi K, Inanobe A, Hibino H, Kurachi Y (2003) Differential expression and distribution of Kir5.1 and Kir4.1 inwardly rectifying K+ channels in retina. Am J Physiol Cell Physiol 285:C260–C267

    Article  CAS  PubMed  Google Scholar 

  • Ivanina T, Rishal I, Varon D, Mullner C, Frohnwieser-Steinecke B, Schreibmayer W, Dessauer CW, Dascal N (2003) Mapping the Gβγ-binding sites in GIRK1 and GIRK2 subunits of the G protein-activated K+ channel. J Biol Chem 278:29174–29183

    Article  CAS  PubMed  Google Scholar 

  • Jin W, Lu Z (1998) A novel high-affinity inhibitor for inward-rectifier K+ channels. Biochemistry 37:13291–13299

    Article  CAS  PubMed  Google Scholar 

  • Jin W, Lu Z (1999) Synthesis of a stable form of tertiapin: a high-affinity inhibitor for inward-rectifier K+ channels. Biochemistry 38:14286–14293

    Article  CAS  PubMed  Google Scholar 

  • Joiner WJ, Khanna R, Schlichter LC, Kaczmarek LK (2001) Calmodulin regulates assembly and trafficking of SK4/IK1 Ca2+−activated K+ channels. J Biol Chem 276:37980–37985

    Article  CAS  PubMed  Google Scholar 

  • Jouirou B, Mouhat S, Andreotti N, De Waard M, Sabatier J-M (2004) Toxin determinants required for interaction with voltage-gated K+ channels. Toxicon 43:909–914

    Article  CAS  PubMed  Google Scholar 

  • Kamath GS, Mittal S (2008) The role of antiarrhythmic drug therapy for the prevention of sudden cardiac death. Prog Cardiovasc Dis 50:439–448

    Article  CAS  PubMed  Google Scholar 

  • Kang D, Kim D (2006) TREK-2 (K2P10.1) and TRESK (K2P18.1) are major background K+ channels in dorsal root ganglion neurons. Am J Physiol Cell Physiol 291:C138–C146

    Article  CAS  PubMed  Google Scholar 

  • Kang D, Choe C, Kim D (2005) Thermosensitivity of the two-pore domain K+ channels TREK-2 and TRAAK. J Physiol 564:103–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanjhan R, Coulson EJ, Adams DJ, Bellingham MC (2005) Tertiapin-Q blocks recombinant and native large conductance K+ channels in a use-dependent manner. J Pharmacol Exp Ther 314:1353–1361

    Article  CAS  PubMed  Google Scholar 

  • Kaplan WD, Trout WE 3rd (1969) The behavior of four neurological mutants of Drosophila. Genetics 61:399–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasumu AW, Hougaard C, Rode F, Jacobsen TA, Sabatier JM, Eriksen BL, Strobaek D, Liang X, Egorova P, Vorontsova D et al (2012) Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem Biol 19:1340–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz B (1949) Les Constantes Electriques De La Membrane Du Muscle. Arch Sci Physiol 3:285–300

    CAS  Google Scholar 

  • Kaufmann K, Romaine I, Days E, Pascual C, Malik A, Yang L, Zou B, Du Y, Sliwoski G, Morrison RD et al (2013) ML297 (VU0456810), the first potent and selective activator of the GIRK potassium channel, displays antiepileptic properties in mice. ACS Chem Neurosci 4:1278–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennard LE, Chumbley JR, Ranatunga KM, Armstrong SJ, Veale EL, Mathie A (2005) Inhibition of the human two-pore domain potassium channel, TREK-1, by fluoxetine and its metabolite norfluoxetine. Br J Pharmacol 144:821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ketchum KA, Joiner WJ, Sellers AJ, Kaczmarek LK, Goldstein SA (1995) A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature 376:690–695

    Article  CAS  PubMed  Google Scholar 

  • Khalili-Araghi F, Tajkhorshid E, Schulten K (2006) Dynamics of K+ ion conduction through Kv1.2. Biophys J 91:L72–L74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiehn J, Wible B, Lacerda AE, Brown AM (1996) Mapping the block of a cloned human inward rectifier potassium channel by dofetilide. Mol Pharmacol 50:380–387

    CAS  PubMed  Google Scholar 

  • Kim Y, Bang H, Kim D (2000) TASK-3, a new member of the tandem pore K(+) channel family. J Biol Chem 275:9340–9347

    Article  CAS  PubMed  Google Scholar 

  • King JT, Lovell PV, Rishniw M, Kotlikoff MI, Zeeman ML, McCobb DP (2006) Beta2 and beta4 subunits of BK channels confer differential sensitivity to acute modulation by steroid hormones. J Neurophysiol 95:2878–2888

    Article  CAS  PubMed  Google Scholar 

  • Klein H, Garneau L, Trinh NT, Prive A, Dionne F, Goupil E, Thuringer D, Parent L, Brochiero E, Sauve R (2009) Inhibition of the KCa3.1 channels by AMP-activated protein kinase in human airway epithelial cells. Am J Physiol Cell Physiol 296:C285–C295

    Article  CAS  PubMed  Google Scholar 

  • Knaus HG, Folander K, Garcia-Calvo M, Garcia ML, Kaczorowski GJ, Smith M, Swanson R (1994a) Primary sequence and immunological characterization of beta-subunit of high conductance ca(2+)-activated K+ channel from smooth muscle. J Biol Chem 269:17274–17278

    Article  CAS  PubMed  Google Scholar 

  • Knaus HG, McManus OB, Lee SH, Schmalhofer WA, Garcia-Calvo M, Helms LM, Sanchez M, Giangiacomo K, Reuben JP, Smith AB 3rd et al (1994b) Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance calcium-activated potassium channels. Biochemistry 33:5819–5828

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Ikeda K, Kojima H, Niki H, Yano R, Yoshioka T, Kumanishi T (1999) Ethanol opens G-protein-activated inwardly rectifying K+ channels. Nat Neurosci 2:1091–1097

    Article  CAS  PubMed  Google Scholar 

  • Kohler M, Hirschberg B, Bond CT, Kinzie JM, Marrion NV, Maylie J, Adelman JP (1996) Small-conductance, calcium-activated potassium channels from mammalian brain. Science 273:1709–1714

    Article  CAS  PubMed  Google Scholar 

  • Kole MHP, Stuart GJ (2012) Signal processing in the axon initial segment. Neuron 73:235–247

    Article  CAS  PubMed  Google Scholar 

  • Kole MH, Letzkus JJ, Stuart GJ (2007) Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron 55:633–647

    Article  CAS  PubMed  Google Scholar 

  • Korenke AR, Rivey MP, Allington DR (2008) Sustained-release fampridine for symptomatic treatment of multiple sclerosis. Ann Pharmacother 42:1458–1465

    Article  CAS  PubMed  Google Scholar 

  • Krapivinsky G, Medina I, Eng L, Krapivinsky L, Yang Y, Clapham DE (1998) A novel inward rectifier K+ channel with unique pore properties. Neuron 20:995–1005

    Article  CAS  PubMed  Google Scholar 

  • Krepkiy D, Mihailescu M, Freites JA, Schow EV, Worcester DL, Gawrisch K, Tobias DJ, White SH, Swartz KJ (2009) Structure and hydration of membranes embedded with voltage-sensing domains. Nature 462:473–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kshatri AS, Gonzalez-Hernandez A, Giraldez T (2018) Physiological roles and therapeutic potential of ca(2+) activated potassium channels in the nervous system. Front Mol Neurosci 11:258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kubo Y, Murata Y (2001) Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K+ channel. J Physiol 531:645–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubo Y, Adelman JP, Clapham DE, Jan LY, Karschin A, Kurachi Y, Lazdunski M, Nichols CG, Seino S, Vandenberg CA (2005) International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels. Pharmacol Rev 57:509–526

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Pattnaik BR (2014) Focus on Kir7.1: physiology and channelopathy. Channels (Austin) 8:488–495

    Article  Google Scholar 

  • Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA (2003) Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926

    Article  CAS  PubMed  Google Scholar 

  • Lafreniere RG, Rouleau GA (2011) Migraine: role of the TRESK two-pore potassium channel. Int J Biochem Cell Biol 43:1533–1536

    Article  CAS  PubMed  Google Scholar 

  • Lafreniere RG, Cader MZ, Poulin JF, Andres-Enguix I, Simoneau M, Gupta N, Boisvert K, Lafreniere F, McLaughlan S, Dube MP et al (2010) A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura. Nat Med 16:1157–1160

    Article  CAS  PubMed  Google Scholar 

  • Lancaster B, Nicoll RA (1987) Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. J Physiol 389:187–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson HP, Baker OS, Dhillon DS, Isacoff EY (1996) Transmembrane movement of the shaker K+ channel S4. Neuron 16:387–397

    Article  CAS  PubMed  Google Scholar 

  • Latorre R, Castillo K, Carrasquel-Ursulaez W, Sepulveda RV, Gonzalez-Nilo F, Gonzalez C, Alvarez O (2017) Molecular determinants of BK channel functional diversity and functioning. Physiol Rev 97:39–87

    Article  PubMed  Google Scholar 

  • Lee S-Y, Mackinnon R (2004) A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom. Nature 430:232–235

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, MacKinnon R (2018) Activation mechanism of a human SK-calmodulin channel complex elucidated by cryo-EM structures. Science 360:508–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KPK, Chen J, MacKinnon R (2017) Molecular structure of human KATP in complex with ATP and ADP. eLife 6

    Google Scholar 

  • Leng Q, MacGregor GG, Dong K, Giebisch G, Hebert SC (2006) Subunit-subunit interactions are critical for proton sensitivity of ROMK: evidence in support of an intermolecular gating mechanism. Proc Natl Acad Sci U S A 103:1982–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesage F, Reyes R, Fink M, Duprat F, Guillemare E, Lazdunski M (1996) Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge. EMBO J 15:6400–6407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Yan J (2016) Modulation of BK channel function by auxiliary beta and gamma subunits. Int Rev Neurobiol 128:51–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Zhang M, Duan Z, Stamatoyannopoulos G (1999) Structural analysis and mapping of DNase I hypersensitivity of HS5 of the beta-globin locus control region. Genomics 61:183–193

    Article  CAS  PubMed  Google Scholar 

  • Lin MC, Hsieh JY, Mock AF, Papazian DM (2011) R1 in the shaker S4 occupies the gating charge transfer center in the resting state. J Gen Physiol 138:155–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Liu D, Heath L, Meyers DM, Krafte DS, Wagoner PK, Silvia CP, Yu W, Curran ME (2001) Direct activation of an inwardly rectifying potassium channel by arachidonic acid. Mol Pharmacol 59:1061–1068

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Focke PJ, Matulef K, Bian X, Moënne-Loccoz P, Valiyaveetil FI, Lockless SW (2015) Ion-binding properties of a K + channel selectivity filter in different conformations. Proc Natl Acad Sci U S A 112:15096–15100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logsdon NJ, Kang J, Togo JA, Christian EP, Aiyar J (1997) A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J Biol Chem 272:32723–32726

    Article  CAS  PubMed  Google Scholar 

  • Lolicato M, Arrigoni C, Mori T, Sekioka Y, Bryant C, Clark KA, Minor DL Jr (2017) K2P2.1 (TREK-1)-activator complexes reveal a cryptic selectivity filter binding site. Nature 547:364–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long SB (2005) Crystal structure of a mammalian voltage-dependent shaker family K+ channel. Science 309:897–903

    Article  CAS  PubMed  Google Scholar 

  • Long SB, Tao X, Campbell EB, Mackinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450:376–382

    Article  CAS  PubMed  Google Scholar 

  • Lopatin AN, Nichols CG (1996) [K+] dependence of open-channel conductance in cloned inward rectifier potassium channels (IRK1, Kir2.1). Biophys J 71:682–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopatin AN, Makhina EN, Nichols CG (1994) Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366–369

    Article  CAS  PubMed  Google Scholar 

  • Lopatin AN, Makhina EN, Nichols CG (1995) The mechanism of inward rectification of potassium channels: “long-pore plugging” by cytoplasmic polyamines. J Gen Physiol 106:923–955

    Article  CAS  PubMed  Google Scholar 

  • Lopes CM, Zilberberg N, Goldstein SA (2001) Block of Kcnk3 by protons. Evidence that 2-P-domain potassium channel subunits function as homodimers. J Biol Chem 276:24449–24452

    Article  CAS  PubMed  Google Scholar 

  • Lopes CM, Rohacs T, Czirjak G, Balla T, Enyedi P, Logothetis DE (2005) PIP2 hydrolysis underlies agonist-induced inhibition and regulates voltage gating of two-pore domain K+ channels. J Physiol 564:117–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Losin S, McKean CM (1966) Chlorzoxazone (paraflex) in the treatment of severe spasticity. Dev Med Child Neurol 8:768–769

    Article  CAS  PubMed  Google Scholar 

  • Lourdel S, Paulais M, Cluzeaud F, Bens M, Tanemoto M, Kurachi Y, Vandewalle A, Teulon J (2002) An inward rectifier K(+) channel at the basolateral membrane of the mouse distal convoluted tubule: similarities with Kir4-Kir5.1 heteromeric channels. J Physiol 538:391–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Z, MacKinnon R (1994) Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel. Nature 371:243–246

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, MacKinnon R (1997) Purification, characterization, and synthesis of an inward-rectifier K+ channel inhibitor from scorpion venom. Biochemistry 36:6936–6940

    Article  CAS  PubMed  Google Scholar 

  • Lunn ML, Nassirpour R, Arrabit C, Tan J, McLeod I, Arias CM, Sawchenko PE, Yates JR 3rd, Slesinger PA (2007) A unique sorting nexin regulates trafficking of potassium channels via a PDZ domain interaction. Nat Neurosci 10:1249–1259

    Article  CAS  PubMed  Google Scholar 

  • Ma D, Zerangue N, Raab-Graham K, Fried SR, Jan YN, Jan LY (2002) Diverse trafficking patterns due to multiple traffic motifs in G protein-activated inwardly rectifying potassium channels from brain and heart. Neuron 33:715–729

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Lou XJ, Horrigan FT (2006) Role of charged residues in the S1-S4 voltage sensor of BK channels. J Gen Physiol 127:309–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Zhang X, Chen H (2011) TWIK-1 two-pore domain potassium channels change ion selectivity and conduct inward leak sodium currents in hypokalemia. Sci Signal 4:ra37

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Zhang X, Zhou M, Chen H (2012) Acid-sensitive TWIK and TASK two-pore domain potassium channels change ion selectivity and become permeable to sodium in extracellular acidification. J Biol Chem 287:37145–37153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magidovich E, Fleishman SJ, Yifrach O (2006) Intrinsically disordered C-terminal segments of voltage-activated potassium channels: a possible fishing rod-like mechanism for channel binding to scaffold proteins. Bioinformatics 22:1546–1550

    Article  CAS  PubMed  Google Scholar 

  • Maingret F, Lauritzen I, Patel AJ, Heurteaux C, Reyes R, Lesage F, Lazdunski M, Honore E (2000) TREK-1 is a heat-activated background K(+) channel. EMBO J 19:2483–2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makary SM, Claydon TW, Dibb KM, Boyett MR (2006) Base of pore loop is important for rectification, activation, permeation, and block of Kir3.1/Kir3.4. Biophys J 90:4018–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manganas LN, Trimmer JS (2000) Subunit composition determines Kv1 potassium channel surface expression. J Biol Chem 275:29685–29693

    Article  CAS  PubMed  Google Scholar 

  • Manganas LN, Wang Q, Scannevin RH, Antonucci DE, Rhodes KJ, Trimmer JS (2001) Identification of a trafficking determinant localized to the Kv1 potassium channel pore. Proc Natl Acad Sci 98:14055–14059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannhold R (2004) KATP channel openers: structure-activity relationships and therapeutic potential. Med Res Rev 24:213–266

    Article  CAS  PubMed  Google Scholar 

  • Martin GM, Yoshioka C, Rex EA, Fay JF, Xie Q, Whorton MR, Chen JZ, Shyng SL (2017) Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating. eLife 6

    Google Scholar 

  • Matsuda H, Saigusa A, Irisawa H (1987) Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+. Nature 325:156–159

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka T, Matsushita K, Katayama Y, Fujita A, Inageda K, Tanemoto M, Inanobe A, Yamashita S, Matsuzawa Y, Kurachi Y (2000) C-terminal tails of sulfonylurea receptors control ADP-induced activation and diazoxide modulation of ATP-sensitive K(+) channels. Circ Res 87:873–880

    Article  CAS  PubMed  Google Scholar 

  • McKeown L, Burnham MP, Hodson C, Jones OT (2008) Identification of an evolutionarily conserved extracellular threonine residue critical for surface expression and its potential coupling of adjacent voltage-sensing and gating domains in voltage-gated potassium channels. J Biol Chem 283:30421–30432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McManus OB, Helms LM, Pallanck L, Ganetzky B, Swanson R, Leonard RJ (1995) Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron 14:645–650

    Article  CAS  PubMed  Google Scholar 

  • Medhurst AD, Rennie G, Chapman CG, Meadows H, Duckworth MD, Kelsell RE, Gloger II, Pangalos MN (2001) Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. Brain Res Mol Brain Res 86:101–114

    Article  CAS  PubMed  Google Scholar 

  • Meera P, Wallner M, Song M, Toro L (1997) Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0-S6), an extracellular N terminus, and an intracellular (S9-S10) C terminus. Proc Natl Acad Sci U S A 94:14066–14071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meera P, Wallner M, Toro L (2000) A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+−activated K+ channel resistant to charybdotoxin and iberiotoxin. Proc Natl Acad Sci U S A 97:5562–5567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meredith AL, Wiler SW, Miller BH, Takahashi JS, Fodor AA, Ruby NF, Aldrich RW (2006) BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output. Nat Neurosci 9:1041–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miki T, Liss B, Minami K, Shiuchi T, Saraya A, Kashima Y, Horiuchi M, Ashcroft F, Minokoshi Y, Roeper J et al (2001) ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat Neurosci 4:507–512

    Article  CAS  PubMed  Google Scholar 

  • Miller C (1995) The charybdotoxin family of K+ channel-blocking peptides. Neuron 15:5–10

    Article  CAS  PubMed  Google Scholar 

  • Miller AN, Long SB (2012) Crystal structure of the human two-pore domain potassium channel K2P1. Science 335:432–436

    Article  CAS  PubMed  Google Scholar 

  • Miller C, Moczydlowski E, Latorre R, Phillips M (1985) Charybdotoxin, a protein inhibitor of single Ca2+−activated K+ channels from mammalian skeletal muscle. Nature 313:316–318

    Article  CAS  PubMed  Google Scholar 

  • Mitcheson JS, Hancox JC (1999) An investigation of the role played by the E-4031-sensitive (rapid delayed rectifier) potassium current in isolated rabbit atrioventricular nodal and ventricular myocytes. Pflugers Arch 438:843–850

    Article  CAS  PubMed  Google Scholar 

  • Montgomery JR, Whitt JP, Wright BN, Lai MH, Meredith AL (2013) Mis-expression of the BK K(+) channel disrupts suprachiasmatic nucleus circuit rhythmicity and alters clock-controlled behavior. Am J Physiol Cell Physiol 304:C299–C311

    Article  CAS  PubMed  Google Scholar 

  • Moss AJ, Zareba W, Benhorin J, Locati EH, Hall WJ, Robinson JL, Schwartz PJ, Towbin JA, Vincent GM, Lehmann MH (1995) ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation 92:2929–2934

    Article  CAS  PubMed  Google Scholar 

  • Muiesan G, Fariello R, Muiesan ML, Christensen OE (1985) Effect of pinacidil on blood pressure, plasma catecholamines and plasma renin activity in essential hypertension. Eur J Clin Pharmacol 28:495–499

    Article  CAS  PubMed  Google Scholar 

  • Munoz MB, Slesinger PA (2014) Sorting nexin 27 regulation of G protein-gated inwardly rectifying K+ channels attenuates in vivo cocaine response. Neuron 82:659–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nesti E, Everill B, Morielli AD (2004) Endocytosis as a mechanism for tyrosine kinase-dependent suppression of a voltage-gated potassium channel. Mol Biol Cell 15:4073–4088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nestorowicz A, Inagaki N, Gonoi T, Schoor KP, Wilson BA, Glaser B, Landau H, Stanley CA, Thornton PS, Seino S et al (1997) A nonsense mutation in the inward rectifier potassium channel gene, Kir6.2, is associated with familial hyperinsulinism. Diabetes 46:1743–1748

    Article  CAS  PubMed  Google Scholar 

  • Nichols CG, Lee SJ (2018) Polyamines and potassium channels: a 25-year romance. J Biol Chem 293:18779–18788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niemeyer MI, Cid LP, Valenzuela X, Paeile V, Sepulveda FV (2003) Extracellular conserved cysteine forms an intersubunit disulphide bridge in the KCNK5 (TASK-2) K+ channel without having an essential effect upon activity. Mol Membr Biol 20:185–191

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer MI, Gonzalez-Nilo FD, Zuniga L, Gonzalez W, Cid LP, Sepulveda FV (2007) Neutralization of a single arginine residue gates open a two-pore domain, alkali-activated K+ channel. Proc Natl Acad Sci U S A 104:666–671

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer MI, Cid LP, Gonzalez W, Sepulveda FV (2016) Gating, regulation, and structure in K2P K+ channels: in varietate concordia? Mol Pharmacol 90:309–317

    Article  CAS  PubMed  Google Scholar 

  • Nishida M, Cadene M, Chait BT, MacKinnon R (2007) Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. EMBO J 26:4005–4015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noble D, Tsien RW (1969a) Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J Physiol 200:205–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noble D, Tsien RW (1969b) Reconstruction of the repolarization process in cardiac Purkinje fibres based on voltage clamp measurements of membrane current. J Physiol 200:233–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanaoka Y, Minamino N et al (1984) Primary structure of electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121–127

    Article  CAS  PubMed  Google Scholar 

  • Noskov SY, Bernèche S, Roux B (2004) Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431:830–834

    Article  CAS  PubMed  Google Scholar 

  • Oliver D, Baukrowitz T, Fakler B (2000) Polyamines as gating molecules of inward-rectifier K+ channels. Eur J Biochem 267:5824–5829

    Article  CAS  PubMed  Google Scholar 

  • Olsen O, Liu H, Wade JB, Merot J, Welling PA (2002) Basolateral membrane expression of the Kir 2.3 channel is coordinated by PDZ interaction with Lin-7/CASK complex. Am J Physiol Cell Physiol 282:C183–C195

    Article  CAS  PubMed  Google Scholar 

  • Oonuma H, Iwasawa K, Iida H, Nagata T, Imuta H, Morita Y, Yamamoto K, Nagai R, Omata M, Nakajima T (2002) Inward rectifier K(+) current in human bronchial smooth muscle cells: inhibition with antisense oligonucleotides targeted to Kir2.1 mRNA. Am J Respir Cell Mol Biol 26:371–379

    Article  CAS  PubMed  Google Scholar 

  • Palygin O, Pochynyuk O, Staruschenko A (2017) Role and mechanisms of regulation of the basolateral Kir 4.1/Kir 5.1K(+) channels in the distal tubules. Acta Physiol 219:260–273

    Article  CAS  Google Scholar 

  • Parcej DN, Dolly JO (1989) Elegance persists in the purification of K+ channels. Biochem J 264:623–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel AJ, Honore E, Lesage F, Fink M, Romey G, Lazdunski M (1999) Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 2:422–426

    Article  CAS  PubMed  Google Scholar 

  • Patel C, Yan GX, Antzelevitch C (2010) Short QT syndrome: from bench to bedside. Circ Arrhythm Electrophysiol 3:401–408

    Article  PubMed  PubMed Central  Google Scholar 

  • Patil N, Cox DR, Bhat D, Faham M, Myers RM, Peterson AS (1995) A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat Genet 11:126–129

    Article  CAS  PubMed  Google Scholar 

  • Pau V, Zhou Y, Ramu Y, Xu Y, Lu Z (2017) Crystal structure of an inactivated mutant mammalian voltage-gated K+ channel. Nat Struct Mol Biol 24:857–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedarzani P, D'Hoedt D, Doorty KB, Wadsworth JD, Joseph JS, Jeyaseelan K, Kini RM, Gadre SV, Sapatnekar SM, Stocker M et al (2002) Tamapin, a venom peptide from the Indian red scorpion (Mesobuthus tamulus) that targets small conductance Ca2+−activated K+ channels and afterhyperpolarization currents in central neurons. J Biol Chem 277:46101–46109

    Article  CAS  PubMed  Google Scholar 

  • Pegan S, Arrabit C, Zhou W, Kwiatkowski W, Collins A, Slesinger PA, Choe S (2005) Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nat Neurosci 8:279–287

    Article  CAS  PubMed  Google Scholar 

  • Pereira V, Busserolles J, Christin M, Devilliers M, Poupon L, Legha W, Alloui A, Aissouni Y, Bourinet E, Lesage F et al (2014) Role of the TREK2 potassium channel in cold and warm thermosensation and in pain perception. Pain 155:2534–2544

    Article  CAS  PubMed  Google Scholar 

  • Pessia M, Imbrici P, D'Adamo MC, Salvatore L, Tucker SJ (2001) Differential pH sensitivity of Kir4.1 and Kir4.2 potassium channels and their modulation by heteropolymerisation with Kir5.1. J Physiol 532:359–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plant LD (2012) A role for K2P channels in the operation of somatosensory nociceptors. Front Mol Neurosci 5:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plant LD, Kemp PJ, Peers C, Henderson Z, Pearson HA (2002) Hypoxic depolarization of cerebellar granule neurons by specific inhibition of TASK-1. Stroke 33:2324–2328

    Article  PubMed  Google Scholar 

  • Pluger S, Faulhaber J, Furstenau M, Lohn M, Waldschutz R, Gollasch M, Haller H, Luft FC, Ehmke H, Pongs O (2000) Mice with disrupted BK channel beta1 subunit gene feature abnormal ca(2+) spark/STOC coupling and elevated blood pressure. Circ Res 87:E53–E60

    Article  CAS  PubMed  Google Scholar 

  • Pollema-Mays SL, Centeno MV, Ashford CJ, Apkarian AV, Martina M (2013) Expression of background potassium channels in rat DRG is cell-specific and down-regulated in a neuropathic pain model. Mol Cell Neurosci 57:1–9

    Article  CAS  PubMed  Google Scholar 

  • Pongs O, Leicher T, Berger M, Roeper J, Bahring R, Wray D, Giese KP, Silva AJ, Storm JF (1999) Functional and molecular aspects of voltage-gated K+ channel beta subunits. Ann N Y Acad Sci 868:344–355

    Article  CAS  PubMed  Google Scholar 

  • Priori SG, Schwartz PJ, Napolitano C, Bloise R, Ronchetti E, Grillo M, Vicentini A, Spazzolini C, Nastoli J, Bottelli G et al (2003) Risk stratification in the long-QT syndrome. N Engl J Med 348:1866–1874

    Article  PubMed  Google Scholar 

  • Quayle JM, McCarron JG, Brayden JE, Nelson MT (1993) Inward rectifier K+ currents in smooth muscle cells from rat resistance-sized cerebral arteries. Am J Phys 265:C1363–C1370

    Article  CAS  Google Scholar 

  • Rainero I, Rubino E, Gallone S, Zavarise P, Carli D, Boschi S, Fenoglio P, Savi L, Gentile S, Benna P et al (2014) KCNK18 (TRESK) genetic variants in Italian patients with migraine. Headache 54:1515–1522

    Article  PubMed  Google Scholar 

  • Rajan S, Wischmeyer E, Xin Liu G, Preisig-Muller R, Daut J, Karschin A, Derst C (2000) TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histiding as pH sensor. J Biol Chem 275:16650–16657

    Article  CAS  PubMed  Google Scholar 

  • Remedi MS, Koster JC (2010) K(ATP) channelopathies in the pancreas. Pflugers Arch 460:307–320

    Article  CAS  PubMed  Google Scholar 

  • Rettig J, Heinemann SH, Wunder F, Lorra C, Parcej DN, Oliver Dolly J, Pongs O (1994) Inactivation properties of voltage-gated K+ channels altered by presence of β-subunit. Nature 369:289–294

    Article  CAS  PubMed  Google Scholar 

  • Rhodes K, Keilbaugh S, Barrezueta N, Lopez K, Trimmer J (1995) Association and colocalization of K+ channel alpha- and beta-subunit polypeptides in rat brain. J Neurosci 15:5360–5371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes KJ, Monaghan MM, Barrezueta NX, Nawoschik S, Bekele-Arcuri Z, Matos MF, Nakahira K, Schechter LE, Trimmer JS (1996) Voltage-gated K+channel β subunits: expression and distribution of Kvβ1 and Kvβ2 in adult rat brain. J Neurosci 16:4846–4860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes KJ, Strassle BW, Monaghan MM, Bekele-Arcuri Z, Matos MF, Trimmer JS (1997) Association and colocalization of the Kvβ1 and Kvβ2 β-subunits with Kv1 α-subunits in mammalian brain K+channel complexes. J Neurosci 17:8246–8258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rifkin RA, Moss SJ, Slesinger PA (2017) G protein-gated potassium channels: a link to drug addiction. Trends Pharmacol Sci 38:378–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohacs T, Lopes CM, Jin T, Ramdya PP, Molnar Z, Logothetis DE (2003) Specificity of activation by phosphoinositides determines lipid regulation of Kir channels. Proc Natl Acad Sci U S A 100:745–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romanenko VG, Fang Y, Byfield F, Travis AJ, Vandenberg CA, Rothblat GH, Levitan I (2004) Cholesterol sensitivity and lipid raft targeting of Kir2.1 channels. Biophys J 87:3850–3861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenhouse-Dantsker A, Sui JL, Zhao Q, Rusinova R, Rodriguez-Menchaca AA, Zhang Z, Logothetis DE (2008) A sodium-mediated structural switch that controls the sensitivity of Kir channels to PtdIns(4,5)P(2). Nat Chem Biol 4:624–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux B (2005) Ion conduction and selectivity in K+ channels. Ann Rev Biophys Biomol Struct 34:153–171

    Article  CAS  Google Scholar 

  • Sadja R, Smadja K, Alagem N, Reuveny E (2001) Coupling Gbetagamma-dependent activation to channel opening via pore elements in inwardly rectifying potassium channels. Neuron 29:669–680

    Article  CAS  PubMed  Google Scholar 

  • Sahoo N, Hoshi T, Heinemann SH (2014) Oxidative modulation of voltage-gated potassium channels. Antioxidants Redox Signal 21:933–952

    Article  CAS  Google Scholar 

  • Sandoz G, Thummler S, Duprat F, Feliciangeli S, Vinh J, Escoubas P, Guy N, Lazdunski M, Lesage F (2006) AKAP150, a switch to convert mechano-, pH- and arachidonic acid-sensitive TREK K(+) channels into open leak channels. EMBO J 25:5864–5872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandoz G, Douguet D, Chatelain F, Lazdunski M, Lesage F (2009) Extracellular acidification exerts opposite actions on TREK1 and TREK2 potassium channels via a single conserved histidine residue. Proc Natl Acad Sci U S A 106:14628–14633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81:299–307

    Article  CAS  PubMed  Google Scholar 

  • Sankaranarayanan A, Raman G, Busch C, Schultz T, Zimin PI, Hoyer J, Kohler R, Wulff H (2009) Naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a new activator of KCa2 and KCa3.1 potassium channels, potentiates the endothelium-derived hyperpolarizing factor response and lowers blood pressure. Mol Pharmacol 75:281–295

    Article  CAS  PubMed  Google Scholar 

  • Santos JS, Asmar-Rovira GA, Han GW, Liu W, Syeda R, Cherezov V, Baker KA, Stevens RC, Montal M (2012) Crystal structure of a voltage-gated K+channel pore module in a closed state in lipid membranes. J Biol Chem 287:43063–43070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sausbier U, Sausbier M, Sailer CA, Arntz C, Knaus HG, Neuhuber W, Ruth P (2006) Ca2+ −activated K+ channels of the BK-type in the mouse brain. Histochem Cell Biol 125:725–741

    Article  CAS  PubMed  Google Scholar 

  • Savarin P, Guenneugues M, Gilquin B, Lamthanh H, Gasparini S, Zinn-Justin S, Ménez A (1998) Three-dimensional structure of κ-conotoxin PVIIA, a novel potassium channel-blocking toxin from cone snails†,‡. Biochemistry 37:5407–5416

    Article  CAS  PubMed  Google Scholar 

  • Schewe M, Nematian-Ardestani E, Sun H, Musinszki M, Cordeiro S, Bucci G, de Groot BL, Tucker SJ, Rapedius M, Baukrowitz T (2016) A non-canonical voltage-sensing mechanism controls gating in K2P K(+) channels. Cell 164:937–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid-Antomarchi H, de Weille J, Fosset M, Lazdunski M (1987) The antidiabetic sulfonylurea glibenclamide is a potent blocker of the ATP-modulated K+ channel in insulin secreting cells. Biochem Biophys Res Commun 146:21–25

    Article  CAS  PubMed  Google Scholar 

  • Schmidt D, Mackinnon R (2008) Voltage-dependent K+ channel gating and voltage sensor toxin sensitivity depend on the mechanical state of the lipid membrane. Proc Natl Acad Sci 105:19276–19281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt D, Cross SR, Mackinnon R (2009) A gating model for the archeal voltage-dependent K+ channel KvAP in DPhPC and POPE:POPG decane lipid bilayers. J Mol Biol 390:902–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholl UI, Choi M, Liu T, Ramaekers VT, Hausler MG, Grimmer J, Tobe SW, Farhi A, Nelson-Williams C, Lifton RP (2009) Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci U S A 106:5842–5847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber M, Salkoff L (1997) A novel calcium-sensing domain in the BK channel. Biophys J 73:1355–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulte U, Fakler B (2000) Gating of inward-rectifier K+ channels by intracellular pH. Eur J Biochem 267:5837–5841

    Article  CAS  PubMed  Google Scholar 

  • Schulte U, Thumfart JO, Klocker N, Sailer CA, Bildl W, Biniossek M, Dehn D, Deller T, Eble S, Abbass K et al (2006) The epilepsy-linked Lgi1 protein assembles into presynaptic Kv1 channels and inhibits inactivation by Kvbeta1. Neuron 49:697–706

    Article  CAS  PubMed  Google Scholar 

  • Schumacher MA, Rivard AF, Bachinger HP, Adelman JP (2001) Structure of the gating domain of a Ca2+−activated K+ channel complexed with Ca2+/calmodulin. Nature 410:1120–1124

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ, Priori SG, Spazzolini C, Moss AJ, Vincent GM, Napolitano C, Denjoy I, Guicheney P, Breithardt G, Keating MT et al (2001) Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 103:89–95

    Article  CAS  PubMed  Google Scholar 

  • Sforna L, Megaro A, Pessia M, Franciolini F, Catacuzzeno L (2018) Structure, gating and basic functions of the Ca2+−activated K channel of intermediate conductance. Curr Neuropharmacol 16:608–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen KZ, Lagrutta A, Davies NW, Standen NB, Adelman JP, North RA (1994) Tetraethylammonium block of slowpoke calcium-activated potassium channels expressed in Xenopus oocytes: evidence for tetrameric channel formation. Pflugers Arch 426:440–445

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Cui J (2001) Intracellular mg(2+) enhances the function of BK-type ca(2+)-activated K(+) channels. J Gen Physiol 118:589–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, He HQ, Zhao R, Duan YH, Chen J, Chen Y, Yang J, Zhang JW, Shu XQ, Zheng P et al (2008) Inhibition of martentoxin on neuronal BK channel subtype (alpha+beta4): implications for a novel interaction model. Biophys J 94:3706–3713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibasaki T (1987) Conductance and kinetics of delayed rectifier potassium channels in nodal cells of the rabbit heart. J Physiol 387:227–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu W, Antzelevitch C (2000) Differential effects of beta-adrenergic agonists and antagonists in LQT1, LQT2 and LQT3 models of the long QT syndrome. J Am Coll Cardiol 35:778–786

    Article  CAS  PubMed  Google Scholar 

  • Shin N, Soh H, Chang S, Kim DH, Park CS (2005) Sodium permeability of a cloned small-conductance calcium-activated potassium channel. Biophys J 89:3111–3119

    Google Scholar 

  • Shrivastava IH, Peter Tieleman D, Biggin PC, Sansom MSP (2002) K+ versus Na+ ions in a K channel selectivity filter: a simulation study. Biophys J 83:633–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shumilina E, Klocker N, Korniychuk G, Rapedius M, Lang F, Baukrowitz T (2006) Cytoplasmic accumulation of long-chain coenzyme A esters activates KATP and inhibits Kir2.1 channels. J Physiol 575:433–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shyng S, Nichols CG (1997) Octameric stoichiometry of the KATP channel complex. J Gen Physiol 110:655–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Syme CA, Singh AK, Devor DC, Bridges RJ (2001) Benzimidazolone activators of chloride secretion: potential therapeutics for cystic fibrosis and chronic obstructive pulmonary disease. J Pharmacol Exp Ther 296:600–611

    CAS  PubMed  Google Scholar 

  • Singh AK, McMillan J, Bukiya AN, Burton B, Parrill AL, Dopico AM (2012) Multiple cholesterol recognition/interaction amino acid consensus (CRAC) motifs in cytosolic C tail of Slo1 subunit determine cholesterol sensitivity of Ca2+− and voltage-gated K+ (BK) channels. J Biol Chem 287:20509–20521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slesinger PA, Patil N, Liao YJ, Jan YN, Jan LY, Cox DR (1996) Functional effects of the mouse weaver mutation on G protein-gated inwardly rectifying K+ channels. Neuron 16:321–331

    Article  CAS  PubMed  Google Scholar 

  • Smart SL, Lopantsev V, Zhang CL, Robbins CA, Wang H, Chiu SY, Schwartzkroin PA, Messing A, Tempel BL (1998) Deletion of the K(V)1.1 potassium channel causes epilepsy in mice. Neuron 20:809–819

    Article  CAS  PubMed  Google Scholar 

  • Smith PL, Baukrowitz T, Yellen G (1996) The inward rectification mechanism of the HERG cardiac potassium channel. Nature 379:833–836

    Article  CAS  PubMed  Google Scholar 

  • Smith SEP, Xu L, Kasten MR, Anderson MP (2012) Mutant LGI1 inhibits seizure-induced trafficking of Kv4.2 potassium channels. J Neurochem 120:611–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan KN, Sivaraja V, Huys I, Sasaki T, Cheng B, Kumar TKS, Sato K, Tytgat J, Yu C, San BCC et al (2002) κ-Hefutoxin1, a novel toxin from the scorpionheterometrus fulvipes with unique structure and function. J Biol Chem 277:30040–30047

    Article  CAS  PubMed  Google Scholar 

  • Stanfield PR, Davies NW, Shelton PA, Sutcliffe MJ, Khan IA, Brammar WJ, Conley EC (1994) A single aspartate residue is involved in both intrinsic gating and blockage by Mg2+ of the inward rectifier, IRK1. J Physiol 478(Pt 1):1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Storm JF (1987) Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells. J Physiol 385:733–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strassmaier T, Bond CT, Sailer CA, Knaus HG, Maylie J, Adelman JP (2005) A novel isoform of SK2 assembles with other SK subunits in mouse brain. J Biol Chem 280:21231–21236

    Article  CAS  PubMed  Google Scholar 

  • Strobaek D, Christophersen P, Holm NR, Moldt P, Ahring PK, Johansen TE, Olesen SP (1996) Modulation of the ca(2+)-dependent K+ channel, hslo, by the substituted diphenylurea NS 1608, paxilline and internal Ca2+. Neuropharmacology 35:903–914

    Article  CAS  PubMed  Google Scholar 

  • Strobaek D, Jorgensen TD, Christophersen P, Ahring PK, Olesen SP (2000) Pharmacological characterization of small-conductance ca(2+)-activated K(+) channels stably expressed in HEK 293 cells. Br J Pharmacol 129:991–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobaek D, Teuber L, Jorgensen TD, Ahring PK, Kjaer K, Hansen RS, Olesen SP, Christophersen P, Skaaning-Jensen B (2004) Activation of human IK and SK Ca2+ −activated K+ channels by NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime). Biochim Biophys Acta 1665:1–5

    Article  CAS  PubMed  Google Scholar 

  • Strobaek D, Hougaard C, Johansen TH, Sorensen US, Nielsen EO, Nielsen KS, Taylor RD, Pedarzani P, Christophersen P (2006) Inhibitory gating modulation of small conductance Ca2+−activated K+ channels by the synthetic compound (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphtylamine (NS8593) reduces afterhyperpolarizing current in hippocampal CA1 neurons. Mol Pharmacol 70:1771–1782

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Sasaki N, Miki T, Sakamoto N, Ohmoto-Sekine Y, Tamagawa M, Seino S, Marban E, Nakaya H (2002) Role of sarcolemmal K(ATP) channels in cardioprotection against ischemia/reperfusion injury in mice. J Clin Invest 109:509–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syeda R, Santos JS, Montal M (2014) Lipid bilayer modules as determinants of K+channel gating. J Biol Chem 289:4233–4243

    Article  CAS  PubMed  Google Scholar 

  • Tabcharani JA, Misler S (1989) Ca2+-activated K+ channel in rat pancreatic islet B cells: permeation, gating and blockade by cations. Biochim Biophys Acta 982:62–72

    Google Scholar 

  • Taglialatela M, Ficker E, Wible BA, Brown AM (1995) C-terminus determinants for Mg2+ and polyamine block of the inward rectifier K+ channel IRK1. EMBO J 14:5532–5541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahira M, Sakurai M, Sakurada N, Sugiyama K (2005) Fenamates and diltiazem modulate lipid-sensitive mechano-gated 2P domain K(+) channels. Pflügers Arch 451:474–478

    Article  CAS  PubMed  Google Scholar 

  • Takenaka K, Ai T, Shimizu W, Kobori A, Ninomiya T, Otani H, Kubota T, Takaki H, Kamakura S, Horie M (2003) Exercise stress test amplifies genotype-phenotype correlation in the LQT1 and LQT2 forms of the long-QT syndrome. Circulation 107:838–844

    Article  PubMed  Google Scholar 

  • Talley EM, Lei Q, Sirois JE, Bayliss DA (2000) TASK-1, a two-pore domain K+ channel, is modulated by multiple neurotransmitters in motoneurons. Neuron 25:399–410

    Article  CAS  PubMed  Google Scholar 

  • Tanemoto M, Kittaka N, Inanobe A, Kurachi Y (2000) In vivo formation of a proton-sensitive K+ channel by heteromeric subunit assembly of Kir5.1 with Kir4.1. J Physiol 525(Pt 3):587–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanemoto M, Abe T, Ito S (2005) PDZ-binding and di-hydrophobic motifs regulate distribution of Kir4.1 channels in renal cells. J Am Soc Nephrol 16:2608–2614

    Article  CAS  PubMed  Google Scholar 

  • Tao X, MacKinnon R (2019) Molecular structures of the human Slo1 K(+) channel in complex with beta4. eLife 8

    Google Scholar 

  • Tao X, Hite RK, MacKinnon R (2017) Cryo-EM structure of the open high-conductance ca(2+)-activated K(+) channel. Nature 541:46–51

    Article  CAS  PubMed  Google Scholar 

  • Teichert RW, Schmidt EW, Olivera BM (2015) Constellation pharmacology: a new paradigm for drug discovery. Ann Rev Pharmacol Toxicol 55:573–589

    Article  CAS  Google Scholar 

  • Terzic A, Jahangir A, Kurachi Y (1995) Cardiac ATP-sensitive K+ channels: regulation by intracellular nucleotides and K+ channel-opening drugs. Am J Phys 269:C525–C545

    Article  CAS  Google Scholar 

  • Tian Y, Ullrich F, Xu R, Heinemann SH, Hou S, Hoshi T (2015) Two distinct effects of PIP2 underlie auxiliary subunit-dependent modulation of Slo1 BK channels. J Gen Physiol 145:331–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tinker A, Aziz Q, Li Y, Specterman M (2018) ATP-sensitive potassium channels and their physiological and pathophysiological roles. Compr Physiol 8:1463–1511

    Article  PubMed  Google Scholar 

  • Tong Y, Wei J, Zhang S, Strong JA, Dlouhy SR, Hodes ME, Ghetti B, Yu L (1996) The weaver mutation changes the ion selectivity of the affected inwardly rectifying potassium channel GIRK2. FEBS Lett 390:63–68

    Article  CAS  PubMed  Google Scholar 

  • Trimmer JS, Rhodes KJ (2004) Localization of voltage-gated ion channels in mammalian brain. Annu Rev Physiol 66:477–519

    Article  CAS  PubMed  Google Scholar 

  • Tucker SJ, Imbrici P, Salvatore L, D’Adamo MC, Pessia M (2000) pH dependence of the inwardly rectifying potassium channel, Kir5.1, and localization in renal tubular epithelia. J Biol Chem 275:16404–16407

    Article  CAS  PubMed  Google Scholar 

  • Tudor JE, Pallaghy PK, Pennington MW, Norton RS (1996) Solution structure of ShK toxin, a novel potassium channel inhibitor from a sea anemone. Nat Struct Biol 3:317–320

    Article  CAS  PubMed  Google Scholar 

  • Tulleuda A, Cokic B, Callejo G, Saiani B, Serra J, Gasull X (2011) TRESK channel contribution to nociceptive sensory neurons excitability: modulation by nerve injury. Mol Pain 7:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner KL, Honasoge A, Robert SM, McFerrin MM, Sontheimer H (2014) A proinvasive role for the ca(2+) -activated K(+) channel KCa3.1 in malignant glioma. Glia 62:971–981

    Article  PubMed  PubMed Central  Google Scholar 

  • Uebele VN, Lagrutta A, Wade T, Figueroa DJ, Liu Y, McKenna E, Austin CP, Bennett PB, Swanson R (2000) Cloning and functional expression of two families of beta-subunits of the large conductance calcium-activated K+ channel. J Biol Chem 275:23211–23218

    Article  CAS  PubMed  Google Scholar 

  • Vacher H, Mohapatra DP, Misonou H, Trimmer JS (2007) Regulation of Kvl channel trafficking by the mamba snake neurotoxin dendrotoxin K. FASEB J 21:906–914

    Article  CAS  PubMed  Google Scholar 

  • Vacher H, Mohapatra DP, Trimmer JS (2008) Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev 88:1407–1447

    Article  CAS  PubMed  Google Scholar 

  • Valiyaveetil FI, Zhou Y, Mackinnon R (2002) Lipids in the structure, folding, and function of the KcsA K+channel. Biochemistry 41:10771–10777

    Article  CAS  PubMed  Google Scholar 

  • Valverde MA, Rojas P, Amigo J, Cosmelli D, Orio P, Bahamonde MI, Mann GE, Vergara C, Latorre R (1999) Acute activation of maxi-K channels (hSlo) by estradiol binding to the beta subunit. Science 285:1929–1931

    Article  CAS  PubMed  Google Scholar 

  • Van Dalen A, De Kruijff B (2004) The role of lipids in membrane insertion and translocation of bacterial proteins. Biochim Biophys Acta (BBA) Mol Cell Res 1694:97–109

    Article  CAS  Google Scholar 

  • Van Wart A, Trimmer JS, Matthews G (2007) Polarized distribution of ion channels within microdomains of the axon initial segment. J Comp Neurol 500:339–352

    Article  PubMed  CAS  Google Scholar 

  • Vandorpe DH, Shmukler BE, Jiang L, Lim B, Maylie J, Adelman JP, de Franceschi L, Cappellini MD, Brugnara C, Alper SL (1998) cDNA cloning and functional characterization of the mouse Ca2+−gated K+ channel, mIK1. Roles in regulatory volume decrease and erythroid differentiation. J Biol Chem 273:21542–21553

    Article  CAS  PubMed  Google Scholar 

  • Varma S, Rogers DM, Pratt LR, Rempe SB (2011) Design principles for K+ selectivity in membrane transport. J Gen Physiol 137:479–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veale EL, Al-Moubarak E, Bajaria N, Omoto K, Cao L, Tucker SJ, Stevens EB, Mathie A (2014) Influence of the N terminus on the biophysical properties and pharmacology of TREK1 potassium channels. Mol Pharmacol 85:671–681

    Article  PubMed  CAS  Google Scholar 

  • Villarroel A, Alvarez O, Oberhauser A, Latorre R (1988) Probing a Ca2+−activated K+ channel with quaternary ammonium ions. Pflugers Arch 413:118–126

    Article  CAS  PubMed  Google Scholar 

  • Wallner M, Meera P, Toro L (1999) Molecular basis of fast inactivation in voltage and Ca2+−activated K+ channels: a transmembrane beta-subunit homolog. Proc Natl Acad Sci U S A 96:4137–4142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh KB (2020) Screening technologies for inward rectifier potassium channels: discovery of new blockers and activators. SLAS Discov 25:420–433

    Article  CAS  PubMed  Google Scholar 

  • Wang YW, Ding JP, Xia XM, Lingle CJ (2002) Consequences of the stoichiometry of Slo1 alpha and auxiliary beta subunits on functional properties of large-conductance Ca2+−activated K+ channels. J Neurosci 22:1550–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Rothberg BS, Brenner R (2006) Mechanism of beta4 subunit modulation of BK channels. J Gen Physiol 127:449–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weatherall KL, Goodchild SJ, Jane DE, Marrion NV (2010) Small conductance calcium-activated potassium channels: from structure to function. Prog Neurobiol 91:242–255

    Article  CAS  PubMed  Google Scholar 

  • Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H (2005) International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol Rev 57:463–472

    Article  CAS  PubMed  Google Scholar 

  • Weiger TM, Holmqvist MH, Levitan IB, Clark FT, Sprague S, Huang WJ, Ge P, Wang C, Lawson D, Jurman ME et al (2000) A novel nervous system beta subunit that downregulates human large conductance calcium-dependent potassium channels. J Neurosci 20:3563–3570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weik R, Neumcke B (1989) ATP-sensitive potassium channels in adult mouse skeletal muscle: characterization of the ATP-binding site. J Membr Biol 110:217–226

    Article  CAS  PubMed  Google Scholar 

  • Welling PA (2016) Roles and regulation of renal K channels. Annu Rev Physiol 78:415–435

    Article  CAS  PubMed  Google Scholar 

  • Whitt JP, Montgomery JR, Meredith AL (2016) BK channel inactivation gates daytime excitability in the circadian clock. Nat Commun 7:10837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whorton MR, MacKinnon R (2011) Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell 147:199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whorton MR, MacKinnon R (2013) X-ray structure of the mammalian GIRK2-betagamma G-protein complex. Nature 498:190–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wible BA, Taglialatela M, Ficker E, Brown AM (1994) Gating of inwardly rectifying K+ channels localized to a single negatively charged residue. Nature 371:246–249

    Article  CAS  PubMed  Google Scholar 

  • Wilke BU, Lindner M, Greifenberg L, Albus A, Kronimus Y, Bunemann M, Leitner MG, Oliver D (2014) Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors. Nat Commun 5:5540

    Article  CAS  PubMed  Google Scholar 

  • Wischmeyer E, Doring F, Karschin A (2000) Stable cation coordination at a single outer pore residue defines permeation properties in Kir channels. FEBS Lett 466:115–120

    Article  CAS  PubMed  Google Scholar 

  • Woo DH, Han KS, Shim JW, Yoon BE, Kim E, Bae JY, Oh SJ, Hwang EM, Marmorstein AD, Bae YC et al (2012) TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151:25–40

    Article  CAS  PubMed  Google Scholar 

  • Wu ZZ, Li DP, Chen SR, Pan HL (2009) Aminopyridines potentiate synaptic and neuromuscular transmission by targeting the voltage-activated calcium channel beta subunit. J Biol Chem 284:36453–36461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, Wang Y, Deng XL, Sun HY, Li GR (2013) Cholesterol down-regulates BK channels stably expressed in HEK 293 cells. PLoS One 8:e79952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wulff H, Castle NA (2010) Therapeutic potential of KCa3.1 blockers: recent advances and promising trends. Expert Rev Clin Pharmacol 3:385–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wulff H, Miller MJ, Hansel W, Grissmer S, Cahalan MD, Chandy KG (2000) Design of a potent and selective inhibitor of the intermediate-conductance Ca2+−activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci U S A 97:8151–8156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wulff H, Castle NA, Pardo LA (2009) Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 8:982–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wydeven N, Marron Fernandez de Velasco E, Du Y, Benneyworth MA, Hearing MC, Fischer RA, Thomas MJ, Weaver CD, Wickman K (2014) Mechanisms underlying the activation of G-protein-gated inwardly rectifying K+ (GIRK) channels by the novel anxiolytic drug, ML297. Proc Natl Acad Sci U S A 111:10755–10760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia XM, Fakler B, Rivard A, Wayman G, Johnson-Pais T, Keen JE, Ishii T, Hirschberg B, Bond CT, Lutsenko S et al (1998) Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395:503–507

    Article  CAS  PubMed  Google Scholar 

  • Xia XM, Ding JP, Lingle CJ (1999) Molecular basis for the inactivation of Ca2+− and voltage-dependent BK channels in adrenal chromaffin cells and rat insulinoma tumor cells. J Neurosci 19:5255–5264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia XM, Zeng X, Lingle CJ (2002) Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418:880–884

    Article  CAS  PubMed  Google Scholar 

  • Xia XM, Ding JP, Lingle CJ (2003) Inactivation of BK channels by the NH2 terminus of the beta2 auxiliary subunit: an essential role of a terminal peptide segment of three hydrophobic residues. J Gen Physiol 121:125–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Aldrich RW (2010) LRRC26 auxiliary protein allows BK channel activation at resting voltage without calcium. Nature 466:513–516

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Aldrich RW (2012) BK potassium channel modulation by leucine-rich repeat-containing proteins. Proc Natl Acad Sci U S A 109:7917–7922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Snyders DJ, Roden DM (1995) Ibutilide, a methanesulfonanilide antiarrhythmic, is a potent blocker of the rapidly activating delayed rectifier K+ current (IKr) in AT-1 cells. Concentration-, time-, voltage-, and use-dependent effects. Circulation 91:1799–1806

    Article  CAS  PubMed  Google Scholar 

  • Yang JW, Vacher H, Park KS, Clark E, Trimmer JS (2007) Trafficking-dependent phosphorylation of Kv1.2 regulates voltage-gated potassium channel cell surface expression. Proc Natl Acad Sci 104:20055–20060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Shi J, Zhang G, Yang J, Delaloye K, Cui J (2008) Activation of Slo1 BK channels by Mg2+ coordinated between the voltage sensor and RCK1 domains. Nat Struct Mol Biol 15:1152–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao J, Chen X, Li H, Zhou Y, Yao L, Wu G, Chen X, Zhang N, Zhou Z, Xu T et al (2005) BmP09, a “long chain” scorpion peptide blocker of BK channels. J Biol Chem 280:14819–14828

    Article  CAS  PubMed  Google Scholar 

  • Yazejian B, Sun XP, Grinnell AD (2000) Tracking presynaptic Ca2+ dynamics during neurotransmitter release with Ca2+−activated K+ channels. Nat Neurosci 3:566–571

    Article  CAS  PubMed  Google Scholar 

  • Yi BA, Lin YF, Jan YN, Jan LY (2001) Yeast screen for constitutively active mutant G protein-activated potassium channels. Neuron 29:657–667

    Article  CAS  PubMed  Google Scholar 

  • Yoo D, Flagg TP, Olsen O, Raghuram V, Foskett JK, Welling PA (2004) Assembly and trafficking of a multiprotein ROMK (Kir 1.1) channel complex by PDZ interactions. J Biol Chem 279:6863–6873

    Article  CAS  PubMed  Google Scholar 

  • Yu FH, Catterall WA (2004) The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci Signal 2004:re15

    Google Scholar 

  • Yuan Y, Shimura M, Hughes BA (2003) Regulation of inwardly rectifying K+ channels in retinal pigment epithelial cells by intracellular pH. J Physiol 549:429–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan P, Leonetti MD, Pico AR, Hsiung Y, MacKinnon R (2010) Structure of the human BK channel Ca2+−activation apparatus at 3.0 A resolution. Science 329:182–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan P, Leonetti MD, Hsiung Y, MacKinnon R (2011) Open structure of the Ca2+ gating ring in the high-conductance Ca2+−activated K+ channel. Nature 481:94–97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zaydman MA, Cui J (2014) PIP2 regulation of KCNQ channels: biophysical and molecular mechanisms for lipid modulation of voltage-dependent gating. Front Physiol 5:195

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng XH, Xia XM, Lingle CJ (2003) Redox-sensitive extracellular gates formed by auxiliary beta subunits of calcium-activated potassium channels. Nat Struct Biol 10:448–454

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Timothy KW, Vincent GM, Lehmann MH, Fox J, Giuli LC, Shen J, Splawski I, Priori SG, Compton SJ et al (2000) Spectrum of ST-T-wave patterns and repolarization parameters in congenital long-QT syndrome: ECG findings identify genotypes. Circulation 102:2849–2855

    Article  CAS  PubMed  Google Scholar 

  • Zhang YH, Colenso CK, Sessions RB, Dempsey CE, Hancox JC (2011) The hERG K+ channel S4 domain L532P mutation: characterization at 37°C. Biochim Biophys Acta (BBA) Biomembr 1808:2477–2487

    Article  CAS  Google Scholar 

  • Zhang M, Meng XY, Cui M, Pascal JM, Logothetis DE, Zhang JF (2014) Selective phosphorylation modulates the PIP2 sensitivity of the CaM-SK channel complex. Nat Chem Biol 10:753–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Ung PM, Zahoranszky-Kohalmi G, Zakharov AV, Martinez NJ, Simeonov A, Glaaser IW, Rai G, Schlessinger A, Marugan JJ et al (2020) Identification of a G-protein-independent activator of GIRK channels. Cell Rep 31:107770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Morais-Cabral JH, Mann S, Mackinnon R (2001a) Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411:657–661

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Morais-Cabral JH, Kaufman A, Mackinnon R (2001b) Chemistry of ion coordination and hydration revealed by a K+ channel–fab complex at 2.0 Å resolution. Nature 414:43–48

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Chen H, Yang C, Zhong J, He W, Xiong Q (2017) Reversal of TRESK downregulation alleviates neuropathic pain by inhibiting activation of gliocytes in the spinal cord. Neurochem Res 42:1288–1298

    Article  CAS  PubMed  Google Scholar 

  • Zhu G, Chanchevalap S, Cui N, Jiang C (1999) Effects of intra- and extracellular acidifications on single channel Kir2.3 currents. J Physiol 516(Pt 3):699–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Watanabe I, Gomez B, Thornhill WB (2001) Determinants involved in Kv1 potassium channel folding in the endoplasmic reticulum, glycosylation in the golgi, and cell surface expression. J Biol Chem 276:39419–39427

    Article  CAS  PubMed  Google Scholar 

  • Zuberi SM, Eunson LH, Spauschus A, De Silva R, Tolmie J, Wood NW, McWilliam RC, Stephenson JB, Kullmann DM, Hanna MG (1999) A novel mutation in the human voltage-gated potassium channel gene (Kv1.1) associates with episodic ataxia type 1 and sometimes with partial epilepsy. Brain 122(Pt 5):817–825

    Article  PubMed  Google Scholar 

  • Zuniga L, Marquez V, Gonzalez-Nilo FD, Chipot C, Cid LP, Sepulveda FV, Niemeyer MI (2011) Gating of a pH-sensitive K(2P) potassium channel by an electrostatic effect of basic sensor residues on the selectivity filter. PLoS One 6:e16141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Figures created with BioRender.com

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Slesinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taura, J., Kircher, D.M., Gameiro-Ros, I., Slesinger, P.A. (2021). Comparison of K+ Channel Families. In: Gamper, N., Wang, K. (eds) Pharmacology of Potassium Channels. Handbook of Experimental Pharmacology, vol 267. Springer, Cham. https://doi.org/10.1007/164_2021_460

Download citation

Publish with us

Policies and ethics