Skip to main content
Log in

Ca2+-modulated vision-linked ROS-GC guanylate cyclase transduction machinery

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Vertebrate phototransduction depends on the reciprocal relationship between two-second messengers, cyclic GMP and Ca2+. The concentration of both is reciprocally regulated including the dynamic synthesis of cyclic GMP by a membrane bound guanylate cyclase. Different from hormone receptor guanylate cyclases, the cyclases operating in phototransduction are regulated by the intracellular Ca2+-concentration via small Ca2+-binding proteins. Based on the site of their expression and their Ca2+ modulation, this sub-branch of the cyclase family was named sensory guanylate cyclases, of which the retina specific forms are named ROS-GCs (rod outer segment guanylate cyclases). This review focuses on the structure and function of the ROS-GC subfamily present in the mammalian retinal neurons: photoreceptors and inner layers of the retinal neurons. Portions and excerpts of the review are from a previous chapter (Curr Top Biochem Res 6:111–144, 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sharma RK (2002) Evolution of the membrane guanylate cyclase transduction system. Mol Cell Biol 230:3–30

    CAS  Google Scholar 

  2. Pugh EN Jr, Duda T, Sitaramayya A, Sharma RK (1997) Photoreceptor guanylate cyclases: a review. Biosci Rep 17:29–73

    Google Scholar 

  3. Sharma RK, Duda T, Venkataraman V, Koch KW (2004) Calcium-modulated mammalian guanylate cyclase transduction machinery in sensory neurons: a universal concept. Curr Top Biochem Res 6:112–144

    Google Scholar 

  4. Burns BE, Baylor DA (2001) Activation, deactivation, and adaptation in vertebrate photoreceptor cells. Annu Rev Neurosci 24:779–805

    Article  CAS  PubMed  Google Scholar 

  5. Pugh EN Jr, Lamb TD (2000) Phototransduction in vertebrate rods and cones: molecular mechanisms of amplification, recovery and light adaptation. In: Stavenga DG, DeGrip WJ, Pugh EN Jr (eds) Handbook of biological physics, vol 3. Elsevier, Amsterdam, pp 183–255

    Google Scholar 

  6. Stephen R, Filipek S, Palczewski K, Sousa MC (2008) Ca2+-dependent regulation of phototransduction. Photochem Photobiol 84:903–910

    Article  CAS  PubMed  Google Scholar 

  7. Wensel TG (2008) Signal transducing membrane complexes of photoreceptor outer segments. Vision Res 48:2052–2061

    Article  CAS  PubMed  Google Scholar 

  8. Luo DG, Xue T, Yau KW (2008) How vision begins: an odyssey. Proc Natl Acad Sci USA 105:9855–9862

    Article  CAS  PubMed  Google Scholar 

  9. Koch KW, Duda T, Sharma RK (2002) Photoreceptor specific guanylate cyclases in vertebrate phototransduction. Mol Cell Biochem 230:97–106

    Article  CAS  PubMed  Google Scholar 

  10. Baehr W, Karan S, Maeda T, Luo DG, Li S, Bronson JD, Watt CB, Yau KW, Frederick JM, Palczewski K (2007) The function of guanylate cyclase 1 and guanylate cyclase 2 in rod and cone photoreceptors. J Biol Chem 282:8837–8847

    Article  CAS  PubMed  Google Scholar 

  11. Helten A, Säftel W, Koch KW (2007) Expression level and activity profile of membrane bound guanylate cyclase type 2 in rod outer segments. J Neurochem 103:1439–1446

    Article  CAS  PubMed  Google Scholar 

  12. Frins S, Bonigk W, Muller F, Kellner R, Koch KW (1996) Functional characterization of a guanylyl cyclase-activating protein from vertebrate rods. Cloning, heterologous expression, and localization. J Biol Chem 271:8022–8027

    Article  CAS  PubMed  Google Scholar 

  13. Gorczyca WA, Polans AS, Surgucheva IG, Subbaraya I, Baehr W, Palczewski K (1995) Guanylyl cyclase activating protein. A calcium-sensitive regulator of phototransduction. J Biol Chem 270:22029–22036

    Article  CAS  PubMed  Google Scholar 

  14. Kachi S, Nishizawa Y, Olshevskaya E, Yamazaki A, Miyake Y, Wakabayashi T, Dizhoor A, Usukura J (1999) Detailed localization of photoreceptor guanylate cyclase activating protein-1 and -2 in mammalian retinas using light and electron microscopy. Exp Eye Res 6:465–473

    Article  Google Scholar 

  15. Dizhoor AM, Olshevskaya EV, Henzel WJ, Wong SC, Stults JT, Ankoudinova I, Hurley JB (1995) Cloning, sequencing, and expression of a 24-kDa Ca(2 +)-binding protein activating photoreceptor guanylyl cyclase. J Biol Chem 270:25200–25206

    Article  CAS  PubMed  Google Scholar 

  16. Otto-Bruc A, Fariss RN, Haeseleer F, Huang J, Buczylko J, Surgucheva I, Baehr W, Milam AH, Palczewski K (1997) Localization of guanylate cyclase-activating protein 2 in mammalian retinas. Proc Natl Acad Sci USA 94:4727–4732

    Article  CAS  PubMed  Google Scholar 

  17. Cuenca N, Lopez S, Howes K, Kolb H (1998) The localization of guanylyl cyclase-activating proteins in the mammalian retina. Invest Ophthalmol Vis Sci 39:1243–1250

    CAS  PubMed  Google Scholar 

  18. Imanishi Y, Li N, Sokal I, Sowa ME, Lichtarge O, Wensel TG, Saperstein DA, Baehr W, Palczewski K (2002) Characterization of retinal guanylate cyclase-activating protein 3 (GCAP3) from zebrafish to man. Eur J Neurosci 15:63–78

    Article  PubMed  Google Scholar 

  19. Imanishi Y, Yang L, Sokal I, Filipek S, Palczewski K, Baehr W (2004) Diversity of guanylate cyclase-activating proteins (GCAPs) in teleost fish: characterization of three novel GCAPs (GCAP4, GCAP5, GCAP7) from zebrafish (Danio rerio) and prediction of eight GCAPs (GCAP1–8) in pufferfish (Fugu rubripes). J Mol Evol 59:204–217

    Article  CAS  PubMed  Google Scholar 

  20. Hwang JY, Lange C, Helten A, Höppner-Heitmann D, Duda T, Sharma RK, Koch KW (2003) Regulatory modes of rod outer segment membrane guanylate cyclase differ in catalytic efficiency and Ca(2+)-sensitivity. Eur J Biochem 270:3814–3821

    Article  CAS  PubMed  Google Scholar 

  21. Peshenko IV, Dizhoor AM (2006) Ca2+ and Mg2+ binding properties of GCAP-1. Evidence that Mg2+-bound form is the physiological activator of photoreceptor guanylyl cyclase. J Biol Chem 281:23830–23841

    Article  CAS  PubMed  Google Scholar 

  22. Peshenko IV, Dizhoor AM (2007) Activation and inhibition of photoreceptor guanylyl cyclase by guanylyl cyclase activating protein 1 (GCAP-1): the functional role of Mg2+/Ca2+ exchange in EF-hand domains. J Biol Chem 282:21645–21652

    Article  CAS  PubMed  Google Scholar 

  23. Sokal I, Otto-Bruc AE, Surgucheva I, Verlinde CLM, Wang CK, Baehr W, Palczewski K (1999) Conformational changes in guanylyl cyclase-activating protein 1 (GCAP1) and its tryptophan mutants as a function of calcium concentration. J Biol Chem 274:19829–19837

    Article  CAS  PubMed  Google Scholar 

  24. Lim S, Peshenko I, Dizhoor A, Ames JB (2009) Effects of Ca2+, Mg2+, and myristoylation on guanylyl cyclase activating protein 1 structure and stability. Biochemistry 48:850–862

    Article  CAS  PubMed  Google Scholar 

  25. Ames JB, Dizhoor AM, Ikura M, Palczewski K, Stryer L (1999) Three-dimensional structure of guanylyl cyclase activating protein-2, a calcium-sensitive modulator of photoreceptor guanylyl cyclases. J Biol Chem 274:19329–19337

    Article  CAS  PubMed  Google Scholar 

  26. Dizhoor AM, Hurley JB (1996) Inactivation of EF-hands makes GCAP-2 (p24) a constitutive activator of photoreceptor guanylyl cyclase by preventing a Ca2+-induced “activator-to-inhibitor” transition. Biol Chem 271:19346–19350

    Article  CAS  Google Scholar 

  27. Helten A, Koch KW (2007) Calcium-dependent conformational changes in guanylate cyclase-activating protein 2 monitored by cysteine accessibility. Biochem Biophys Res Commun 356:687–692

    Article  CAS  PubMed  Google Scholar 

  28. Olshevskaya EV, Hughes RE, Hurley JB, Dizhoor AM (1997) Calcium binding, but not a calcium-myristoyl switch, controls the ability of guanylyl cyclase-activating protein GCAP-2 to regulate photoreceptor guanylyl cyclase. J Biol Chem 272:14327–14333

    Article  CAS  PubMed  Google Scholar 

  29. Palczewski K, Subbaraya I, Gorczyca WA, Helekar BS, Ruiz CC, Ohguro H, Huang J, Zhao X, Crabb JW, Johnson RS, Baehr W (1994) Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein. Neuron 13:395–404

    Article  CAS  PubMed  Google Scholar 

  30. Hwang JY, Koch KW (2002) The myristoylation of the neuronal Ca2+-sensors guanylate cyclase-activating protein 1 and 2. Biochim Biophys Acta 1600:111–117

    CAS  PubMed  Google Scholar 

  31. Hwang JY, Koch KW (2002) Calcium- and myristoyl-dependent properties of guanylate cyclase-activating protein-1 and protein-2. Biochemistry 41:13021–13028

    Article  CAS  PubMed  Google Scholar 

  32. Zozulya S, Stryer L (1992) Calcium-myristoyl protein switch. Proc Natl Acad Sci USA 89:11569–11573

    Article  CAS  PubMed  Google Scholar 

  33. Stephen R, Bereta G, Golczak M, Palczewski K, Sousa MC (2007) Stabilizing function for myristoyl group revealed by the crystal structure of a neuronal calcium sensor, guanylate cyclase-activating protein 1. Structure 15:1392–1402

    Article  CAS  PubMed  Google Scholar 

  34. Sampath AP, Matthews HR, Cornwall MC, Fain GL (1998) Bleached pigment produces a maintained decrease in outer segment Ca2+ in salamander rods. J Gen Physiol 111:53–64

    Article  CAS  PubMed  Google Scholar 

  35. Woodruff ML, Sampath AP, Matthews HR, Krasnoperova NV, Lem J, Fain GL (2002) Measurement of cytoplasmic calcium concentration in the rods of wild-type and transducin knock-out mice. J Physiol 542:843–854

    Article  CAS  PubMed  Google Scholar 

  36. Peshenko IV, Dizhoor AM (2004) Guanylyl cyclase-activating proteins (GCAPs) are Ca2+/Mg2+sensors: implications for photoreceptor guanylyl cyclase (RetGC) regulation in mammalian photoreceptors. J Biol Chem 279:16903–16906

    Article  CAS  PubMed  Google Scholar 

  37. Chen C, Nakatani K, Koutalos Y (2003) Free magnesium concentration in salamander photoreceptor outer segments. J Physiol 553:125–135

    Article  CAS  PubMed  Google Scholar 

  38. Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 8:182–193

    Article  CAS  PubMed  Google Scholar 

  39. Koch KW (2006) GCAPs, the classical neuronal calcium sensors in the retina—a Ca2+-relay model of guanylate cyclase activation. Calcium Binding Proteins 1:3–6

    Google Scholar 

  40. Howes KA, Pennesi ME, Sokal I, Church-Kopish J, Schmidt B, Margolis D, Frederick JM, Rieke F, Palczewski K, Wu SM, Detwiler PB, Baehr W (2002) GCAP1 rescues rod photoreceptor response in GCAP1/GCAP2 knockout mice. EMBO J 21:1545–1554

    Article  CAS  PubMed  Google Scholar 

  41. Olshevskaya EV, Ermilov AN, Dizhoor AM (1999) Dimerization of guanylyl cyclase-activating protein and a mechanism of photoreceptor guanylyl cyclase activation. J Biol Chem 274:25583–25587

    Article  CAS  PubMed  Google Scholar 

  42. Hwang JY, Schlesinger R, Koch KW (2004) Irregular dimerization of guanylate cyclase-activating protein 1 mutants causes loss of target activation. Eur J Biochem 271:3785–3793

    Article  CAS  PubMed  Google Scholar 

  43. Peshenko IV, Olshevskaya EV, Dizhoor AM (2004) Ca(2+)-dependent conformational changes in guanylyl cyclase-activating protein 2 (GCAP-2) revealed by site-specific phosphorylation and partial proteolysis. J Biol Chem 279:50342–50349

    Article  CAS  PubMed  Google Scholar 

  44. Duda T, Fik-Rymarkiewicz E, Venkataraman V, Krishnan R, Koch KW, Sharma RK (2005) The calcium-sensor guanylate cyclase activating protein type 2 specific site in rod outer segment membrane guanylate cyclase type 1. Biochemistry 44:7336–7345

    Article  CAS  PubMed  Google Scholar 

  45. Lange C, Duda T, Beyermann M, Sharma RK, Koch KW (1999) Regions in vertebrate photoreceptor guanylyl cyclase ROS-GC1 involved in Ca(2+)-dependent regulation by guanylyl cyclase-activating protein GCAP-1. FEBS Lett 460:27–31

    Article  CAS  PubMed  Google Scholar 

  46. Yu H, Olshevskaya E, Duda T, Seno K, Hayashi F, Sharma RK, Dizhoor AM, Yamazaki A (1999) Activation of retinal guanylyl cyclase-1 by Ca2+-binding proteins involves its dimerization. J Biol Chem 274:15547–15555

    Article  CAS  PubMed  Google Scholar 

  47. Duda T, Venkataraman V, Krishnan A, Sharma RK (1998) Rod outer segment membrane guanylate cyclase type 1 (ROS-GC1) gene: structure, organization and regulation by phorbol ester, a protein kinase C activator. Mol Cell Biochem 189:63–70

    Article  CAS  PubMed  Google Scholar 

  48. Perrault I, Rozet JM, Calvas P, Gerber S, Camuzat A, Dollfus H, Châtelin S, Souied E, Ghazi I, Leowski C, Bonnemaison M, Le Paslier D, Frézal J, Dufier JL, Pittler S, Kaplan J (1996) Retinal-specific guanylate cyclase gene mutations in Leber’s congenital amaurosis. Nat Genet 14:461–464

    Article  CAS  PubMed  Google Scholar 

  49. Duda T, Venkataraman V, Goraczniak R, Lange C, Koch KW, Sharma RK (1999) Functional consequences of a rod outer segment membrane guanylate cyclase (ROS-GC1) gene mutation linked with Leber’s congenital amaurosis. Biochemistry 38:509–515

    Article  CAS  PubMed  Google Scholar 

  50. Kelsell RE, Gregory-Evans K, Payne AM, Perrault I, Kaplan J, Yang RB, Garbers DL, Bird AC, Moore AT, Hunt DM (1998) Mutations in the retinal guanylate cyclase (RETGC-1) gene in dominant cone-rod dystrophy. Hum Mol Genet 7:1179–1184

    Article  CAS  PubMed  Google Scholar 

  51. Duda T, Krishnan A, Venkataraman V, Lange C, Koch KW, Sharma RK (1999) Mutations in the rod outer segment membrane guanylate cyclase in a cone-rod dystrophy cause defects in calcium signaling. Biochemistry 38:13912–13919

    Article  CAS  PubMed  Google Scholar 

  52. Duda T, Venkataraman V, Jankowska A, Lange C, Koch KW, Sharma RK (2000) Impairment of the rod outer segment membrane guanylate cyclase dimerization in a cone-rod dystrophy results in defective calcium signaling. Biochemistry 39:12522–12533

    Article  CAS  PubMed  Google Scholar 

  53. Tucker CL, Woodcock SC, Kelsell RE, Ramamurthy V, Hunt DM, Hurley JB (1999) Biochemical analysis of a dimerization domain mutation in RetGC-1 associated with dominant cone-rod dystrophy. Proc Natl Acad Sci USA 96:9039–9044

    Article  CAS  PubMed  Google Scholar 

  54. Duda T, Koch KW (2002) Retinal diseases linked with photoreceptor guanylate cyclase. Mol Cell Biochem 230:129–138

    Article  CAS  PubMed  Google Scholar 

  55. Newbold RJ, Deery EC, Walker CE, Wilkie SE, Srinivasan N, Hunt DM, Bhattacharya SS, Warren MJ (2001) The destabilization of human GCAP1 by a proline to leucine mutation might cause cone-rod dystrophy. Hum Mol Genet 10:47–54

    Article  CAS  PubMed  Google Scholar 

  56. Dizhoor AM, Boikov SG, Olshevskaya EV (1998) Constitutive activation of photoreceptor guanylate cyclase by Y99C mutant of GCAP-1. Possible role in causing human autosomal dominant cone degeneration. J Biol Chem 273:17311–17314

    Article  CAS  PubMed  Google Scholar 

  57. Kitiratschky VB, Behnen P, Kellner U, Heckenlively JR, Zrenner E, Jägle H, Kohl S, Wissinger B, Koch KW (2009) Mutations in the GUCA1A gene involved in hereditary cone dystrophies impair calcium-mediated regulation of guanylate cyclase. Hum Mutat 30:E782–E796

    Article  PubMed  Google Scholar 

  58. Sokal I, Li N, Surgucheva I, Warren MJ, Payne AM, Battacharya SS, Baehr W, Palczewski K (1998) GCAP1 (Y99C) mutant is constitutively active in autosomal dominant cone dystrophy. Mol Cell 2:129–133

    Article  CAS  PubMed  Google Scholar 

  59. Wilkie SE, Li Y, Deery EC, Newbold RJ, Garibaldi D, Bateman JB, Zhang H, Lin W, Zack DJ, Bhattacharya SS, Warren MJ, Hunt DM, Zhang K (2001) Identification and functional consequences of a new mutation (E155G) in the gene for GCAP1 that causes autosomal dominant cone dystrophy. Am J Hum Genet 69:471–480

    Article  CAS  PubMed  Google Scholar 

  60. Duda T, Venkataraman V, Sharma RK (2006) Constitution and operational principles of the retinal and odorant-linked neurocalcind-dependent Ca2+ modulated ROS-GC transduction machinery. In: Phillipov PP, Koch KW (eds) Neuronal calcium sensor proteins. Nova Science Publishers Inc, New York

    Google Scholar 

  61. Pozdnyakov N, Yoshida A, Cooper NG, Margulis A, Duda T, Sharma RK, Sitaramayya A (1995) A novel calcium-dependent activator of retinal rod outer segment membrane guanylate cyclase. Biochemistry 34:14279–14283

    Article  CAS  PubMed  Google Scholar 

  62. Pozdnyakov N, Goraczniak R, Margulis A, Duda T, Sharma RK, Yoshida A, Sitaramayya A (1997) Structural and functional characterization of retinal calcium-dependent guanylate cyclase activator protein (CD-GCAP): identity with S100beta protein. Biochemistry 36:14159–14166

    Article  CAS  PubMed  Google Scholar 

  63. Margulis A, Pozdnyakov N, Sitaramayya A (1996) Activation of bovine photoreceptor guanylate cyclase by S100 proteins. Biochem Biophys Res Commun 218:243–247

    Article  CAS  PubMed  Google Scholar 

  64. Duda T, Goraczniak RM, Sharma RK (1996) Molecular characterization of S100A1–S100B protein in retina and its activation mechanism of bovine photoreceptor guanylate cyclase. Biochemistry 35:6263–6266

    Article  CAS  PubMed  Google Scholar 

  65. Cooper N, Liu L, Yoshida A, Pozdnyakov N, Margulis A, Sitaramayya A (1995) The bovine rod outer segment guanylate cyclase, ROS-GC, is present in both outer segment and synaptic layers of the retina. J Mol Neurosci 6:211–222

    Article  CAS  PubMed  Google Scholar 

  66. Liu X, Seno K, Nishizawa Y, Hayashi F, Yamazaki A, Matsumoto H, Wakabayashi T, Usukura J (1994) Ultrastructural localization of retinal guanylate cyclase in human and monkey retinas. Exp Eye Res 59:761–768

    Article  CAS  PubMed  Google Scholar 

  67. Redburn DA, Thomas TN (1979) Isolation of synaptosomal fractions from rabbit retina. J Neurosci Methods 1:235–242

    Article  CAS  PubMed  Google Scholar 

  68. Duda T, Koch KW, Venkataraman V, Lange C, Beyermann M, Sharma RK (2002) Ca(2+) sensor S100beta-modulated sites of membrane guanylate cyclase in the photoreceptor-bipolar synapse. EMBO J 21:2547–2556

    Article  CAS  PubMed  Google Scholar 

  69. Sharma RK, Duda T (2006) Calcium sensor neurocalcin δ-modulated ROS-GC transduction machinery in the retinal and olfactory neurons. Calcium Binding Proteins 1:7–11

    CAS  Google Scholar 

  70. Venkataraman V, Duda T, Vardi N, Koch KW, Sharma RK (2003) Calcium-modulated guanylate cyclase transduction machinery in the photoreceptor–bipolar synaptic region. Biochemistry 42:5640–5648

    Article  CAS  PubMed  Google Scholar 

  71. Krizaj D, Copenhagen DR (2002) Calcium regulation in photoreceptors. Front Biosci 7:d2023–d2044

    Article  CAS  PubMed  Google Scholar 

  72. Okazaki K, Watanabe M, Ando Y, Hagiwara M, Terasawa M, Hidaka H (1992) Full sequence of neurocalcin, a novel calcium-binding protein abundant in central nervous system. Biochem Biophys Res Commun 185:147–153

    Article  CAS  PubMed  Google Scholar 

  73. Kumar VD, Vijay-Kumar S, Krishnan A, Duda T, Sharma RK (1999) A second calcium regulator of rod outer segment membrane guanylate cyclase, ROS-GC1: neurocalcin. Biochemistry 38:12614–12620

    Article  CAS  PubMed  Google Scholar 

  74. Krishnan A, Venkataraman V, Fik-Rymarkiewicz E, Duda T, Sharma RK (2004) Structural, biochemical and functional characterization of the calcium sensor neurocalcin delta in the inner retinal neurons and its linkage with the rod outer segment membrane. Biochemistry 43:2708–2723

    Article  CAS  PubMed  Google Scholar 

  75. Matsumura H, Shiba T, Inoue T, Harada S, Kai Y (1998) A novel mode of target recognition suggested by the 2.0 A structure of holo S100B from bovine brain. Structure 6:233–241

    Article  CAS  PubMed  Google Scholar 

  76. Vijay-Kumar S, Kumar VD (1999) Crystal structure of recombinant bovine neurocalcin. Nat Struct Biol 6:80–88

    Article  CAS  PubMed  Google Scholar 

  77. Braunewell KH, Gundelfinger ED (1999) Intracellular neuronal calcium sensor proteins: a family of EF-hand calcium-binding proteins in search of a function. Cell Tissue Res 295:1–12

    Article  CAS  PubMed  Google Scholar 

  78. Burgoyne RD, Weiss JL (2001) The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J 353:1–12 (Erratum, Biochem J 354: 727)

    Article  CAS  PubMed  Google Scholar 

  79. Terasawa M, Nakano A, Kobayashi R, Hidaka H (1992) Neurocalcin: a novel calcium-binding protein from bovine brain. J Biol Chem 267:19596–19599

    CAS  PubMed  Google Scholar 

  80. Burgess WH, Jemiolo DK, Kretsinger RH (1980) Interaction of calcium and calmodulin in the presence of sodium dodecyl sulfate. Biochim Biophys Acta 623:257–270

    CAS  PubMed  Google Scholar 

  81. Ladant D (1995) Calcium and membrane binding properties of bovine neurocalcin delta expressed in Escherichia coli. J Biol Chem 270:3179–3185

    CAS  PubMed  Google Scholar 

  82. Venkataraman V, Duda T, Ravichandran S, Sharma RK (2008) Neurocalcin delta modulation of ROS-GC1, a new Model of Ca(2+) signaling. Biochemistry 47:6590–6601

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by several grants of the Deutsche Forschungsgemeinschaft (K.-W. Koch) and USPHS awards DC 005349 (RKS), HL084584 (TD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rameshwar K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, KW., Duda, T. & Sharma, R.K. Ca2+-modulated vision-linked ROS-GC guanylate cyclase transduction machinery. Mol Cell Biochem 334, 105–115 (2010). https://doi.org/10.1007/s11010-009-0330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0330-z

Keywords

Navigation