Skip to main content
Log in

A lightweight, partially absorbable mesh (Ultrapro) for endoscopic hernia repair: experimental biocompatibility results obtained with a porcine model

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

A meticulous surgical technique, a mesh of adequate dimensions, and use of a mesh with good biocompatibility properties are decisively important for minimizing the development of recurrences after endoscopic hernia repair surgery. Mesh “shrinkage” is a function of the mesh’s biocompatibility, that is, the properties of the mesh. Large-pore, lightweight polypropylene meshes possess the best biocompatibility, and the newly developed meshes meet these requirements.

Methods

Using a totally extraperitoneal technique in an experimental animal model, 10 domestic pigs were implanted with a lightweight, large-pore polypropylene mesh containing an absorbable component consisting of poliglecaprone (Ultrapro). After a period of 91 days, diagnostic laparoscopy followed by explantation of the specimens for macroscopic, histologic, and immunohistochemical evaluation was performed.

Results

The mean mesh shrinkage was a mere 1.9%. The partial volume of the inflammatory cells was a low 15.8%. The markers of cell turnover, namely Ki67 and the apoptosis index, were, at 5.8 and 2.1, respectively, also very low. The extracellular matrix showed a low value of transforming growth factor-beta (TGF-beta) (50.8). The mean value of collagen 1 was 136.9.

Conclusions

As a result of its good biocompatibility and elastic properties, the lightweight, large-pore Ultrapo mesh showed only a very slight tendency to “shrink.” This renders it extremely well suited for clinical use in hernia repair surgery, and its minimal shrinkage characteristic should help in achieving low complication and recurrence rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cobb WS, Kercher KW, Heniford BT (2005) The argument for lightweight polypropylene mesh in hernia repair. Surg Innov 12:63–69

    Article  PubMed  Google Scholar 

  2. Greca FH, de Paula JB, Biondo-Simmoes ML, da Costa FD, da Silva AP, Times S, Mansur A (2001) The influence of differing pore sizes on biocompatibility of two polypropylene meshes in the repair of abdominal defects: experimental study in dogs. Hernia 5:59–64

    Article  PubMed  CAS  Google Scholar 

  3. Junge K, Rosch R, Bialasinski L, Klinge U, Klosterhalfen B, Schumpelick V (2003) Persistent extracellular matrix remodelling at the interface to polymers used for hernia repair. Eur Surg Res 35:497–504

    Article  PubMed  CAS  Google Scholar 

  4. Junge K, Rosch R, Krones CJ, Klinge U, Mertens PR, Lynen P, Schumpelick V, Klosterhalfen B (2005) Influence of polyglecaprone 25 (Monocryl) supplementation on biocompatibility of a polypropylene mesh for hernia repair. Hernia 9:212–217

    Article  PubMed  CAS  Google Scholar 

  5. Klinge U, Klosterhalfen B, Birkenhauer V, Junge K, Conze J, Schumpelick V (2002) Impact of polymer pore size on interface scar formation in a rat model. J Surg Res 103:208–214

    Article  PubMed  CAS  Google Scholar 

  6. Klinge U, Klosterhalfen B, Müller M, Öttinger AP, Schumpelick V (1998) Shrinking of polypropylene mesh in vivo: an experimental study in dogs. Eur J Surg 164:965–969

    Article  PubMed  CAS  Google Scholar 

  7. Klosterhalfen B, Klinge U, Schumpelick V (1998) Functional and morphological evaluation of different polypropylene mesh modifications for abdominal wall repair. Biomaterials 19:2235–2246

    Article  PubMed  CAS  Google Scholar 

  8. Knook MTT, van Rosmalen AC, Yoder BE, Kleinrensink GJ, Snijders CJ, Looman CWN, van Steensel CJ (2001) Optimal mesh size for endoscopic inguinal hernia repair: a study in a porcine model. Surg Endosc 15:1471–1477

    Article  PubMed  CAS  Google Scholar 

  9. Molea G, Schonauer F, Bifulco G, D’Angelo D (2000) Comparative study on biocompatibility and absorption times of three absorbable monofilament suture materials (polydioxanone, poliglecaprone 25, glycomer 631) Br J Plast Surg 53:137–141

    Article  PubMed  CAS  Google Scholar 

  10. Nary Filho H, Matsumoto MA, Batista AC, Lopes LC, de Goes FC, Consolaro A (2002) Comparative study of tissue response to polyglecaprone 25, polyglactin 910, and polytetrafluorethylene suture materials in rats. Braz Dent J 13:86–91

    Article  PubMed  Google Scholar 

  11. Neumayer L (2004) Open mesh versus laparoscopic mesh hernia repair. N Engl J Med 350:1463–1465 (author’s reply). See comment in N Engl J Med 350:1819–1827

    Google Scholar 

  12. Neumayer L, Giobbie-Hurder A, Jonasson O, Fitzgibbons R Jr, Dunlop D, Gibbs J, Reda D, Henderson W, Veterans Affairs Cooperative Studies Program 456 Investigators (2004) Open mesh versus laparoscopic mesh repair of inguinal hernia. N Engl J Med 350:1819–1827

    Article  PubMed  CAS  Google Scholar 

  13. O’Dwyer PJ, Kingsnorth AN, Molloy RG, Small PK, Lammers B, Horeyseck G (2005) Randomized clinical trial assessing impact of lightweight or heavyweight mesh on chronic pain after inguinal hernia repair. Br J Surg 92:166–170

    Article  PubMed  CAS  Google Scholar 

  14. Scheidbach H, Tamme C, Tannapfel A, Lippert H, Köckerling F (2004) In vivo studies comparing the biocompatibility of various polypropylene meshes and their handling properties during endoscopic total extraperitoneal (TEP) patchplasty. Surg Endosc 18:211–220

    Article  PubMed  CAS  Google Scholar 

  15. Scheidbach H, Tannapfel A, Schmidt U, Lippert H, Köckerling F (2004) Influence of titanium coating on the biocompatibility of a heavyweight polypropylene mesh. Eur Surg Res 36:313–317

    Article  PubMed  CAS  Google Scholar 

  16. Schmedt CG, Daubler P, Leibl BJ, Kraft K, Bittner R (2002) Simultaneous bilateral laparoscopic inguinal hernia repair: an analysis of 1,336 consecutive cases at a single center. Surg Endosc 16:240–244

    Article  PubMed  Google Scholar 

  17. Schumpelick V, Klinge U, Welty G, Klosterhalfen B (2000) Meshes within the abdominal wall. Chirurg 70:876–887

    Google Scholar 

  18. Tamme C, Garde N, Klingler A, Hampe C, Wunder R, Köckerling F (2005) Totally extraperitoneal inguinal hernioplasty with titanium-coated lightweight polypropylene mesh: early results. Surg Endosc 19:1125–1129

    Article  PubMed  CAS  Google Scholar 

  19. Tamme C, Scheidbach H, Hampe C, Schneider C, Köckerling F (2003) Totally extraperitoneal endoscopic inguinal hernia repair (TEP). Surg Endosc 17:190–195

    Article  PubMed  CAS  Google Scholar 

  20. Welty G, Klinge U, Klosterhalfen B, Kasperk R, Schumpelick V (2001) Functional impairment and complaints following incisional hernia repair with different polypropylene meshes. Hernia 5:142–147

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Schug-Paß.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schug-Paß, C., Tamme, C., Sommerer, F. et al. A lightweight, partially absorbable mesh (Ultrapro) for endoscopic hernia repair: experimental biocompatibility results obtained with a porcine model. Surg Endosc 22, 1100–1106 (2008). https://doi.org/10.1007/s00464-007-9585-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-007-9585-1

Keywords

Navigation