Skip to main content

Advertisement

Log in

Comparison of a lightweight polypropylene mesh (Optilene® LP) and a large-pore knitted PTFE mesh (GORE® INFINIT® mesh)—Biocompatibility in a standardized endoscopic extraperitoneal hernia model

  • Original Article
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Purpose

The use of a mesh with good biocompatibility properties is of decisive importance for the avoidance of recurrences and chronic pain in endoscopic hernia repair surgery. As we know from numerous experiments and clinical experience, large-pore, lightweight polypropylene meshes possess the best biocompatibility. However, large-pore meshes of different polymers may be used as well and might be an alternative solution.

Methods

Utilizing a totally extraperitoneal technique in an established animal model, 20 domestic pigs were implanted with either a lightweight large-pore polypropylene (PP) mesh (Optilene® LP) or a medium-weight large-pore knitted polytetrafluorethylene (PTFE) mesh (GORE® INFINIT® mesh). After 94 days, the pigs were sacrificed and postmortem diagnostic laparoscopy was performed, followed by explantation of the specimens for macroscopic, histological and immunohistochemical evaluation.

Results

The mean mesh shrinkage rate was 14.2% for Optilene® LP vs. 24.7% for INFINIT® mesh (p = 0.017). The partial volume of the inflammatory cells was 11.2% for Optilene® LP vs. 13.9% for INFINIT (n.s.). CD68 was significantly higher for INFINIT (11.8% vs. 5.6%, p = 0.007). The markers of cell turnover, namely Ki67 and the apoptotic index, were comparable at 6.4% vs. 12.4% (n.s.) and 1.6% vs. 2.0% (n.s.). In the extracellular matrix, TGF-β was 35.4% for Optilene® LP and 31.0% for INFINIT® (n.s.). Collagen I (pos/300 μm) deposits were 117.8 and 114.9, respectively.

Conclusion

In our experimental examinations, Optilene® LP and INFINIT® showed a comparable biocompatibility in terms of chronic inflammatory reaction; however, the shrinkage rate was significantly higher for INFINIT® after 3 months. The higher shrinkage rate of INFINIT® should be taken into account when choosing the mesh size for an adequate hernia overlap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Scott NW, McCormack K, Graham P, Go PM, Ross SJ, Grant AM (2002) Open mesh versus non-mesh for repair of femoral and inguinal hernia. Cochrane Database Syst Rev (4): CD002197.

  2. van Veen RN, Wijsmuller AR, Vrijland WW, Hop WC, Lange JF, Jeekel J (2007) Long-term follow-up of a randomized clinical trial of non-mesh versus mesh repair of primary inguinal hernia. Br J Surg 94(4):506–10

    Article  PubMed  Google Scholar 

  3. McCormack K, Scott NW, Go PM, Ross S, Grant AM (2003) Laparoscopic techniques versus open techniques for inguinal hernia repair. Cochrane Database Syst Rev (1): CD001785.

  4. Cobb WS, Kercher KW, Heniford BT (2005) The argument for lightweight polypropylene mesh in hernia repair. Surg Innov 12(1):63–9

    Article  PubMed  Google Scholar 

  5. Greca FH, de Paula JB, Biondo-Simoes ML, da Costa FD, da Silva AP, Time S, Mansur A (2001) The influence of differing pore sizes on the biocompatibility of two polypropylene meshes in the repair of abdominal defects. Experimental study in dogs. Hernia 5(2):59–64

    Article  PubMed  CAS  Google Scholar 

  6. Junge K, Rosch R, Bialasinski L, Klinge U, Klosterhalfen B, Schumpelick V (2003) Persistent extracellular matrix remodelling at the interface to polymers used for hernia repair. Eur Surg Res 35(6):497–504

    Article  PubMed  CAS  Google Scholar 

  7. Klosterhalfen B, Klinge U, Schumpelick V (1998) Functional and morphological evaluation of different polypropylene-mesh modifications for abdominal wall repair. Biomaterials 19(24):2235–46

    Article  PubMed  CAS  Google Scholar 

  8. Schug-Pass C, Tamme C, Sommerer F, Tannapfel A, Lippert H, Kockerling F (2008) A lightweight, partially absorbable mesh (Ultrapro) for endoscopic hernia repair: experimental biocompatibility results obtained with a porcine model. Surg Endosc 22(4):1100–6

    Article  PubMed  CAS  Google Scholar 

  9. Klinge U, Klosterhalfen B, Birkenhauer V, Junge K, Conze J, Schumpelick V (2002) Impact of polymer pore size on the interface scar formation in a rat model. J Surg Res 103(2):208–14

    Article  PubMed  CAS  Google Scholar 

  10. Schumpelick V, Klinge U, Welty G, Klosterhalfen B (1999) Meshes within the abdominal wall. Chirurg 70(8):876–87

    Article  PubMed  CAS  Google Scholar 

  11. Klinge U, Conze J, Klosterhalfen B, Limberg W, Obolenski B, Ottinger AP, Schumpelick V (1996) Changes in abdominal wall mechanics after mesh implantation. Experimental changes in mesh stability. Langenbecks Arch Chir 381(6):323–32

    Article  PubMed  CAS  Google Scholar 

  12. Scheidbach H, Tamme C, Tannapfel A, Lippert H, Kockerling F (2004) In vivo studies comparing the biocompatibility of various polypropylene meshes and their handling properties during endoscopic total extraperitoneal (TEP) patchplasty: an experimental study in pigs. Surg Endosc 18(2):211–20

    Article  PubMed  CAS  Google Scholar 

  13. Schopf S, von Ahnen T, von Ahnen M, Schardey H (2010) Chronic pain after laparoscopic transabdominal preperitoneal hernia repair: a randomized comparison of light and extralight titanized polypropylene mesh. World J Surg.

  14. Agarwal BB, Agarwal S, Mahajan KC (2009) Laparoscopic ventral hernia repair: innovative anatomical closure, mesh insertion without 10-mm transmyofascial port, and atraumatic mesh fixation: a preliminary experience of a new technique. Surg Endosc 23(4):900–5

    Article  PubMed  Google Scholar 

  15. Bringman S, Wollert S, Osterberg J, Heikkinen T (2005) Early results of a randomized multicenter trial comparing Prolene and VyproII mesh in bilateral endoscopic extraperitoneal hernioplasty (TEP). Surg Endosc 19(4):536–40

    Article  PubMed  CAS  Google Scholar 

  16. Heikkinen T, Wollert S, Osterberg J, Smedberg S, Bringman S (2006) Early results of a randomised trial comparing Prolene and VyproII-mesh in endoscopic extraperitoneal inguinal hernia repair (TEP) of recurrent unilateral hernias. Hernia 10(1):34–40

    Article  PubMed  CAS  Google Scholar 

  17. Horstmann R, Hellwig M, Classen C, Rottgermann S, Palmes D (2006) Impact of polypropylene amount on functional outcome and quality of life after inguinal hernia repair by the TAPP procedure using pure, mixed, and titanium-coated meshes. World J Surg 30(9):1742–9

    Article  PubMed  Google Scholar 

  18. Langenbach MR, Schmidt J, Zirngibl H (2006) Comparison of biomaterials: three meshes and TAPP for inguinal hernia. Surg Endosc 20(10):1511–7

    Article  PubMed  CAS  Google Scholar 

  19. Langenbach MR, Schmidt J, Ubrig B, Zirngibl H (2008) Sixty-month follow-up after endoscopic inguinal hernia repair with three types of mesh: a prospective randomized trial. Surg Endosc 22(8):1790–7

    Article  PubMed  Google Scholar 

  20. Agarwal BB, Agarwal KA, Sahu T, Mahajan KC (2010) Traditional polypropylene and lightweight meshes in totally extraperitoneal inguinal herniorrhaphy. Int J Surg 8(1):44–7

    Article  PubMed  Google Scholar 

  21. Koch A, Bringman S, Myrelid P, Smeds S, Kald A (2008) Randomized clinical trial of groin hernia repair with titanium-coated lightweight mesh compared with standard polypropylene mesh. Br J Surg 95(10):1226–31

    Article  PubMed  CAS  Google Scholar 

  22. Akolekar D, Kumar S, Khan LR, de Beaux AC, Nixon SJ (2008) Comparison of recurrence with lightweight composite polypropylene mesh and heavyweight mesh in laparoscopic totally extraperitoneal inguinal hernia repair: an audit of 1,232 repairs. Hernia 12(1):39–43

    Article  PubMed  CAS  Google Scholar 

  23. Bringman S, Wollert S, Osterberg J, Smedberg S, Granlund H, Heikkinen TJ (2006) Three-year results of a randomized clinical trial of lightweight or standard polypropylene mesh in Lichtenstein repair of primary inguinal hernia. Br J Surg 93(9):1056–9

    Article  PubMed  CAS  Google Scholar 

  24. Champault G, Bernard C, Rizk N, Polliand C (2007) Inguinal hernia repair: the choice of prosthesis outweighs that of technique. Hernia 11(2):125–8

    Article  PubMed  CAS  Google Scholar 

  25. Nienhuijs S, Staal E, Strobbe L, Rosman C, Groenewoud H, Bleichrodt R (2007) Chronic pain after mesh repair of inguinal hernia: a systematic review. Am J Surg 194(3):394–400

    Article  PubMed  Google Scholar 

  26. Tamme C, Garde N, Klingler A, Hampe C, Wunder R, Kockerling F (2005) Totally extraperitoneal inguinal hernioplasty with titanium-coated lightweight polypropylene mesh: early results. Surg Endosc 19(8):1125–9

    Article  PubMed  CAS  Google Scholar 

  27. Weyhe D, Belyaev O, Muller C, Meurer K, Bauer KH, Papapostolou G, Uhl W (2007) Improving outcomes in hernia repair by the use of light meshes—a comparison of different implant constructions based on a critical appraisal of the literature. World J Surg 31(1):234–44

    Article  PubMed  Google Scholar 

  28. Pascual G, Rodriguez M, Gomez-Gil V, Garcia-Honduvilla N, Bujan J, Bellon JM (2008) Early tissue incorporation and collagen deposition in lightweight polypropylene meshes: bioassay in an experimental model of ventral hernia. Surgery 144(3):427–35

    Article  PubMed  Google Scholar 

  29. Weyhe D, Schmitz I, Belyaev O, Grabs R, Muller KM, Uhl W, Zumtobel V (2006) Experimental comparison of monofile light and heavy polypropylene meshes: less weight does not mean less biological response. World J Surg 30(8):1586–91

    Article  PubMed  Google Scholar 

  30. Jonas J (2009) The problem of mesh shrinkage in laparoscopic incisional hernia repair. Zentralbl Chir 134(3):209–13

    Article  PubMed  CAS  Google Scholar 

  31. Deeken CR, Abdo MS, Frisella MM, Matthews BD (2011) Physicomechanical evaluation of polypropylene, polyester, and polytetrafluoroethylene meshes for inguinal hernia repair. J Am Coll Surg 212(1):68–79. doi:10.1016/j.jamcollsurg.2010.09.012

    Article  PubMed  Google Scholar 

  32. Schug-Pass C, Tamme C, Tannapfel A, Kockerling F (2006) A lightweight polypropylene mesh (TiMesh) for laparoscopic intraperitoneal repair of abdominal wall hernias: comparison of biocompatibility with the DualMesh in an experimental study using the porcine model. Surg Endosc 20(3):402–9

    Article  PubMed  CAS  Google Scholar 

  33. Chowbey PK, Garg N, Sharma A, Khullar R, Soni V, Baijal M, Mittal T (2010) Prospective randomized clinical trial comparing lightweight mesh and heavyweight polypropylene mesh in endoscopic totally extraperitoneal groin hernia repair. Surg Endosc 24(12):3073–9

    Article  PubMed  CAS  Google Scholar 

  34. Chui LB, Ng WT, Sze YS, Yuen KS, Wong YT, Kong CK (2010) Prospective, randomized, controlled trial comparing lightweight versus heavyweight mesh in chronic pain incidence after TEP repair of bilateral inguinal hernia. Surg Endosc 24(11):2735–8

    Article  PubMed  CAS  Google Scholar 

  35. Khan LR, Liong S, de Beaux AC, Kumar S, Nixon SJ (2010) Lightweight mesh improves functional outcome in laparoscopic totally extra-peritoneal inguinal hernia repair. Hernia 14(1):39–45

    Article  PubMed  CAS  Google Scholar 

  36. Agarwal BB, Agarwal KA, Mahajan KC (2009) Prospective double-blind randomized controlled study comparing heavy- and lightweight polypropylene mesh in totally extraperitoneal repair of inguinal hernia: early results. Surg Endosc 23(2):242–7

    Article  PubMed  Google Scholar 

  37. Melman L, Jenkins ED, Hamilton NA, Bender LC, Brodt MD, Deeken CR, Greco SC, Frisella MM, Matthews BD (2011) Histologic and biomechanical evaluation of a novel macroporous polytetrafluoroethylene knit mesh compared to lightweight and heavyweight polypropylene mesh in a porcine model of ventral incisional hernia repair. Hernia: the journal of hernias and abdominal wall surgery. doi:10.1007/s10029-011-0787-z

  38. Junge K, Rosch R, Krones CJ, Klinge U, Mertens PR, Lynen P, Schumpelick V, Klosterhalfen B (2005) Influence of polyglecaprone 25 (Monocryl) supplementation on the biocompatibility of a polypropylene mesh for hernia repair. Hernia 9(3):212–7

    Article  PubMed  CAS  Google Scholar 

  39. Weyhe D, Belyaev O, Buettner G, Mros K, Mueller C, Meurer K, Papapostolou G, Uhl W (2008) In vitro comparison of three different mesh constructions. ANZ J Surg 78(1–2):55–60

    Article  PubMed  Google Scholar 

  40. Schug-Pass C, Sommerer F, Tannapfel A, Lippert H, Kockerling F (2009) The use of composite meshes in laparoscopic repair of abdominal wall hernias: are there differences in biocompatibily?: experimental results obtained in a laparoscopic porcine model. Surg Endosc 23(3):487–95

    Article  PubMed  Google Scholar 

  41. Langer C, Schwartz P, Krause P, Mohammadi H, Kulle B, Schaper A, Fuzesi L, Becker H (2005) In-vitro study of the cellular response of human fibroblasts cultured on alloplastic hernia meshes. Influence of mesh material and structure. Chirurg 76(9):876–85

    Article  PubMed  CAS  Google Scholar 

  42. Weyhe D, Hoffmann P, Belyaev O, Mros K, Muller C, Uhl W, Schmitz F (2007) The role of TGF-beta1 as a determinant of foreign body reaction to alloplastic materials in rat fibroblast cultures: comparison of different commercially available polypropylene meshes for hernia repair. Regul Pept 138(1):10–4

    Article  PubMed  CAS  Google Scholar 

  43. Conze J, Krones CJ, Schumpelick V, Klinge U (2007) Incisional hernia: challenge of re-operations after mesh repair. Langenbecks Arch Surg 392(4):453–7

    Article  PubMed  Google Scholar 

  44. Schoenmaeckers EJ, van der Valk SB, van den Hout HW, Raymakers JF, Rakic S (2009) Computed tomographic measurements of mesh shrinkage after laparoscopic ventral incisional hernia repair with an expanded polytetrafluoroethylene mesh. Surg Endosc 23(7):1620–3

    Article  PubMed  Google Scholar 

  45. Saberski ER, Orenstein SB, Novitsky YW (2011) Anisotropic evaluation of synthetic surgical meshes. Hernia 15(1):47–52

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by a research grant from W.L. Gore & Associates, Inc. (Flagstaff, AZ, USA) and BBD Aesculap GmbH (Tuttlingen, Germany).

Authors' contributions

D.J. was responsible for analysis and interpretation of data and drafting of manuscript. C.S-P. was responsible for study conception and design, acquisition of data, analysis and interpretation of data, and drafting of manuscript. F.S. and A. T. were responsible for acquisition, analysis and interpretation of data. H.L was responsible for study conception and critical revision of manuscript. F.K. was responsible for study conception and design, acquisition of data, analysis and interpretation of data, and drafting of manuscript.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar A. Jacob.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, D.A., Schug-Paß, C., Sommerer, F. et al. Comparison of a lightweight polypropylene mesh (Optilene® LP) and a large-pore knitted PTFE mesh (GORE® INFINIT® mesh)—Biocompatibility in a standardized endoscopic extraperitoneal hernia model. Langenbecks Arch Surg 397, 283–289 (2012). https://doi.org/10.1007/s00423-011-0858-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-011-0858-8

Keywords

Navigation