Skip to main content
Log in

Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A mathematical model for the perturbation of a biological oscillator by single and periodic impulses is analyzed. In response to a single stimulus the phase of the oscillator is changed. If the new phase following a stimulus is plotted against the old phase the resulting curve is called the phase transition curve or PTC (Pavlidis, 1973). There are two qualitatively different types of phase resetting. Using the terminology of Winfree (1977, 1980), large perturbations give a type 0 PTC (average slope of the PTC equals zero), whereas small perturbations give a type 1 PTC. The effects of periodic inputs can be analyzed by using the PTC to construct the Poincaré or phase advance map. Over a limited range of stimulation frequency and amplitude, the Poincaré map can be reduced to an interval map possessing a single maximum. Over this range there are period doubling bifurcations as well as chaotic dynamics. Numerical and analytical studies of the Poincaré map show that both phase locked and non-phase locked dynamics occur. We propose that cardiac dysrhythmias may arise from desynchronization of two or more spontaneously oscillating regions of the heart. This hypothesis serves to account for the various forms of atrioventricular (AV) block clinically observed. In particular 2∶2 and 4∶2 AV block can arise by period doubling bifurcations, and intermittent or variable AV block may be due to the complex irregular behavior associated with chaotic dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, V. I.: Small denominators. I. Mappings of the circumference onto itself. Trans. of the A.M.S. Series 2.46, 213–284 (1965)

    Google Scholar 

  • Arnold, V. I.: Ordinary differential equations. Cambridge, Mass.: MIT Press, 1973

    Google Scholar 

  • Ayers, J. L., Selverston, A. I.: Synaptic control of an endogenous pacemaker network. J. Physiol. (Paris)73, 454–561 (1977)

    Google Scholar 

  • Bellet, S.: Clinical disorders of the heart beat (3rd edition). Philadelphia: Lea and Febiger, 1971

    Google Scholar 

  • Cartwright, M. L., Littlewood, J. E.: On nonlinear differential equations of the second order: I. The equation\(\ddot y - k(1 - y^2 )\dot y + y = b\lambda k cos(\lambda t + \alpha )\),k large. J. London Math. Soc.20, 180–189 (1945)

    Google Scholar 

  • Chung, E. K.: Principles of cardiac arrhythmias. Baltimore: Williams and Wilkins, 1971

    Google Scholar 

  • Crutchfield, J. P., Huberman, B. A.: Fluctuations and the onset of chaos. Phys. Lett.A77, 407–409 (1980)

    Article  Google Scholar 

  • Flaherty, J. E., Hoppensteadt, F. C.: Frequency entrainment of a forced van der Pol oscillator. Studies in Appl. Math.58, 5–15 (1978)

    Google Scholar 

  • Glass, L., Mackey, M. C.: A simple model for phase locking of biological oscillators. J. Math. Biol.7, 339–352 (1979)

    Article  Google Scholar 

  • Glass, L., Graves, C., Petrillo, G. A., Mackey, M. C.: Unstable dynamics of a periodically driven oscillator in the presence of noise. J. theor. Biol.86, 455–475 (1980)

    Article  Google Scholar 

  • Gollub, J. P., Romer, E. J., Socolar, J. E.: Trajectory divergence for coupled relaxation oscillators: Measurements and models. J. Stat. Phys.23, 321–333 (1980)

    Article  Google Scholar 

  • Grant, R. P.: The mechanism of A-V arrhythmias with an electronic analogue of the human A-V node. Am. J. Med.20, 334–344 (1956)

    Article  Google Scholar 

  • Guckenheimer, J.: On the bifurcation of maps of the interval. Inventiones Math.39, 165–178 (1977)

    Article  Google Scholar 

  • Guckenheimer, J.: Symbolic dynamics and relaxation oscillations. Physica1D, 227–235 (1980)

    Google Scholar 

  • Guevara, M. R., Glass, L., Shrier, A.: Phase locking, period doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. Science214, 1350–1353 (1981)

    Google Scholar 

  • Guttman, R., Feldman, L., Jakobsson, E.: Frequency entrainment of squid axon membrane. J. Memb. Biol.56, 9–18 (1980)

    Article  Google Scholar 

  • Herman, M. R.: Mesure de Lebesgue et nombre de rotation. In: Lecture notes in mathematics, no. 597, Geometry and topology, pp. 271–293. Berlin-Heidelberg-New York: Springer 1977

    Google Scholar 

  • Hodgkin, A. L., Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.)117, 500–544 (1952)

    Google Scholar 

  • Holden, A. V.: The response of excitable membrane models to a cyclic input. Biological Cybernetics21, 1–7 (1976)

    Article  PubMed  Google Scholar 

  • Hoppensteadt, F. C.: Electrical models of neurons. Lectures in Appl. Math.19, 327–344 (1981)

    Google Scholar 

  • Huberman, B. A., Crutchfield, J. P.: Chaotic states of anharmonic systems in periodic fields. Phys. Rev. Lett.43, 1743–1747 (1979)

    Article  Google Scholar 

  • James, T. N., Isobe, J. H., Urthaler, F.: Correlative electrophysiological and anatomical studies concerning the site of origin of escape rhythm during complete atrioventricular block in the dog. Circ. Res.45, 108–119 (1979)

    Google Scholar 

  • Jalife, J., Moe, G. K.: A biologic model of parasystole. Am. J. Cardiol.43, 761–772 (1979)

    Article  Google Scholar 

  • Katholi, C. R., Urthaler, F., Macy, J. Jr., James, T. N.: A mathematical model of automaticity in the sinus node and AV junction based on weakly coupled relaxation oscillators. Comp. Biomed. Research10, 529–543 (1977)

    Article  Google Scholar 

  • Keener, J. P.: Chaotic behaviour in piecewise continuous difference equations. Trans. Am. Math. Soc.261, 589–604 (1980)

    Google Scholar 

  • Keener, J. P.: Chaotic cardiac dynamics. Lectures in Appl. Math.19, 299–325 (1981a)

    Google Scholar 

  • Keener, J. P.: On cardiac arrhythmias: AV conduction block. J. Math. Biol.12, 215–225 (1981b)

    Google Scholar 

  • Keener, J. P., Hoppensteadt, F. C., Rinzel, J.: Integrate and fire models of nerve membrane response to oscillatory inputs. SIAM J. Appl. Math.41, 503–517 (1981)

    Article  Google Scholar 

  • Knight, B. W.: Dynamics of encoding in a population of neurons. J. General Physiol.59, 734–766 (1972)

    Article  Google Scholar 

  • Landahl, H. D., Griffeath, D.: A mathematical model for first degree block and the Wenckebach phenomenon. Bull. Math. Biophys.33, 27–38 (1971)

    Google Scholar 

  • Levi, M.: Qualitative analysis of the periodically forced relaxation oscillations. Memoirs Amer. Math. Soc.32, Number 244 (1981)

    Google Scholar 

  • Levinson, N.: A second order differential equation with singular solutions. Ann. Mathem.50, 127–153 (1949)

    Google Scholar 

  • Lewis, T., Mathison, G. C.: Auriculo-ventricular heart block as a result of asphyxia. Heart2, 47–53 (1910)

    Google Scholar 

  • Li, T.-Y., Yorke, J. A.: Period three implies chaos. Am. Math. Monthly82, 985–992 (1975)

    Google Scholar 

  • Mandel, W. J. (ed.): Cardiac arrhythmias: Their mechanisms, diagnosis, and management. Philadelphia: J. B. Lippincott, 1980

    Google Scholar 

  • May, R. M.: Simple mathematical models with very complicated dynamics. Nature261, 459–467 (1976)

    Article  PubMed  Google Scholar 

  • McAllister, R. E., Noble, D., Tsien, R. W.: Reconstruction of the electrical activity of cardiac Purkinje fibres. J. Physiol. (London)251, 1–59 (1975)

    Google Scholar 

  • Metropolis, N., Stein, M. L., Stein, P. R.: On finite limit sets for transformation on the unit interval. J. Combinat. Theor.15, 25–44 (1973)

    Article  Google Scholar 

  • Moe, G. K., Jalife, J., Mueller, W. J., Moe, B.: A mathematical model of parasystole and its application to clinical arrhythmias. Circulation56, 968–979 (1977)

    Google Scholar 

  • Moulopoulos, S. D., Kardaras, N., Sideris, D. A.: Stimulus-response relationship in dog ventricle in vivo. Am. J. Physiol.208, 154–157 (1965)

    Google Scholar 

  • Nadeau, R. A., James, T. N.: The behaviour of atrio-ventricular nodal rhythm following direct perfusion of the sinus node. Can. J. Physiol. Pharmacol.44, 317–324 (1966)

    Google Scholar 

  • Pavlidis, T.: Biological oscillators: Their mathematical analysis. New York: Academic Press 1973

    Google Scholar 

  • Perkel, D. H., Schulman, J. H., Bullock, T. H., Moore, G. P., Segundo, J. P.: Pacemaker neurons: Effects of regularly spaced synaptic input. Science145, 61–63 (1964)

    Google Scholar 

  • Petrillo, G. A.: Phase locking: A dynamic approach to the study of respiration. Ph.D. Thesis. McGill University (Montreal) 1981

    Google Scholar 

  • Pinsker, H. M.:Aplysia bursting neurons as endogenous oscillators. II. Synchronization and entrainment by pulsed inhibitory synaptic input. J. Neurophysiol.40, 544–556 (1977)

    Google Scholar 

  • Reid, J. V. O.: The cardiac pacemaker: Effects of regularly spaced nervous input. Am. Heart J.78, 58–64 (1969)

    Article  Google Scholar 

  • Roberge, F. A., Nadeau, R. A., James, T. N.: The nature of the PR interval. Cardiovasc. Res.2, 19–30 (1968)

    Google Scholar 

  • Roberge, F. A., Nadeau, R. A.: The nature of Wenckebach cycles. Can. J. Physiol. Pharmacol.42, 695–704 (1969)

    Google Scholar 

  • Šarkovskii, A. N.: Coexistence of cycles of a continuous map of a line into itself. Ukr. Mat. Z.16, 61–71 (1964)

    Google Scholar 

  • Schamroth, L.: The disorders of cardiac rhythm. Oxford: Blackwell 1971

    Google Scholar 

  • Scott, S. W.: Stimulation simulations of young yet cultured beating hearts. Ph.D. Thesis. S. U. N. Y. (Buffalo) 1979

    Google Scholar 

  • Segers, M.: L'alternance du temps de conduction auriculo-ventriculaire. Arch. Mal. Coeur44, 525–527 (1951)

    Google Scholar 

  • Sideris, D. A., Moulopoulos, S.D.: Mechanism of atrioventricular conduction: Study on an analogue. J. Electrocardiol.10, 51–58 (1977)

    Google Scholar 

  • Štefan, P.: A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line. Commun. math. Phys.54, 237–248 (1977)

    Article  Google Scholar 

  • Tomita, K., Kai, T.: Chaotic behavior of deterministic orbits: The problem of turbulent phase. Prog. Theor. Physics (Suppl. No.64), 280–294 (1978)

    Google Scholar 

  • Tsien, R. W., Siegelbaum, S.: Excitable tissue: The heart, chapter 20. In: Andreotti, T. E., Hoffman, J. F., Fanestil, D. D. (eds.), Physiology of membrane disorders. New York: Plenum 1978

    Google Scholar 

  • Urthaler, F., Katholi, C. R., Macy, J. Jr., James, T. N.: Mathematical relationship between automaticity of the sinus node and the AV junction. Am. Heart J.86, 189–196 (1973)

    Article  Google Scholar 

  • Urthaler, F., Katholi, C. R., Macy, J. Jr., James, T. N.: Electrophysiological and mathematical characteristics of the escape rhythm during complete AV block. Cardiovasc. Res.8, 173–186 (1974)

    Google Scholar 

  • Ushiyama, J., Brooks, C. McC.: Interaction of oscillators: Effect of sinusoidal stretching of the sinoatrial node on nodal rhythm. J. Electrocardiol.10, 39–44 (1977)

    Google Scholar 

  • van der Pol, B., van der Mark, J.: The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Phil. Mag.6, 763–775 (1928)

    Google Scholar 

  • van der Tweel, L. H., Meijler, F. L., van Capelle, F. J. L.: Synchronization of the heart. J. Appl. Physiol.34, 283–287 (1973)

    Google Scholar 

  • Watanabe, T., Dreifus, L. S.: Atrioventricular block: Basic concepts. Chapter 16. In: Mandel, W. J. (ed.), Cardiac arrhythmias: Their mechanisms, diagnosis, and management. Philadelphia: J. B. Lippincott 1980

    Google Scholar 

  • Winfree, A. T.: Resetting biological clocks. Physics Today28, 34–39 (1975)

    Google Scholar 

  • Winfree, A. T.: Phase control of neural pacemakers. Science197, 761–763 (1977)

    Google Scholar 

  • Winfree, A. T.: The geometry of biological time. New York: Springer 1980

    Google Scholar 

  • Ypey, D. L., Von Meerwijk, W. P. M., Ince, E., Groos, G.: Mutual entrainment of two pacemaker cells. A study with an electronic parallel conductance model. J. Theor. Biol.86, 731–755 (1980)

    Article  Google Scholar 

  • Zaslavsky, G. M.: The simplest case of a strange attractor. Physics69A, 145–147 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guevara, M.R., Glass, L. Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias. J. Math. Biology 14, 1–23 (1982). https://doi.org/10.1007/BF02154750

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02154750

Key words

Navigation