Skip to main content

Advertisement

Log in

Phase resetting for a network of oscillators via phase response curve approach

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The problem of phase regulation for a population of oscillating systems is considered. The proposed control strategy is based on a phase response curve (PRC) model of an oscillator (the first-order reduced model obtained for linearized system and inputs with infinitesimal amplitude). It is proven that the control provides phase resetting for the original nonlinear system. Next, the problem of phase resetting for a network of oscillators is considered when applying a common control input. Performance of the obtained solutions is demonstrated via computer simulation for three different models of circadian/neural oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Andronov AA, Vitt AA, Khaikin AE (1987) Theory of oscillators. Dover, reprint

  2. Antle MC, Foley NC, Foley DK, Silver R (2007) Gates and oscillators II: zeitgebers and the network model of the brain clock. J Biol Rhythms 22:14–25

    Article  PubMed Central  PubMed  Google Scholar 

  3. Astashev V, Babitsky V, Kolovsky M (2001) Dynamics and control of machines. Springer, New York

    Google Scholar 

  4. Bagheri N, Stelling J, Doyle FJ (2007) Circadian phase entrainment via nonlinear model predictive control. Int J Robust Nonlinear Control 17:1555–1571

    Article  Google Scholar 

  5. Bagheri N, Stelling J, Doyle FJ (2008) Circadian phase resetting via single and multiple control targets. Comp Biol 7(4):1–10

    Google Scholar 

  6. Belykh VN, Osipov GV, Kucklander N, Blasius B, Kurths J (2005) Automatic control of phase synchronization in coupled complex oscillators. Phys D 200:81–104

    Article  Google Scholar 

  7. Blekhman II (1971) Synchronization in science and technology. Moscow: Nauka (in Russian) [English translation: 1988, Synchronization in science and technology. New York: ASME Press]

  8. Canavier CC, Achuthan S (2010) Pulse coupled oscillators and the phase resetting curve. Math Biosci 226(2):77–96

    Article  PubMed Central  PubMed  Google Scholar 

  9. Cheal AJ, Delean S, Sweatman H, Thompson AA (2007) Spatial synchrony in coral reef fish populations and the influence of climate. Ecology 88(1):158–69

    Article  CAS  PubMed  Google Scholar 

  10. Danzl P, Moehlis J (2008) Spike timing control of oscillatory neuron models using impulsive and quasi-impulsive charge-balanced inputs. In: Proceedings 29th American control conference (ACC2008), Seattle, USA, pp 171–176

  11. Datta AK, Stephens JA (1990) Synchronization of motor unit activity during voluntary contraction in man. J Physiol (Lond) 422:397–419

    Article  CAS  Google Scholar 

  12. Efimov DV, Fradkov AL (2009) Oscillatority of nonlinear systems with static feedback. SIAM J Optim Control 48(2):618–640

    Article  Google Scholar 

  13. Efimov D (2011) Phase resetting control based on direct phase response curve. J Math Biol 63(5):855–879

    Article  CAS  PubMed  Google Scholar 

  14. Efimov D, Sacre P, Sepulchre R (2009) Controlling the phase of an oscillator: a phase response curve approach. In: Proceedings IEEE CDC 2009, pp 7692–7697

  15. Fradkov AL, Pogromsky AY (1998) Introduction to control of oscillations and chaos. World Scientific, Singapore

    Google Scholar 

  16. Forger DB, Paydarfar D (2004) Starting, stopping, and resetting biological oscillators: in search for optimum perturbations. J Theor Biol 230:521–532

    Article  PubMed  Google Scholar 

  17. Glass L, Nagai Y, Hall K, Talajic M, Nattel S (2002) Predicting the entrainment of reentrant cardiac waves using phase resetting curves. Phys Rev E 65:65–74

    Article  Google Scholar 

  18. Govaerts W, Sautois B (2006) Computation of the phase response curve: a direct numerical approach. Neural Comput 18:817–847

    Article  CAS  PubMed  Google Scholar 

  19. Guckenheimer J, Holmes P (1990) Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer, Berlin

    Google Scholar 

  20. Guevara MR, Glass L (1982) Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: a theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias. J Math Biol 14:1–23

    Article  CAS  PubMed  Google Scholar 

  21. Guevara MR, Glass L, Shrier A (1981) Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. Science 214:1350–1353

    Article  CAS  PubMed  Google Scholar 

  22. Hansel D, Mato G, Meunier C (1995) Synchrony in excitatory neural networks. Neural Comput 7:307–337

    Article  CAS  PubMed  Google Scholar 

  23. Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. The MIT press, Cambridge

    Google Scholar 

  24. Kawato M, Suzuki R (1978) Biological oscillators can be stopped—topological study of a phase response curve. Biol Cybern 30(4):241–248

    Article  CAS  PubMed  Google Scholar 

  25. Koenig WD, Knops JM (2013) Large-scale spatial synchrony and cross-synchrony in acorn production by two California oaks. Ecology 94(1):83–93

    Article  PubMed  Google Scholar 

  26. Kovaleva AS (2004) Frequency and phase control of the resonance oscillations of a non-linear system under conditions of uncertainty. J Appl Math Mech 68:699–706

    Article  Google Scholar 

  27. Kuramoto Y (1984) Chemical oscillations, waves and turbulence. Springer, Berlin

    Book  Google Scholar 

  28. Kurths J (Ed.) (2000) A special issue on phase synchronization in chaotic systems. Int J Bifur Chaos 11

  29. Leloup JC, Goldbeter A (1998) A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins. J Biol Rhythms 13:70–87

    Article  CAS  PubMed  Google Scholar 

  30. Leloup JC, Goldbeter A (1999) Chaos and birhythmicity in a model for circadian oscillations of the PER and TIM proteins in Drosophila. J Theor Biol 198(3):445–459

    Article  CAS  PubMed  Google Scholar 

  31. Leloup J-C, Gonze D, Goldbeter A (1999) Limit cycle models for circadian rhythms based on transcriptional regulation in Drosophila and Neurospora. J Biol Rhythms 14:433–448

    Article  CAS  PubMed  Google Scholar 

  32. Li J-S, Dasanayake I, Ruths J (2013) Control and synchronization of neuron ensembles. IEEE Trans Autom Control 58(8):1919– 1930

    Article  Google Scholar 

  33. Lin Y, Sontag ED, Wang Y (1996) A smooth converse Lyapunov theorem for robust stability. SIAM J Control Optim 34:124–160

    Article  Google Scholar 

  34. Moran PAP (1953) The statistical analysis of the Canadian lynx cycle. II. Synchronization and meteorology. Aust J Zool 1:291–298

    Article  Google Scholar 

  35. Mosekilde E, Maistrenko Yu, Postnov D (2002) Chaotic synchronization. Applications to living systems. World Scientific, Singapore

    Google Scholar 

  36. Nakao H, Arai K, Nagai K, Tsubo Y, Kuramoto Y (2005) Synchrony of limit-cycle oscillators induced by random external impulses. Phys Rev E 72(2):026220

    Article  Google Scholar 

  37. Ogata K (2006) Discrete time control systems, 2nd edn. Paperback, New York

    Google Scholar 

  38. Pampus M, Winkel W (2007) The extended Moran effect and large-scale synchronous fluctuations in the size of great tit and blue tit populations. J Anim Ecol 76:315–325

    Article  PubMed  Google Scholar 

  39. Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization. A universal concept in nonlinear sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  40. Rand DA, Shulgin BV, Salazar D, Millar AJ (2004) Design principles underlying circadian clocks. J R Soc Interface 1:119–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Rosenstock TS, Hastings A, Koenig WD, Lyles DJ, Brown PH (2011) Testing Moran’s theorem in an agroecosystem. Oikos 120:1434–1440

    Article  Google Scholar 

  42. Roy R, Thornburg KS (1994) Experimental synchronization of chaotic lasers. Phys Rev Lett 72(13):2009–2012

    Article  CAS  PubMed  Google Scholar 

  43. Schmied A, Ivarsson C, Fetz EE (1993) Short-term synchronization of motor units in human extensor digitorum communis muscle: relation to contractile properties and voluntary control. Exp Brain Res 97:159–172

    Article  CAS  PubMed  Google Scholar 

  44. Smeal RM, Ermentrout GB, White JA (2010) Phase-response curves and synchronized neural networks. Phil Trans R Soc B 365:2407–2422

    Article  PubMed Central  PubMed  Google Scholar 

  45. Sparrow C (1982) The Lorenz equations: bifurcations, chaos and strange attractors. Springer, Berlin

  46. Tass PA (1999) Phase resetting in medicine and biology. Stochastic modeling and data analysis. Springer, Berlin

    Book  Google Scholar 

  47. Tass PA (2002) Desynchronization of brain rhythms with soft phase-resetting techniques. Biol Cybern 87(2):102–115

    Article  PubMed  Google Scholar 

  48. Taylor SR, Gunawan R, Petzold LR, Doyle FJ (2008) Sensitivity measures for oscillating systems: application to mammalian circadian gene network. IEEE Trans Autom Control 53(12):177–188

    Article  Google Scholar 

  49. Thommen Q (2010) Pfeuty B. PLoS Comput Biol 6(11):e1000990

    Article  PubMed Central  PubMed  Google Scholar 

  50. Tran D, Nadau A, Durrieu G, Ciret P, Parisot JC, Massabuau JC (2011) Field chronobiology in a molluscan bivalve: how the moon and sun cycles interact to drive oyster activity rhythms. Chronobiol Int 28:307–317

    Article  PubMed  Google Scholar 

  51. Wang Y, Núñez F, Doyle FJ III (2013) Increasing sync rate of pulse-coupled oscillators via phase response function design: theory and application to wireless networks. IEEE Trans Control Syst Technol 21(4):1455–1462

    Article  Google Scholar 

  52. Winfree AT (1980) The geometry of biological time. Springer, Berlin

    Book  Google Scholar 

  53. Yakubovich VA, Starzhinskii VM (1975) Linear differential equations with periodic coefficients. Wiley, New York

    Google Scholar 

  54. Zhao G (2010) Phase organization of circadian oscillators in extended gate and oscillator models. J Theor Biol 264(2):367–376

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Efimov.

Additional information

This work was partially supported by the Government of Russian Federation (Grant 074-U01) and the Ministry of Education and Science of Russian Federation (Project 14.Z50.31.0031).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimov, D. Phase resetting for a network of oscillators via phase response curve approach. Biol Cybern 109, 95–108 (2015). https://doi.org/10.1007/s00422-014-0629-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-014-0629-z

Keywords

Navigation