Ali MA (1971) Retinomotor response: characteristics and mechanisms. Vision Res 11:1225–1288. https://doi.org/10.1016/0042-6989(71)90010-1
CAS
Article
PubMed
Google Scholar
Allison WT, Barthel LK, Skebo KM, Takechi M, Kawamura S, Raymond PA (2010) Ontogeny of cone photoreceptor mosaics in zebrafish. J Comp Neurol 518:4182–4195. https://doi.org/10.1002/cne.22447
Article
PubMed
PubMed Central
Google Scholar
Allison WT, Haimberger TJ, Hawryshyn CW, Temple SE (2004) Visual pigment composition in zebrafish: evidence for a rhodopsin-porphyropsin interchange system. Vis Neurosci 21:945–952. https://doi.org/10.1017/S0952523804216145
Article
PubMed
Google Scholar
Allwardt BA, Lall AB, Brockerhoff SE, Dowling JE (2001) Synapse formation is arrested in retinal photoreceptors of the zebrafish nrc mutant. J Neurosci 21:2330–2342
CAS
Article
Google Scholar
Alshamrani AA, Raddadi O, Schatz P, Lenzner S, Neuhaus C, Azzam E, Abdelkader E (2020) Severe retinitis pigmentosa phenotype associated with novel CNGB1 variants. Am J Ophthalmol Case Rep 19:100780. https://doi.org/10.1016/j.ajoc.2020.100780
Article
PubMed
PubMed Central
Google Scholar
Ames JB, Ishima R, Tanaka T, Gordon JI, Stryer L, Ikura M (1997) Molecular mechanics of calcium-myristoyl switches. Nature 389:198–202. https://doi.org/10.1038/38310
CAS
Article
PubMed
Google Scholar
Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714. https://doi.org/10.1126/science.282.5394.1711
CAS
Article
PubMed
Google Scholar
Angueyra JM, Kindt KS (2018) Leveraging zebrafish to study retinal degenerations. Front Cell Dev Biol 6:110. https://doi.org/10.3389/fcell.2018.00110
Article
PubMed
PubMed Central
Google Scholar
Aquila M, Dell’Orco D, Fries R, Koch KW, Rispoli G (2019) Incorporating phototransduction proteins in zebrafish green cone with pressure-polished patch pipettes. Biophys Chem 253:106230. https://doi.org/10.1016/j.bpc.2019.106230
CAS
Article
Google Scholar
Bachmann-Gagescu R, Dona M, Hetterschijt L, Tonnaer E, Peters T, de Vrieze E, Mans DA, van Beersum SE, Phelps IG, Arts HH, Keunen JE, Ueffing M, Roepman R, Boldt K, Doherty D, Moens CB, Neuhauss SC, Kremer H, van Wijk E (2015) The Ciliopathy protein CC2D2A associates with NINL and functions in RAB8-MICAL3-regulated vesicle trafficking. PLoS Genet 11:e1005575. https://doi.org/10.1371/journal.pgen.1005575
CAS
Article
PubMed
PubMed Central
Google Scholar
Bachmann-Gagescu R, Neuhauss SC (2019) The photoreceptor cilium and its diseases. Curr Opin Genet Dev 56:22–33. https://doi.org/10.1016/j.gde.2019.05.004
CAS
Article
PubMed
Google Scholar
Bachmann-Gagescu R, Phelps IG, Stearns G, Link BA, Brockerhoff SE, Moens CB, Doherty D (2011) The ciliopathy gene cc2d2a controls zebrafish photoreceptor outer segment development through a role in Rab8-dependent vesicle trafficking. Hum Mol Genet 20:4041–4055. https://doi.org/10.1093/hmg/ddr332
CAS
Article
PubMed
PubMed Central
Google Scholar
Bader JR, Kusik BW, Besharse JC (2012) Analysis of KIF17 distal tip trafficking in zebrafish cone photoreceptors. Vision Res 75:37–43. https://doi.org/10.1016/j.visres.2012.10.009
CAS
Article
PubMed
PubMed Central
Google Scholar
Bareil C, Hamel CP, Delague V, Arnaud B, Demaille J, Claustres M (2001) Segregation of a mutation in CNGB1 encoding the beta-subunit of the rod cGMP-gated channel in a family with autosomal recessive retinitis pigmentosa. Hum Genet 108:328–334. https://doi.org/10.1007/s004390100496
CAS
Article
PubMed
Google Scholar
Basinger S, Hoffman R, Matthes M (1976) Photoreceptor shedding is initiated by light in the frog retina. Science 194:1074–1076. https://doi.org/10.1126/science.1086510
CAS
Article
PubMed
Google Scholar
Bech-Hansen NT, Naylor MJ, Maybaum TA, Pearce WG, Koop B, Fishman GA, Mets M, Musarella MA, Boycott KM (1998) Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet 19:264–267. https://doi.org/10.1038/947
CAS
Article
PubMed
Google Scholar
Berman DM, Wilkie TM, Gilman AG (1996) GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein alpha subunits. Cell 86:445–452. https://doi.org/10.1016/s0092-8674(00)80117-8
CAS
Article
PubMed
Google Scholar
Bibliowicz J, Tittle RK, Gross JM (2011) Toward a better understanding of human eye disease insights from the zebrafish, Danio rerio. Prog Mol Biol Transl Sci 100:287–330. https://doi.org/10.1016/B978-0-12-384878-9.00007-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Bradley J, Reisert J, Frings S (2005) Regulation of cyclic nucleotide-gated channels. Curr Opin Neurobiol 15:343–349. https://doi.org/10.1016/j.conb.2005.05.014
CAS
Article
PubMed
Google Scholar
Branchek T, Bremiller R (1984) The development of photoreceptors in the zebrafish. Brachydanio rerio. I. Structure. J Comp Neurol 224:107–115. https://doi.org/10.1002/cne.902240109
CAS
Article
PubMed
Google Scholar
Brockerhoff SE, Rieke F, Matthews HR, Taylor MR, Kennedy B, Ankoudinova I, Niemi GA, Tucker CL, Xiao M, Cilluffo MC, Fain GL, Hurley JB (2003) Light stimulates a transducin-independent increase of cytoplasmic Ca2+ and suppression of current in cones from the zebrafish mutant nof. J Neurosci 23:470–480
CAS
Article
Google Scholar
Burns ME, Baylor DA (2001) Activation, deactivation, and adaptation in vertebrate photoreceptor cells. Annu Rev Neurosci 24:779–805. https://doi.org/10.1146/annurev.neuro.24.1.779
CAS
Article
PubMed
Google Scholar
Cameron DA (2002) Mapping absorbance spectra, cone fractions, and neuronal mechanisms to photopic spectral sensitivity in the zebrafish. Vis Neurosci 19:365–372. https://doi.org/10.1017/s0952523802192121
Article
PubMed
Google Scholar
Campbell LJ, Jensen AM (2017) Phosphodiesterase inhibitors sildenafil and vardenafil reduce zebrafish rod photoreceptor outer segment shedding. Invest Ophthalmol Vis Sci 58:5604–5615. https://doi.org/10.1167/iovs.17-21958
CAS
Article
PubMed
PubMed Central
Google Scholar
Campbell LJ, West MC, Jensen AM (2018) A high content, small molecule screen identifies candidate molecular pathways that regulate rod photoreceptor outer segment renewal. Sci Rep 8:14017. https://doi.org/10.1038/s41598-018-32336-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Cavallari N, Frigato E, Vallone D, Fröhlich N, Lopez-Olmeda JF, Foà A, Berti R, Sánchez-Vázquez FJ, Bertolucci C, Foulkes NS (2011) A blind circadian clock in cavefish reveals that opsins mediate peripheral clock photoreception. PLoS Biol 9:e1001142. https://doi.org/10.1371/journal.pbio.1001142
CAS
Article
PubMed
PubMed Central
Google Scholar
Chang B, Grau T, Dangel S, Hurd R, Jurklies B, Sener EC, Andreasson S, Dollfus H, Baumann B, Bolz S, Artemyev N, Kohl S, Heckenlively J, Wissinger B (2009) A homologous genetic basis of the murine cpfl1 mutant and human achromatopsia linked to mutations in the PDE6C gene. Proc Natl Acad Sci U S A 106:19581–19586. https://doi.org/10.1073/pnas.0907720106
Article
PubMed
PubMed Central
Google Scholar
Chen H, Leung T, Giger KE, Stauffer AM, Humbert JE, Sinha S, Horstick EJ, Hansen CA, Robishaw JD (2007) Expression of the G protein gammaT1 subunit during zebrafish development. Gene Expr Patterns 7:574–583. https://doi.org/10.1016/j.modgep.2007.01.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen J, Woodruff ML, Wang T, Concepcion FA, Tranchina D, Fain GL (2010) Channel modulation and the mechanism of light adaptation in mouse rods. J Neurosci 30:16232–16240. https://doi.org/10.1523/JNEUROSCI.2868-10.2010
CAS
Article
PubMed
PubMed Central
Google Scholar
Chinen A, Hamaoka T, Yamada Y, Kawamura S (2003) Gene duplication and spectral diversification of cone visual pigments of zebrafish. Genetics 163:663–675
CAS
Article
Google Scholar
Chrispell JD, Dong E, Osawa S, Liu J, Cameron DJ, Weiss ER (2018) Grk1b and Grk7a both contribute to the recovery of the isolated cone photoresponse in larval zebrafish. Invest Ophthalmol Vis Sci 59:5116–5124. https://doi.org/10.1167/iovs.18-24455
CAS
Article
PubMed
PubMed Central
Google Scholar
Cote RH (2004) Characteristics of photoreceptor PDE (PDE6): similarities and differences to PDE5. Int J Impot Res 16(Suppl 1):S28–S33. https://doi.org/10.1038/sj.ijir.3901212
CAS
Article
PubMed
Google Scholar
Cowan CW, Fariss RN, Sokal I, Palczewski K, Wensel TG (1998) High expression levels in cones of RGS9, the predominant GTPase accelerating protein of rods. Proc Natl Acad Sci U S A 95:5351–5356. https://doi.org/10.1073/pnas.95.9.5351
CAS
Article
PubMed
PubMed Central
Google Scholar
Davies WI, Tamai TK, Zheng L, Fu JK, Rihel J, Foster RG, Whitmore D, Hankins MW (2015) An extended family of novel vertebrate photopigments is widely expressed and displays a diversity of function. Genome Res 25:1666–1679. https://doi.org/10.1101/gr.189886.115
CAS
Article
PubMed
PubMed Central
Google Scholar
Davies WI, Zheng L, Hughes S, Tamai TK, Turton M, Halford S, Foster RG, Whitmore D, Hankins MW (2011) Functional diversity of melanopsins and their global expression in the teleost retina. Cell Mol Life Sci 68:4115–4132. https://doi.org/10.1007/s00018-011-0785-4
CAS
Article
PubMed
Google Scholar
Deretic D, Huber LA, Ransom N, Mancini M, Simons K, Papermaster DS (1995) rab8 in retinal photoreceptors may participate in rhodopsin transport and in rod outer segment disk morphogenesis. J Cell Sci 108(Pt 1):215–224
CAS
Article
Google Scholar
Deveau C, Jiao X, Suzuki SC, Krishnakumar A, Yoshimatsu T, Hejtmancik JF, Nelson RF (2020) Thyroid hormone receptor beta mutations alter photoreceptor development and function in Danio rerio (zebrafish). PLoS Genet 16:e1008869. https://doi.org/10.1371/journal.pgen.1008869
CAS
Article
PubMed
PubMed Central
Google Scholar
Ding JD, Salinas RY, Arshavsky VY (2015) Discs of mammalian rod photoreceptors form through the membrane evagination mechanism. J Cell Biol 211:495–502. https://doi.org/10.1083/jcb.201508093
CAS
Article
PubMed
PubMed Central
Google Scholar
Dizhoor AM, Lowe DG, Olshevskaya EV, Laura RP, Hurley JB (1994) The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator. Neuron 12:1345–1352. https://doi.org/10.1016/0896-6273(94)90449-9
CAS
Article
PubMed
Google Scholar
Dizhoor AM, Ray S, Kumar S, Niemi G, Spencer M, Brolley D, Walsh KA, Philipov PP, Hurley JB, Stryer L (1991) Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase. Science 251:915–918
CAS
Article
Google Scholar
Doerre G, Malicki J (2002) Genetic analysis of photoreceptor cell development in the zebrafish retina. Mech Dev 110:125–138. https://doi.org/10.1016/s0925-4773(01)00571-8
CAS
Article
PubMed
Google Scholar
Dryja TP, Finn JT, Peng YW, McGee TL, Berson EL, Yau KW (1995) Mutations in the gene encoding the alpha subunit of the rod cGMP-gated channel in autosomal recessive retinitis pigmentosa. Proc Natl Acad Sci U S A 92:10177–10181. https://doi.org/10.1073/pnas.92.22.10177
CAS
Article
PubMed
PubMed Central
Google Scholar
Dryja TP, McGee TL, Reichel E, Hahn LB, Cowley GS, Yandell DW, Sandberg MA, Berson EL (1990) A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343:364–366. https://doi.org/10.1038/343364a0
CAS
Article
PubMed
Google Scholar
Ebrey T, Koutalos Y (2001) Vertebrate photoreceptors. Prog Retin Eye Res 20:49–94. https://doi.org/10.1016/s1350-9462(00)00014-8
CAS
Article
PubMed
Google Scholar
Elbers D, Scholten A, Koch KW (2018) Zebrafish recoverin isoforms display differences in calcium switch mechanisms. Front Mol Neurosci 11:355. https://doi.org/10.3389/fnmol.2018.00355
CAS
Article
PubMed
PubMed Central
Google Scholar
Elias RV, Sezate SS, Cao W, McGinnis JF (2004) Temporal kinetics of the light/dark translocation and compartmentation of arrestin and alpha-transducin in mouse photoreceptor cells. Mol Vis 10:672–681
CAS
PubMed
Google Scholar
Emran F, Rihel J, Adolph AR, Dowling JE (2010) Zebrafish larvae lose vision at night. Proc Natl Acad Sci U S A 107:6034–6039. https://doi.org/10.1073/pnas.0914718107
Article
PubMed
PubMed Central
Google Scholar
Enright JM, Toomey MB, Sato SY, Temple SE, Allen JR, Fujiwara R, Kramlinger VM, Nagy LD, Johnson KM, Xiao Y, How MJ, Johnson SL, Roberts NW, Kefalov VJ, Guengerich FP, Corbo JC (2015) Cyp27c1 red-shifts the spectral sensitivity of photoreceptors by converting vitamin A1 into A2. Curr Biol 25:3048–3057. https://doi.org/10.1016/j.cub.2015.10.018
CAS
Article
PubMed
PubMed Central
Google Scholar
Fadool JM (2003) Development of a rod photoreceptor mosaic revealed in transgenic zebrafish. Dev Biol 258:277–290. https://doi.org/10.1016/s0012-1606(03)00125-8
CAS
Article
PubMed
Google Scholar
Fain GL, Matthews HR, Cornwall MC, Koutalos Y (2001) Adaptation in vertebrate photoreceptors. Physiol Rev 81:117–151. https://doi.org/10.1152/physrev.2001.81.1.117
CAS
Article
PubMed
Google Scholar
Farahbakhsh ZT, Hideg K, Hubbell WL (1993) Photoactivated conformational changes in rhodopsin: a time-resolved spin label study. Science 262:1416–1419. https://doi.org/10.1126/science.8248781
CAS
Article
PubMed
Google Scholar
Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274:768–770. https://doi.org/10.1126/science.274.5288.768
CAS
Article
PubMed
Google Scholar
Fisher SK, Pfeffer BA, Anderson DH (1983) Both rod and cone disc shedding are related to light onset in the cat. Invest Ophthalmol Vis Sci 24:844–856
CAS
PubMed
Google Scholar
Fries R, Scholten A, Säftel W, Koch KW (2012) Operation profile of zebrafish guanylate cyclase-activating protein 3. J Neurochem 121:54–65. https://doi.org/10.1111/j.1471-4159.2011.07643.x
CAS
Article
PubMed
Google Scholar
Fries R, Scholten A, Säftel W, Koch KW (2013) Zebrafish guanylate cyclase type 3 signaling in cone photoreceptors. PLoS One 8:e69656. https://doi.org/10.1371/journal.pone.0069656
CAS
Article
PubMed
PubMed Central
Google Scholar
Frøland Steindal IA, Whitmore D (2019) Circadian clocks in fish-what have we learned so far? Biology (Basel) 8. https://doi.org/10.3390/biology8010017
Fu Y, Yau KW (2007) Phototransduction in mouse rods and cones. Pflugers Arch 454:805–819. https://doi.org/10.1007/s00424-006-0194-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Fuchs S, Nakazawa M, Maw M, Tamai M, Oguchi Y, Gal A (1995) A homozygous 1-base pair deletion in the arrestin gene is a frequent cause of Oguchi disease in Japanese. Nat Genet 10:360–362. https://doi.org/10.1038/ng0795-360
CAS
Article
PubMed
Google Scholar
Georgiou M, Robson AG, Singh N, Pontikos N, Kane T, Hirji N, Ripamonti C, Rotsos T, Dubra A, Kalitzeos A, Webster AR, Carroll J, Michaelides M (2019) Deep phenotyping of PDE6C-associated achromatopsia. Invest Ophthalmol Vis Sci 60:5112–5123. https://doi.org/10.1167/iovs.19-27761
CAS
Article
PubMed
PubMed Central
Google Scholar
Gesemann M, Neuhauss SCF (2020) Selective gene loss of visual and olfactory guanylyl cyclase genes following the two rounds of vertebrate-specific whole-genome duplications. Genome Biol Evol 12:2153–2167. https://doi.org/10.1093/gbe/evaa192
CAS
Article
PubMed
PubMed Central
Google Scholar
Gestri G, Link BA, Neuhauss SC (2012) The visual system of zebrafish and its use to model human ocular diseases. Dev Neurobiol 72:302–327. https://doi.org/10.1002/dneu.20919
Article
PubMed
PubMed Central
Google Scholar
Gillespie PG, Beavo JA (1988) Characterization of a bovine cone photoreceptor phosphodiesterase purified by cyclic GMP-sepharose chromatography. J Biol Chem 263:8133–8141
CAS
Article
Google Scholar
Glasauer SM, Neuhauss SC (2014) Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Genet Genomics 289:1045–1060. https://doi.org/10.1007/s00438-014-0889-2
CAS
Article
PubMed
Google Scholar
Grace MS, Wang LM, Pickard GE, Besharse JC, Menaker M (1996) The tau mutation shortens the period of rhythmic photoreceptor outer segment disk shedding in the hamster. Brain Res 735:93–100. https://doi.org/10.1016/0006-8993(96)00600-2
CAS
Article
PubMed
Google Scholar
Gross JM, Perkins BD, Amsterdam A, Egaña A, Darland T, Matsui JI, Sciascia S, Hopkins N, Dowling JE (2005) Identification of zebrafish insertional mutants with defects in visual system development and function. Genetics 170:245–261. https://doi.org/10.1534/genetics.104.039727
CAS
Article
PubMed
PubMed Central
Google Scholar
Hárosi FI (1994) An analysis of two spectral properties of vertebrate visual pigments. Vision Res 34:1359–1367. https://doi.org/10.1016/0042-6989(94)90134-1
Article
PubMed
Google Scholar
Hodel C, Neuhauss SC, Biehlmaier O (2006) Time course and development of light adaptation processes in the outer zebrafish retina. Anat Rec A Discov Mol Cell Evol Biol 288:653–662. https://doi.org/10.1002/ar.a.20329
Article
PubMed
Google Scholar
Holzhausen LC, Lewis AA, Cheong KK, Brockerhoff SE (2009) Differential role for synaptojanin 1 in rod and cone photoreceptors. J Comp Neurol 517:633–644. https://doi.org/10.1002/cne.22176
CAS
Article
PubMed
PubMed Central
Google Scholar
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S, Chow W, Kilian B, Quintais LT, Guerra-Assunção JA, Zhou Y, Gu Y, Yen J, Vogel JH, Eyre T, Redmond S, Banerjee R, Chi J, Fu B, Langley E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McLay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Elliot D, Eliott D, Threadgold G, Harden G, Ware D, Begum S, Mortimore B, Mortimer B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Lloyd C, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gilderthorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, Ersan-Ürün Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberländer M, Rudolph-Geiger S, Teucke M, Lanz C, Raddatz G, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Schuster SC, Carter NP, Harrow J, Ning Z, Herrero J, Searle SM, Enright A, Geisler R, Plasterk RH, Lee C, Westerfield M, de Jong PJ, Zon LI, Postlethwait JH, Nüsslein-Volhard C, Hubbard TJ, Roest Crollius H, Rogers J, Stemple DL (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503. https://doi.org/10.1038/nature12111
CAS
Article
PubMed
PubMed Central
Google Scholar
Hsu YT, Molday RS (1993) Modulation of the cGMP-gated channel of rod photoreceptor cells by calmodulin. Nature 361:76–79. https://doi.org/10.1038/361076a0
CAS
Article
PubMed
Google Scholar
Huang L, Zhang Q, Li S, Guan L, Xiao X, Zhang J, Jia X, Sun W, Zhu Z, Gao Y, Yin Y, Wang P, Guo X, Wang J (2013) Exome sequencing of 47 chinese families with cone-rod dystrophy: mutations in 25 known causative genes. PLoS One 8:e65546. https://doi.org/10.1371/journal.pone.0065546
CAS
Article
PubMed
PubMed Central
Google Scholar
Huang SH, Pittler SJ, Huang X, Oliveira L, Berson EL, Dryja TP (1995) Autosomal recessive retinitis pigmentosa caused by mutations in the alpha subunit of rod cGMP phosphodiesterase. Nat Genet 11:468–471. https://doi.org/10.1038/ng1295-468
CAS
Article
PubMed
Google Scholar
Hubbard R, Kropf A (1958) The action of light on rhodopsin. Proc Natl Acad Sci U S A 44:130–139. https://doi.org/10.1073/pnas.44.2.130
CAS
Article
PubMed
PubMed Central
Google Scholar
Ikarashi R, Akechi H, Kanda Y, Ahmad A, Takeuchi K, Morioka E, Sugiyama T, Ebisawa T, Ikeda M (2017) Regulation of molecular clock oscillations and phagocytic activity via muscarinic Ca. Sci Rep 7:44175. https://doi.org/10.1038/srep44175
Article
PubMed
PubMed Central
Google Scholar
Imanishi Y, Li N, Sokal I, Sowa ME, Lichtarge O, Wensel TG, Saperstein DA, Baehr W, Palczewski K (2002) Characterization of retinal guanylate cyclase-activating protein 3 (GCAP3) from zebrafish to man. Eur J Neurosci 15:63–78. https://doi.org/10.1046/j.0953-816x.2001.01835.x
Article
PubMed
PubMed Central
Google Scholar
Imanishi Y, Yang L, Sokal I, Filipek S, Palczewski K, Baehr W (2004) Diversity of guanylate cyclase-activating proteins (GCAPs) in teleost fish: characterization of three novel GCAPs (GCAP4, GCAP5, GCAP7) from zebrafish (Danio rerio) and prediction of eight GCAPs (GCAP1-8) in pufferfish (Fugu rubripes). J Mol Evol 59:204–217. https://doi.org/10.1007/s00239-004-2614-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Insinna C, Besharse JC (2008) Intraflagellar transport and the sensory outer segment of vertebrate photoreceptors. Dev Dyn 237:1982–1992. https://doi.org/10.1002/dvdy.21554
Article
PubMed
PubMed Central
Google Scholar
Insinna C, Pathak N, Perkins B, Drummond I, Besharse JC (2008) The homodimeric kinesin, Kif17, is essential for vertebrate photoreceptor sensory outer segment development. Dev Biol 316:160–170. https://doi.org/10.1016/j.ydbio.2008.01.025
CAS
Article
PubMed
PubMed Central
Google Scholar
Iribarne M, Nishiwaki Y, Nakamura S, Araragi M, Oguri E, Masai I (2017) Aipl1 is required for cone photoreceptor function and survival through the stability of Pde6c and Gc3 in zebrafish. Sci Rep 7:45962. https://doi.org/10.1038/srep45962
CAS
Article
PubMed
PubMed Central
Google Scholar
Jia S, Muto A, Orisme W, Henson HE, Parupalli C, Ju B, Baier H, Taylor MR (2014) Zebrafish Cacna1fa is required for cone photoreceptor function and synaptic ribbon formation. Hum Mol Genet 23:2981–2994. https://doi.org/10.1093/hmg/ddu009
CAS
Article
PubMed
PubMed Central
Google Scholar
Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824. https://doi.org/10.1152/physrev.00008.2002
CAS
Article
PubMed
Google Scholar
Kawamura S (1993) Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin. Nature 362:855–857. https://doi.org/10.1038/362855a0
CAS
Article
PubMed
Google Scholar
Kawamura S, Kuwata O, Yamada M, Matsuda S, Hisatomi O, Tokunaga F (1996) Photoreceptor protein s26, a cone homologue of S-modulin in frog retina. J Biol Chem 271:21359–21364
CAS
Article
Google Scholar
Kennedy B, Malicki J (2009) What drives cell morphogenesis: a look inside the vertebrate photoreceptor. Dev Dyn 238:2115–2138. https://doi.org/10.1002/dvdy.22010
Article
PubMed
PubMed Central
Google Scholar
Kennedy MJ, Dunn FA, Hurley JB (2004) Visual pigment phosphorylation but not transducin translocation can contribute to light adaptation in zebrafish cones. Neuron 41:915–928
CAS
Article
Google Scholar
Kerov V, Laird JG, Joiner ML, Knecht S, Soh D, Hagen J, Gardner SH, Gutierrez W, Yoshimatsu T, Bhattarai S, Puthussery T, Artemyev NO, Drack AV, Wong RO, Baker SA, Lee A (2018) α2δ-4 is required for the molecular and structural organization of rod and cone photoreceptor synapses. J Neurosci 38:6145–6160. https://doi.org/10.1523/JNEUROSCI.3818-16.2018
CAS
Article
PubMed
PubMed Central
Google Scholar
Kinney MS, Fisher SK (1978) The photoreceptors and pigment epithelium of the larval xenopus retina: morphogenesis and outer segment renewal. Proc R Soc Lond B Biol Sci 201:149–167. https://doi.org/10.1098/rspb.1978.0037
CAS
Article
PubMed
Google Scholar
Koch KW, Duda T, Sharma RK (2002) Photoreceptor specific guanylate cyclases in vertebrate phototransduction. Mol Cell Biochem 230:97–106
CAS
Article
Google Scholar
Koch KW, Duda T, Sharma RK (2010) Ca(2+)-modulated vision-linked ROS-GC guanylate cyclase transduction machinery. Mol Cell Biochem 334:105–115. https://doi.org/10.1007/s11010-009-0330-z
CAS
Article
PubMed
Google Scholar
Koch KW, Stryer L (1988) Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature 334:64–66. https://doi.org/10.1038/334064a0
CAS
Article
PubMed
Google Scholar
Kohl S, Baumann B, Rosenberg T, Kellner U, Lorenz B, Vadalà M, Jacobson SG, Wissinger B (2002) Mutations in the cone photoreceptor G-protein alpha-subunit gene GNAT2 in patients with achromatopsia. Am J Hum Genet 71:422–425. https://doi.org/10.1086/341835
CAS
Article
PubMed
PubMed Central
Google Scholar
Kolb H, Fernandez E, Nelson R (1995) Webvision: the organization of the retina and visual system. In. doi:NBK482309
Kondo H, Qin M, Mizota A, Kondo M, Hayashi H, Hayashi K, Oshima K, Tahira T (2004) A homozygosity-based search for mutations in patients with autosomal recessive retinitis pigmentosa, using microsatellite markers. Invest Ophthalmol Vis Sci 45:4433–4439. https://doi.org/10.1167/iovs.04-0544
Article
PubMed
Google Scholar
Korenbrot JI, Mehta M, Tserentsoodol N, Postlethwait JH, Rebrik TI (2013) EML1 (CNG-modulin) controls light sensitivity in darkness and under continuous illumination in zebrafish retinal cone photoreceptors. J Neurosci 33:17763–17776. https://doi.org/10.1523/JNEUROSCI.2659-13.2013
CAS
Article
PubMed
PubMed Central
Google Scholar
Koutalos Y, Nakatani K, Yau KW (1995) The cGMP-phosphodiesterase and its contribution to sensitivity regulation in retinal rods. J Gen Physiol 106:891–921. https://doi.org/10.1085/jgp.106.5.891
CAS
Article
PubMed
Google Scholar
Krispel CM, Chen D, Melling N, Chen YJ, Martemyanov KA, Quillinan N, Arshavsky VY, Wensel TG, Chen CK, Burns ME (2006) RGS expression rate-limits recovery of rod photoresponses. Neuron 51:409–416. https://doi.org/10.1016/j.neuron.2006.07.010
CAS
Article
PubMed
Google Scholar
Krock BL, Perkins BD (2008) The intraflagellar transport protein IFT57 is required for cilia maintenance and regulates IFT-particle-kinesin-II dissociation in vertebrate photoreceptors. J Cell Sci 121:1907–1915. https://doi.org/10.1242/jcs.029397
CAS
Article
PubMed
Google Scholar
Kühn H, Hall SW, Wilden U (1984) Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin. FEBS Lett 176:473–478. https://doi.org/10.1016/0014-5793(84)81221-1
Article
PubMed
Google Scholar
Lagman D, Callado-Pérez A, Franzén IE, Larhammar D, Abalo XM (2015) Transducin duplicates in the zebrafish retina and pineal complex: differential specialisation after the teleost tetraploidisation. PLoS One 10:e0121330. https://doi.org/10.1371/journal.pone.0121330
CAS
Article
PubMed
PubMed Central
Google Scholar
Lagman D, Franzén IE, Eggert J, Larhammar D, Abalo XM (2016) Evolution and expression of the phosphodiesterase 6 genes unveils vertebrate novelty to control photosensitivity. BMC Evol Biol 16:124. https://doi.org/10.1186/s12862-016-0695-z
CAS
Article
PubMed
PubMed Central
Google Scholar
Lagnado L, Cervetto L, McNaughton PA (1992) Calcium homeostasis in the outer segments of retinal rods from the tiger salamander. J Physiol 455:111–142. https://doi.org/10.1113/jphysiol.1992.sp019293
CAS
Article
PubMed
PubMed Central
Google Scholar
Lamb TD (2013) Evolution of phototransduction, vertebrate photoreceptors and retina. Prog Retin Eye Res 36:52–119. https://doi.org/10.1016/j.preteyeres.2013.06.001
CAS
Article
PubMed
Google Scholar
Lamb TD, Hunt DM (2018) Evolution of the calcium feedback steps of vertebrate phototransduction. Open Biol 8. https://doi.org/10.1098/rsob.180119
Lamb TD, Patel HR, Chuah A, Hunt DM (2018) Evolution of the shut-off steps of vertebrate phototransduction. Open Biol 8. https://doi.org/10.1098/rsob.170232
Lamb TD, Pugh EN (2006) Phototransduction, dark adaptation, and rhodopsin regeneration the proctor lecture. Invest Ophthalmol Vis Sci 47:5137–5152. https://doi.org/10.1167/iovs.06-0849
Article
PubMed
Google Scholar
Larhammar D, Nordström K, Larsson TA (2009) Evolution of vertebrate rod and cone phototransduction genes. Philos Trans R Soc Lond B Biol Sci 364:2867–2880. https://doi.org/10.1098/rstb.2009.0077
CAS
Article
PubMed
PubMed Central
Google Scholar
Larison KD, Bremiller R (1990) Early onset of phenotype and cell patterning in the embryonic zebrafish retina. Development 109:567–576
CAS
Article
Google Scholar
LaVail MM (1976) Rod outer segment disk shedding in rat retina: relationship to cyclic lighting. Science 194:1071–1074. https://doi.org/10.1126/science.982063
CAS
Article
PubMed
Google Scholar
Leung YT, Fain GL, Matthews HR (2007) Simultaneous measurement of current and calcium in the ultraviolet-sensitive cones of zebrafish. J Physiol 579:15–27. https://doi.org/10.1113/jphysiol.2006.120162
CAS
Article
PubMed
Google Scholar
Lewis TR, Kundinger SR, Link BA, Insinna C, Besharse JC (2018) Kif17 phosphorylation regulates photoreceptor outer segment turnover. BMC Cell Biol 19:25. https://doi.org/10.1186/s12860-018-0177-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Li H, Chuang AZ, O’Brien J (2009) Photoreceptor coupling is controlled by connexin 35 phosphorylation in zebrafish retina. J Neurosci 29:15178–15186. https://doi.org/10.1523/JNEUROSCI.3517-09.2009
CAS
Article
PubMed
PubMed Central
Google Scholar
Li XF, Kiedrowski L, Tremblay F, Fernandez FR, Perizzolo M, Winkfein RJ, Turner RW, Bains JS, Rancourt DE, Lytton J (2006) Importance of K+-dependent Na+/Ca2+-exchanger 2, NCKX2, in motor learning and memory. J Biol Chem 281:6273–6282. https://doi.org/10.1074/jbc.M512137200
CAS
Article
PubMed
Google Scholar
Link BA, Collery RF (2015) Zebrafish models of retinal disease. Annu Rev Vis Sci 1:125–153. https://doi.org/10.1146/annurev-vision-082114-035717
Article
PubMed
Google Scholar
Lobanova ES, Herrmann R, Finkelstein S, Reidel B, Skiba NP, Deng WT, Jo R, Weiss ER, Hauswirth WW, Arshavsky VY (2010) Mechanistic basis for the failure of cone transducin to translocate: why cones are never blinded by light. J Neurosci 30:6815–6824. https://doi.org/10.1523/JNEUROSCI.0613-10.2010
CAS
Article
PubMed
PubMed Central
Google Scholar
Loew ER, Dartnall HJ (1976) Vitamin A1/A2-based visual pigment mixtures in cones of the rudd. Vision Res 16:891–896. https://doi.org/10.1016/0042-6989(76)90217-0
CAS
Article
PubMed
Google Scholar
Lv C, Gould TJ, Bewersdorf J, Zenisek D (2012) High-resolution optical imaging of zebrafish larval ribbon synapse protein RIBEYE, RIM2, and CaV 1.4 by stimulation emission depletion microscopy. Microsc Microanal 18:745–752. https://doi.org/10.1017/S1431927612000268
CAS
Article
PubMed
PubMed Central
Google Scholar
Lyubarsky AL, Chen C, Simon MI, Pugh EN (2000) Mice lacking G-protein receptor kinase 1 have profoundly slowed recovery of cone-driven retinal responses. J Neurosci 20:2209–2217
CAS
Article
Google Scholar
Ma EY, Lewis A, Barabas P, Stearns G, Suzuki S, Krizaj D, Brockerhoff SE (2013) Loss of Pde6 reduces cell body Ca(2+) transients within photoreceptors. Cell Death Dis 4:e797. https://doi.org/10.1038/cddis.2013.332
CAS
Article
PubMed
PubMed Central
Google Scholar
Mackin RD, Frey RA, Gutierrez C, Farre AA, Kawamura S, Mitchell DM, Stenkamp DL (2019) Endocrine regulation of multichromatic color vision. Proc Natl Acad Sci U S A 116:16882–16891. https://doi.org/10.1073/pnas.1904783116
CAS
Article
PubMed
PubMed Central
Google Scholar
Matthews HR, Murphy RL, Fain GL, Lamb TD (1988) Photoreceptor light adaptation is mediated by cytoplasmic calcium concentration. Nature 334:67–69. https://doi.org/10.1038/334067a0
CAS
Article
PubMed
Google Scholar
Matthews HR, Sampath AP (2010) Photopigment quenching is Ca2+ dependent and controls response duration in salamander L-cone photoreceptors. J Gen Physiol 135:355–366. https://doi.org/10.1085/jgp.200910394
CAS
Article
PubMed
PubMed Central
Google Scholar
McLaughlin ME, Sandberg MA, Berson EL, Dryja TP (1993) Recessive mutations in the gene encoding the beta-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nat Genet 4:130–134. https://doi.org/10.1038/ng0693-130
CAS
Article
PubMed
Google Scholar
Meier A, Nelson R, Connaughton VP (2018) Color processing in zebrafish retina. Front Cell Neurosci 12:327. https://doi.org/10.3389/fncel.2018.00327
CAS
Article
PubMed
PubMed Central
Google Scholar
Menger GJ, Koke JR, Cahill GM (2005) Diurnal and circadian retinomotor movements in zebrafish. Vis Neurosci 22:203–209. https://doi.org/10.1017/S0952523805222083
Article
PubMed
Google Scholar
Michalakis S, Becirovic E, Biel M (2018) Retinal cyclic nucleotide-gated channels: from pathophysiology to therapy. Int J Mol Sci:19. https://doi.org/10.3390/ijms19030749
Molday RS, Moritz OL (2015) Photoreceptors at a glance. J Cell Sci 128:4039–4045. https://doi.org/10.1242/jcs.175687
CAS
Article
PubMed
PubMed Central
Google Scholar
Muto A, Orger MB, Wehman AM, Smear MC, Kay JN, Page-McCaw PS, Gahtan E, Xiao T, Nevin LM, Gosse NJ, Staub W, Finger-Baier K, Baier H (2005) Forward genetic analysis of visual behavior in zebrafish. PLoS Genet 1:e66. https://doi.org/10.1371/journal.pgen.0010066
CAS
Article
PubMed
PubMed Central
Google Scholar
Naeem MA, Chavali VR, Ali S, Iqbal M, Riazuddin S, Khan SN, Husnain T, Sieving PA, Ayyagari R, Hejtmancik JF, Riazuddin SA (2012) GNAT1 associated with autosomal recessive congenital stationary night blindness. Invest Ophthalmol Vis Sci 53:1353–1361. https://doi.org/10.1167/iovs.11-8026
CAS
Article
PubMed
PubMed Central
Google Scholar
Nakatani K, Yau KW (1988) Calcium and light adaptation in retinal rods and cones. Nature 334:69–71. https://doi.org/10.1038/334069a0
CAS
Article
PubMed
Google Scholar
Nathans J, Piantanida TP, Eddy RL, Shows TB, Hogness DS (1986) Molecular genetics of inherited variation in human color vision. Science 232:203–210. https://doi.org/10.1126/science.3485310
CAS
Article
PubMed
Google Scholar
Niklaus S, Neuhauss SCF (2017) Genetic approaches to retinal research in zebrafish. J Neurogenet 31:70–87. https://doi.org/10.1080/01677063.2017.1343316
Article
PubMed
Google Scholar
Nikonov SS, Brown BM, Davis JA, Zuniga FI, Bragin A, Pugh EN, Craft CM (2008) Mouse cones require an arrestin for normal inactivation of phototransduction. Neuron 59:462–474. https://doi.org/10.1016/j.neuron.2008.06.011
CAS
Article
PubMed
PubMed Central
Google Scholar
Nishiguchi KM, Sandberg MA, Kooijman AC, Martemyanov KA, Pott JW, Hagstrom SA, Arshavsky VY, Berson EL, Dryja TP (2004) Defects in RGS9 or its anchor protein R9AP in patients with slow photoreceptor deactivation. Nature 427:75–78. https://doi.org/10.1038/nature02170
CAS
Article
PubMed
Google Scholar
Nishiwaki Y, Komori A, Sagara H, Suzuki E, Manabe T, Hosoya T, Nojima Y, Wada H, Tanaka H, Okamoto H, Masai I (2008) Mutation of cGMP phosphodiesterase 6alpha'-subunit gene causes progressive degeneration of cone photoreceptors in zebrafish. Mech Dev 125:932–946. https://doi.org/10.1016/j.mod.2008.09.001
CAS
Article
PubMed
Google Scholar
Ojeda Naharros I, Gesemann M, Mateos JM, Barmettler G, Forbes A, Ziegler U, Neuhauss SCF, Bachmann-Gagescu R (2017) Loss-of-function of the ciliopathy protein Cc2d2a disorganizes the vesicle fusion machinery at the periciliary membrane and indirectly affects Rab8-trafficking in zebrafish photoreceptors. PLoS Genet 13:e1007150. https://doi.org/10.1371/journal.pgen.1007150
CAS
Article
PubMed
PubMed Central
Google Scholar
Omori Y, Zhao C, Saras A, Mukhopadhyay S, Kim W, Furukawa T, Sengupta P, Veraksa A, Malicki J (2008) Elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8. Nat Cell Biol 10:437–444. https://doi.org/10.1038/ncb1706
CAS
Article
PubMed
Google Scholar
Paillart C, Winkfein RJ, Schnetkamp PP, Korenbrot JI (2007) Functional characterization and molecular cloning of the K+-dependent Na+/Ca2+ exchanger in intact retinal cone photoreceptors. J Gen Physiol 129:1–16. https://doi.org/10.1085/jgp.200609652
CAS
Article
PubMed
PubMed Central
Google Scholar
Palczewski K, Polans AS, Baehr W, Ames JB (2000) Ca(2+)-binding proteins in the retina: structure, function, and the etiology of human visual diseases. Bioessays 22:337–350. https://doi.org/10.1002/(SICI)1521-1878(200004)22:4<337::AID-BIES4>3.0.CO;2-Z
CAS
Article
PubMed
Google Scholar
Papermaster DS, Schneider BG, Besharse JC (1985) Vesicular transport of newly synthesized opsin from the Golgi apparatus toward the rod outer segment. Ultrastructural immunocytochemical and autoradiographic evidence in Xenopus retinas. Invest Ophthalmol Vis Sci 26:1386–1404
CAS
PubMed
Google Scholar
Payne AM, Downes SM, Bessant DA, Taylor R, Holder GE, Warren MJ, Bird AC, Bhattacharya SS (1998) A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1. Hum Mol Genet 7:273–277. https://doi.org/10.1093/hmg/7.2.273
CAS
Article
PubMed
Google Scholar
Pearring JN, Salinas RY, Baker SA, Arshavsky VY (2013) Protein sorting, targeting and trafficking in photoreceptor cells. Prog Retin Eye Res 36:24–51. https://doi.org/10.1016/j.preteyeres.2013.03.002
CAS
Article
PubMed
Google Scholar
Perrault I, Rozet JM, Gerber S, Ghazi I, Ducroq D, Souied E, Leowski C, Bonnemaison M, Dufier JL, Munnich A, Kaplan J (2000) Spectrum of retGC1 mutations in Leber’s congenital amaurosis. Eur J Hum Genet 8:578–582. https://doi.org/10.1038/sj.ejhg.5200503
CAS
Article
PubMed
Google Scholar
Prinsen CF, Szerencsei RT, Schnetkamp PP (2000) Molecular cloning and functional expression of the potassium-dependent sodium-calcium exchanger from human and chicken retinal cone photoreceptors. J Neurosci 20:1424–1434
CAS
Article
Google Scholar
Rätscho N, Scholten A, Koch KW (2009) Expression profiles of three novel sensory guanylate cyclases and guanylate cyclase-activating proteins in the zebrafish retina. Biochim Biophys Acta 1793:1110–1114. https://doi.org/10.1016/j.bbamcr.2008.12.021
CAS
Article
PubMed
Google Scholar
Raymond PA, Barthel LK (2004) A moving wave patterns the cone photoreceptor mosaic array in the zebrafish retina. Int J Dev Biol 48:935–945. https://doi.org/10.1387/ijdb.041873pr
CAS
Article
PubMed
Google Scholar
Rebrik TI, Botchkina I, Arshavsky VY, Craft CM, Korenbrot JI (2012) CNG-modulin: a novel Ca-dependent modulator of ligand sensitivity in cone photoreceptor cGMP-gated ion channels. J Neurosci 32:3142–3153. https://doi.org/10.1523/JNEUROSCI.5518-11.2012
CAS
Article
PubMed
PubMed Central
Google Scholar
Reiländer H, Achilles A, Friedel U, Maul G, Lottspeich F, Cook NJ (1992) Primary structure and functional expression of the Na/Ca,K-exchanger from bovine rod photoreceptors. EMBO J 11:1689–1695
Article
Google Scholar
Renninger SL, Gesemann M, Neuhauss SC (2011) Cone arrestin confers cone vision of high temporal resolution in zebrafish larvae. Eur J Neurosci 33:658–667. https://doi.org/10.1111/j.1460-9568.2010.07574.x
Article
PubMed
Google Scholar
Reuter TE, White RH, Wald G (1971) Rhodopsin and porphyropsin fields in the adult bullfrog retina. J Gen Physiol 58:351–371. https://doi.org/10.1085/jgp.58.4.351
CAS
Article
PubMed
PubMed Central
Google Scholar
Riazuddin SA, Shahzadi A, Zeitz C, Ahmed ZM, Ayyagari R, Chavali VR, Ponferrada VG, Audo I, Michiels C, Lancelot ME, Nasir IA, Zafar AU, Khan SN, Husnain T, Jiao X, MacDonald IM, Riazuddin S, Sieving PA, Katsanis N, Hejtmancik JF (2010) A mutation in SLC24A1 implicated in autosomal-recessive congenital stationary night blindness. Am J Hum Genet 87:523–531. https://doi.org/10.1016/j.ajhg.2010.08.013
CAS
Article
PubMed
PubMed Central
Google Scholar
Ribelayga C, Cao Y, Mangel SC (2008) The circadian clock in the retina controls rod-cone coupling. Neuron 59:790–801. https://doi.org/10.1016/j.neuron.2008.07.017
CAS
Article
PubMed
PubMed Central
Google Scholar
Rinner O, Makhankov YV, Biehlmaier O, Neuhauss SC (2005) Knockdown of cone-specific kinase GRK7 in larval zebrafish leads to impaired cone response recovery and delayed dark adaptation. Neuron 47:231–242. https://doi.org/10.1016/j.neuron.2005.06.010
CAS
Article
PubMed
Google Scholar
Robinson J, Schmitt EA, Hárosi FI, Reece RJ, Dowling JE (1993) Zebrafish ultraviolet visual pigment: absorption spectrum, sequence, and localization. Proc Natl Acad Sci U S A 90:6009–6012. https://doi.org/10.1073/pnas.90.13.6009
CAS
Article
PubMed
PubMed Central
Google Scholar
Rosenbaum JL, Cole DG, Diener DR (1999) Intraflagellar transport: the eyes have it. J Cell Biol 144:385–388. https://doi.org/10.1083/jcb.144.3.385
CAS
Article
PubMed
PubMed Central
Google Scholar
Sakisaka T, Itoh T, Miura K, Takenawa T (1997) Phosphatidylinositol 4,5-bisphosphate phosphatase regulates the rearrangement of actin filaments. Mol Cell Biol 17:3841–3849. https://doi.org/10.1128/mcb.17.7.3841
CAS
Article
PubMed
PubMed Central
Google Scholar
Sakurai K, Vinberg F, Wang T, Chen J, Kefalov VJ (2016) The Na(+)/Ca(2+), K(+) exchanger 2 modulates mammalian cone phototransduction. Sci Rep 6:32521. https://doi.org/10.1038/srep32521
CAS
Article
PubMed
PubMed Central
Google Scholar
Samardzija M., Neuhauss S.C.F., Joly S. K-LM, C. G (2009) Animal models for retinal degeneration.
Sampath AP, Matthews HR, Cornwall MC, Fain GL (1998) Bleached pigment produces a maintained decrease in outer segment Ca2+ in salamander rods. J Gen Physiol 111:53–64
CAS
Article
Google Scholar
Saszik S, Bilotta J (1999) The effects of temperature on the dark-adapted spectral sensitivity function of the adult zebrafish. Vision Res 39:1051–1058. https://doi.org/10.1016/s0042-6989(98)00237-5
CAS
Article
PubMed
Google Scholar
Sato M, Nakazawa M, Usui T, Tanimoto N, Abe H, Ohguro H (2005) Mutations in the gene coding for guanylate cyclase-activating protein 2 (GUCA1B gene) in patients with autosomal dominant retinal dystrophies. Graefes Arch Clin Exp Ophthalmol 243:235–242. https://doi.org/10.1007/s00417-004-1015-7
CAS
Article
PubMed
Google Scholar
Schlegel DK, Glasauer SMK, Mateos JM, Barmettler G, Ziegler U, Neuhauss SCF (2019) A new zebrafish model for CACNA2D4-dysfunction. Invest Ophthalmol Vis Sci 60:5124–5135. https://doi.org/10.1167/iovs.19-26759
CAS
Article
PubMed
Google Scholar
Schmitz F (2014) Presynaptic [Ca(2+)] and GCAPs: aspects on the structure and function of photoreceptor ribbon synapses. Front Mol Neurosci 7:3. https://doi.org/10.3389/fnmol.2014.00003
CAS
Article
PubMed
PubMed Central
Google Scholar
Schmitz F, Königstorfer A, Südhof TC (2000) RIBEYE, a component of synaptic ribbons: a protein’s journey through evolution provides insight into synaptic ribbon function. Neuron 28:857–872. https://doi.org/10.1016/s0896-6273(00)00159-8
CAS
Article
PubMed
Google Scholar
Scholten A, Koch KW (2011) Differential calcium signaling by cone specific guanylate cyclase-activating proteins from the zebrafish retina. PLoS One 6:e23117. https://doi.org/10.1371/journal.pone.0023117
CAS
Article
PubMed
PubMed Central
Google Scholar
Sears S, Erickson A, Hendrickson A (2000) The spatial and temporal expression of outer segment proteins during development of Macaca monkey cones. Invest Ophthalmol Vis Sci 41:971–979
CAS
PubMed
Google Scholar
Senin II, Fischer T, Komolov KE, Zinchenko DV, Philippov PP, Koch KW (2002) Ca2+-myristoyl switch in the neuronal calcium sensor recoverin requires different functions of Ca2+-binding sites. J Biol Chem 277:50365–50372. https://doi.org/10.1074/jbc.M204338200
CAS
Article
PubMed
Google Scholar
Sharma RK (2002) Evolution of the membrane guanylate cyclase transduction system. Mol Cell Biochem 230:3–30
CAS
Article
Google Scholar
Sieving PA, Richards JE, Naarendorp F, Bingham EL, Scott K, Alpern M (1995) Dark-light: model for nightblindness from the human rhodopsin Gly-90-->Asp mutation. Proc Natl Acad Sci U S A 92:880–884. https://doi.org/10.1073/pnas.92.3.880
CAS
Article
PubMed
PubMed Central
Google Scholar
Sjostrand FS (1958) Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three-dimensional reconstructions from serial sections. J Ultrastruct Res 2:122–170. https://doi.org/10.1016/s0022-5320(58)90050-9
CAS
Article
PubMed
Google Scholar
Sokolov M, Lyubarsky AL, Strissel KJ, Savchenko AB, Govardovskii VI, Pugh EN, Arshavsky VY (2002) Massive light-driven translocation of transducin between the two major compartments of rod cells: a novel mechanism of light adaptation. Neuron 34:95–106. https://doi.org/10.1016/s0896-6273(02)00636-0
CAS
Article
PubMed
Google Scholar
Spencer WJ, Lewis TR, Pearring JN, Arshavsky VY (2020) Photoreceptor discs: built like ectosomes. Trends Cell Biol 30:904–915. https://doi.org/10.1016/j.tcb.2020.08.005
Article
PubMed
Google Scholar
Stearns G, Evangelista M, Fadool JM, Brockerhoff SE (2007) A mutation in the cone-specific pde6 gene causes rapid cone photoreceptor degeneration in zebrafish. J Neurosci 27:13866–13874. https://doi.org/10.1523/JNEUROSCI.3136-07.2007
CAS
Article
PubMed
PubMed Central
Google Scholar
Steinberg RH, Fisher SK, Anderson DH (1980) Disc morphogenesis in vertebrate photoreceptors. J Comp Neurol 190:501–508. https://doi.org/10.1002/cne.901900307
CAS
Article
PubMed
Google Scholar
Steindal IAF, Whitmore D (2020) Zebrafish circadian clock entrainment and the importance of broad spectral light sensitivity. Front Physiol 11:1002. https://doi.org/10.3389/fphys.2020.01002
Article
PubMed
PubMed Central
Google Scholar
Sterling P, Matthews G (2005) Structure and function of ribbon synapses. Trends Neurosci 28:20–29. https://doi.org/10.1016/j.tins.2004.11.009
CAS
Article
PubMed
Google Scholar
Stiebel-Kalish H, Reich E, Rainy N, Vatine G, Nisgav Y, Tovar A, Gothilf Y, Bach M (2012) Gucy2f zebrafish knockdown--a model for Gucy2d-related leber congenital amaurosis. Eur J Hum Genet 20:884–889. https://doi.org/10.1038/ejhg.2012.10
CAS
Article
PubMed
PubMed Central
Google Scholar
Strissel KJ, Lishko PV, Trieu LH, Kennedy MJ, Hurley JB, Arshavsky VY (2005) Recoverin undergoes light-dependent intracellular translocation in rod photoreceptors. J Biol Chem 280:29250–29255. https://doi.org/10.1074/jbc.M501789200
CAS
Article
PubMed
Google Scholar
Strom TM, Nyakatura G, Apfelstedt-Sylla E, Hellebrand H, Lorenz B, Weber BH, Wutz K, Gutwillinger N, Rüther K, Drescher B, Sauer C, Zrenner E, Meitinger T, Rosenthal A, Meindl A (1998) An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat Genet 19:260–263. https://doi.org/10.1038/940
CAS
Article
PubMed
Google Scholar
Sulmann S, Vocke F, Scholten A, Koch KW (2015) Retina specific GCAPs in zebrafish acquire functional selectivity in Ca2+-sensing by myristoylation and Mg2+-binding. Sci Rep 5:11228. https://doi.org/10.1038/srep11228
CAS
Article
PubMed
PubMed Central
Google Scholar
Suzuki SC, Bleckert A, Williams PR, Takechi M, Kawamura S, Wong RO (2013) Cone photoreceptor types in zebrafish are generated by symmetric terminal divisions of dedicated precursors. Proc Natl Acad Sci U S A 110:15109–15114. https://doi.org/10.1073/pnas.1303551110
Article
PubMed
PubMed Central
Google Scholar
Szymanska K, Johnson CA (2012) The transition zone: an essential functional compartment of cilia. Cilia 1:10. https://doi.org/10.1186/2046-2530-1-10
CAS
Article
PubMed
PubMed Central
Google Scholar
Takechi M, Kawamura S (2005) Temporal and spatial changes in the expression pattern of multiple red and green subtype opsin genes during zebrafish development. J Exp Biol 208:1337–1345. https://doi.org/10.1242/jeb.01532
CAS
Article
PubMed
Google Scholar
Tanaka T, Ames JB, Harvey TS, Stryer L, Ikura M (1995) Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature 376:444–447. https://doi.org/10.1038/376444a0
CAS
Article
PubMed
Google Scholar
Taylor JS, Van de Peer Y, Braasch I, Meyer A (2001) Comparative genomics provides evidence for an ancient genome duplication event in fish. Philos Trans R Soc Lond B Biol Sci 356:1661–1679. https://doi.org/10.1098/rstb.2001.0975
CAS
Article
PubMed
PubMed Central
Google Scholar
Terman JS, Remé CE, Terman M (1993) Rod outer segment disk shedding in rats with lesions of the suprachiasmatic nucleus. Brain Res 605:256–264. https://doi.org/10.1016/0006-8993(93)91748-h
CAS
Article
PubMed
Google Scholar
Thiadens AA, den Hollander AI, Roosing S, Nabuurs SB, Zekveld-Vroon RC, Collin RW, De Baere E, Koenekoop RK, van Schooneveld MJ, Strom TM, van Lith-Verhoeven JJ, Lotery AJ, van Moll-Ramirez N, Leroy BP, van den Born LI, Hoyng CB, Cremers FP, Klaver CC (2009) Homozygosity mapping reveals PDE6C mutations in patients with early-onset cone photoreceptor disorders. Am J Hum Genet 85:240–247. https://doi.org/10.1016/j.ajhg.2009.06.016
CAS
Article
PubMed
PubMed Central
Google Scholar
tom Dieck S, Brandstätter JH (2006) Ribbon synapses of the retina. Cell Tissue Res 326:339-346. doi:https://doi.org/10.1007/s00441-006-0234-0
Tsujikawa M, Malicki J (2004) Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons. Neuron 42:703–716. https://doi.org/10.1016/s0896-6273(04)00268-5
CAS
Article
PubMed
Google Scholar
Van Epps HA, Hayashi M, Lucast L, Stearns GW, Hurley JB, De Camilli P, Brockerhoff SE (2004) The zebrafish nrc mutant reveals a role for the polyphosphoinositide phosphatase synaptojanin 1 in cone photoreceptor ribbon anchoring. J Neurosci 24:8641–8650. https://doi.org/10.1523/JNEUROSCI.2892-04.2004
CAS
Article
PubMed
PubMed Central
Google Scholar
Vandepoele K, De Vos W, Taylor JS, Meyer A, Van de Peer Y (2004) Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci U S A 101:1638–1643. https://doi.org/10.1073/pnas.0307968100
CAS
Article
PubMed
PubMed Central
Google Scholar
Vinberg F, Chen J, Kefalov VJ (2018) Regulation of calcium homeostasis in the outer segments of rod and cone photoreceptors. Prog Retin Eye Res 67:87–101. https://doi.org/10.1016/j.preteyeres.2018.06.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Vinberg F, Wang T, De Maria A, Zhao H, Bassnett S, Chen J, Kefalov VJ (2017) The Na+/Ca2+, K+ exchanger NCKX4 is required for efficient cone-mediated vision. Elife 6. https://doi.org/10.7554/eLife.24550
Vinberg F, Wang T, Molday RS, Chen J, Kefalov VJ (2015) A new mouse model for stationary night blindness with mutant Slc24a1 explains the pathophysiology of the associated human disease. Hum Mol Genet 24:5915–5929. https://doi.org/10.1093/hmg/ddv319
CAS
Article
PubMed
PubMed Central
Google Scholar
Vogalis F, Shiraki T, Kojima D, Wada Y, Nishiwaki Y, Jarvinen JL, Sugiyama J, Kawakami K, Masai I, Kawamura S, Fukada Y, Lamb TD (2011) Ectopic expression of cone-specific G-protein-coupled receptor kinase GRK7 in zebrafish rods leads to lower photosensitivity and altered responses. J Physiol 589:2321–2348. https://doi.org/10.1113/jphysiol.2010.204156
CAS
Article
PubMed
PubMed Central
Google Scholar
Volkov LI, Kim-Han JS, Saunders LM, Poria D, Hughes AEO, Kefalov VJ, Parichy DM, Corbo JC (2020) Thyroid hormone receptors mediate two distinct mechanisms of long-wavelength vision. Proc Natl Acad Sci U S A 117:15262–15269. https://doi.org/10.1073/pnas.1920086117
CAS
Article
PubMed
PubMed Central
Google Scholar
Wada Y, Sugiyama J, Okano T, Fukada Y (2006) GRK1 and GRK7: unique cellular distribution and widely different activities of opsin phosphorylation in the zebrafish rods and cones. J Neurochem 98:824–837. https://doi.org/10.1111/j.1471-4159.2006.03920.x
CAS
Article
PubMed
Google Scholar
Wald G (1939) The porphyropsin visual system. J Gen Physiol 22:775–794. https://doi.org/10.1085/jgp.22.6.775
CAS
Article
PubMed
PubMed Central
Google Scholar
Wan L, Almers W, Chen W (2005) Two ribeye genes in teleosts: the role of Ribeye in ribbon formation and bipolar cell development. J Neurosci 25:941–949. https://doi.org/10.1523/JNEUROSCI.4657-04.2005
CAS
Article
PubMed
PubMed Central
Google Scholar
Weiss ER, Ducceschi MH, Horner TJ, Li A, Craft CM, Osawa S (2001) Species-specific differences in expression of G-protein-coupled receptor kinase (GRK) 7 and GRK1 in mammalian cone photoreceptor cells: implications for cone cell phototransduction. J Neurosci 21:9175–9184
CAS
Article
Google Scholar
Weitz CJ, Miyake Y, Shinzato K, Montag E, Zrenner E, Went LN, Nathans J (1992) Human tritanopia associated with two amino acid substitutions in the blue-sensitive opsin. Am J Hum Genet 50:498–507
CAS
PubMed
PubMed Central
Google Scholar
Weitz CJ, Went LN, Nathans J (1992) Human tritanopia associated with a third amino acid substitution in the blue-sensitive visual pigment. Am J Hum Genet 51:444–446
CAS
PubMed
PubMed Central
Google Scholar
Weitz D, Ficek N, Kremmer E, Bauer PJ, Kaupp UB (2002) Subunit stoichiometry of the CNG channel of rod photoreceptors. Neuron 36:881–889. https://doi.org/10.1016/s0896-6273(02)01098-x
CAS
Article
PubMed
Google Scholar
Wilden U, Hall SW, Kühn H (1986) Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci U S A 83:1174–1178. https://doi.org/10.1073/pnas.83.5.1174
CAS
Article
PubMed
PubMed Central
Google Scholar
Williams DS (2002) Transport to the photoreceptor outer segment by myosin VIIa and kinesin II. Vision Res 42:455–462. https://doi.org/10.1016/s0042-6989(01)00228-0
CAS
Article
PubMed
Google Scholar
Willoughby JJ, Jensen AM (2012) Generation of a genetically encoded marker of rod photoreceptor outer segment growth and renewal. Biol Open 1:30–36. https://doi.org/10.1242/bio.2011016
Article
PubMed
Google Scholar
Wong-Riley MT, Besharse JC (2012) The kinesin superfamily protein KIF17: one protein with many functions. Biomol Concepts 3:267–282. https://doi.org/10.1515/bmc-2011-0064
CAS
Article
PubMed
PubMed Central
Google Scholar
Woodruff ML, Sampath AP, Matthews HR, Krasnoperova NV, Lem J, Fain GL (2002) Measurement of cytoplasmic calcium concentration in the rods of wild-type and transducin knock-out mice. J Physiol 542:843–854
CAS
Article
Google Scholar
Wycisk KA, Budde B, Feil S, Skosyrski S, Buzzi F, Neidhardt J, Glaus E, Nürnberg P, Ruether K, Berger W (2006) Structural and functional abnormalities of retinal ribbon synapses due to Cacna2d4 mutation. Invest Ophthalmol Vis Sci 47:3523–3530. https://doi.org/10.1167/iovs.06-0271
Article
PubMed
Google Scholar
Yamamoto S, Sippel KC, Berson EL, Dryja TP (1997) Defects in the rhodopsin kinase gene in the Oguchi form of stationary night blindness. Nat Genet 15:175–178. https://doi.org/10.1038/ng0297-175
CAS
Article
PubMed
Google Scholar
Yau KW, Baylor DA (1989) Cyclic GMP-activated conductance of retinal photoreceptor cells. Annu Rev Neurosci 12:289–327. https://doi.org/10.1146/annurev.ne.12.030189.001445
CAS
Article
PubMed
Google Scholar
Yau KW, Nakatani K (1985) Light-suppressible, cyclic GMP-sensitive conductance in the plasma membrane of a truncated rod outer segment. Nature 317:252–255. https://doi.org/10.1038/317252a0
CAS
Article
PubMed
Google Scholar
Yoshimatsu T, Schröder C, Nevala NE, Berens P, Baden T (2020) Fovea-like photoreceptor specializations underlie single UV cone driven prey-capture behavior in zebrafish. Neuron 107:320–337.e326. https://doi.org/10.1016/j.neuron.2020.04.021
CAS
Article
PubMed
PubMed Central
Google Scholar
Young RW (1967) The renewal of photoreceptor cell outer segments. J Cell Biol 33:61–72. https://doi.org/10.1083/jcb.33.1.61
CAS
Article
PubMed
PubMed Central
Google Scholar
Young RW, Bok D (1969) Participation of the retinal pigment epithelium in the rod outer segment renewal process. J Cell Biol 42:392–403. https://doi.org/10.1083/jcb.42.2.392
CAS
Article
PubMed
PubMed Central
Google Scholar
Zang J, Keim J, Kastenhuber E, Gesemann M, Neuhauss SC (2015) Recoverin depletion accelerates cone photoresponse recovery. Open Biol 5. https://doi.org/10.1098/rsob.150086
Zang J, Matthews HR (2012) Origin and control of the dominant time constant of salamander cone photoreceptors. J Gen Physiol 140:219–233. https://doi.org/10.1085/jgp.201110762
CAS
Article
PubMed
PubMed Central
Google Scholar
Zang J, Neuhauss SCF (2018) The binding properties and physiological functions of recoverin. Front Mol Neurosci 11:473. https://doi.org/10.3389/fnmol.2018.00473
CAS
Article
PubMed
PubMed Central
Google Scholar
Zelinka CP, Sotolongo-Lopez M, Fadool JM (2018) Targeted disruption of the endogenous zebrafish rhodopsin locus as models of rapid rod photoreceptor degeneration. Mol Vis 24:587–602
CAS
PubMed
PubMed Central
Google Scholar
Zhao X, Huang J, Khani SC, Palczewski K (1998) Molecular forms of human rhodopsin kinase (GRK1). J Biol Chem 273:5124–5131. https://doi.org/10.1074/jbc.273.9.5124
CAS
Article
PubMed
Google Scholar
Zheng J, Trudeau MC, Zagotta WN (2002) Rod cyclic nucleotide-gated channels have a stoichiometry of three CNGA1 subunits and one CNGB1 subunit. Neuron 36:891–896. https://doi.org/10.1016/s0896-6273(02)01099-1
CAS
Article
PubMed
Google Scholar
Zhong H, Molday LL, Molday RS, Yau KW (2002) The heteromeric cyclic nucleotide-gated channel adopts a 3A:1B stoichiometry. Nature 420:193–198. https://doi.org/10.1038/nature01201
CAS
Article
PubMed
PubMed Central
Google Scholar
Zimmermann MJY, Nevala NE, Yoshimatsu T, Osorio D, Nilsson DE, Berens P, Baden T (2018) Zebrafish differentially process color across visual space to match natural scenes. Curr Biol 28:2018–2032.e2015. https://doi.org/10.1016/j.cub.2018.04.075
CAS
Article
PubMed
Google Scholar