Skip to main content
Log in

Analytical solution for static and free vibration analysis of functionally graded CNT-reinforced sandwich plates

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this work, application of trigonometric shear deformation theory (TSDT) with the Navier’s solution technique is explored to determine the static, free vibration and corresponding mode shape of carbon nanotubes (CNTs)-reinforced sandwich plates for different stacking sequences with different material properties. In the TSDT, the distribution of the displacement is nonlinear along the thickness of the plate. Detailed investigation is carried out after validating the obtained results with the results presented in the existing literature. The deflections, stresses, natural frequency and corresponding mode shape of functionally graded (FG) CNTs-reinforced sandwich plates with different span thickness ratios, core to face sheet thickness ratios, volume fractions and distribution of CNTs are presented and studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lau, A.-T., Hui, D.: The revolutionary creation of new advanced materials—carbon nanotube composites. Compos. B Eng. 33(4), 263–277 (2002)

    Article  Google Scholar 

  2. Thostenson, E.T., Ren, Z., Chou, T.-W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)

    Article  Google Scholar 

  3. Saito, Y., Hamaguchi, K., Hata, K., Uchida, K., Tasaka, Y., Ikazaki, F., Yumura, M., Kasuya, A., Nishina, Y.: Conical beams from open nanotubes. Nature 389(6651), 554–555 (1997)

    Article  Google Scholar 

  4. Niu, C., Sichel, E.K., Hoch, R., Moy, D., Tennent, H.: High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70(11), 1480–1482 (1997)

    Article  Google Scholar 

  5. Vaccarini, L., Goze, C., Luc Henrard, E., Hernandez, P.B., Rubio, A.: Mechanical and electronic properties of carbon and boron–nitride nanotubes. Carbon 38(11–12), 1681–1690 (2000)

    Article  Google Scholar 

  6. Liew, K.M., Lei, Z.X., Zhang, L.W.: Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos. Struct. 120, 90–97 (2015)

    Article  Google Scholar 

  7. Liew, K.M., Pan, Z., Zhang, L.-W.: The recent progress of functionally graded CNT reinforced composites and structures. Sci. China Phys. Mech. Astron. 63(3), 234601 (2020)

    Article  Google Scholar 

  8. Liew, K.M., Pan, Z.Z., Zhang, L.W.: An overview of layerwise theories for composite laminates and structures: Development, numerical implementation and application. Compos. Struct. 216, 240–259 (2019)

    Article  Google Scholar 

  9. Khaniki, H.B., Ghayesh, M.H.: A review on the mechanics of carbon nanotube strengthened deformable structures. Eng. Struct. 220, 110711 (2020)

    Article  Google Scholar 

  10. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  Google Scholar 

  11. Iijima, S., Aikawa, Y., Baba, K.: Growth of diamond particles in chemical vapor deposition. J. Mater. Res. 6(7), 1491–1497 (1991)

    Article  Google Scholar 

  12. Iijima, S, Ichihashi T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603–605 (1993)

    Article  Google Scholar 

  13. Bethune, D.S., Kiang, Ch.H., De Vries, M.S., Gorman, G., Savoy, R., Vazquez, J., Beyers, R.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430), 605–607 (1993)

    Article  Google Scholar 

  14. Kelly, B.T.: The Physics of Graphite (London: Applied Science); 1981b. High Temp. High Pressures 13, 245 (1981)

    Google Scholar 

  15. Chiker, Y., Bachene, M., Bouaziz, S., Guemana, M., Amar, M.B., Haddar, M.: Free vibration analysis of hybrid laminated plates containing multilayer functionally graded carbon nanotube-reinforced composite plies using a layer-wise formulation. Arch. Appl. Mech. 91(1), 463–485 (2021)

    Article  Google Scholar 

  16. Hieu, P.T., Van Tung, H.: Thermal and thermomechanical buckling of shear deformable FG-CNTRC cylindrical shells and toroidal shell segments with tangentially restrained edges. Arch. Appl. Mech. 90, 1529–1546 (2020)

    Article  Google Scholar 

  17. Bouazza, M., Zenkour, A.M.: Vibration of carbon nanotube-reinforced plates via refined n th-higher-order theory. Arch. Appl. Mech. 90(8), 1755–1769 (2020)

    Article  Google Scholar 

  18. Strozzi, M., Smirnov, V.V., Manevitch, L.I., Pellicano, F.: Nonlinear normal modes, resonances and energy exchange in single-walled carbon nanotubes. Int. J. Non-Linear Mech. 120, 103398 (2020)

    Article  Google Scholar 

  19. Strozzi, M., and  Pellicano, F.: Nonlinear resonance interaction between conjugate circumferential flexural modes in single-walled carbon nanotubes. Shock Vib. 2019, 3241698 (2019)

    Google Scholar 

  20. Strozzi, M., Smirnov, V.V., Manevitch, L.I., Pellicano, F.: Nonlinear vibrations and energy exchange of single-walled carbon nanotubes. Radial breathing modes. Compos. Struct. 184, 613–632 (2018)

    Article  MATH  Google Scholar 

  21. Strozzi, M., Smirnov, V.V., Manevitch, L.I., Milani, M., Pellicano, F.: Nonlinear vibrations and energy exchange of single-walled carbon nanotubes. Circumferential flexural modes. J. Sound Vib. 381, 156–178 (2016)

    Article  MATH  Google Scholar 

  22. He, X.Q., Eisenberger, M., Liew, K.M.: The effect of van der Waals interaction modeling on the vibration characteristics of multiwalled carbon nanotubes. J. Appl. Phys. 100(12), 124317 (2006)

    Article  Google Scholar 

  23. He, X.Q., Kitipornchai, S., Liew, K.M.: Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction. J. Mech. Phys. Solids 53(2), 303–326 (2005)

    Article  MATH  Google Scholar 

  24. Strozzi, M., Pellicano, F.: Linear vibrations of triple-walled carbon nanotubes. Math. Mech. Solids 23(11), 1456–1481 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sahoo, R., Singh, B.N.: Assessment of zigzag theories for free vibration analysis of laminated-composite and sandwich plates. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 229(10), 1931–1949 (2015)

    Article  Google Scholar 

  26. Sahoo, R., Singh, B.N.: A new trigonometric zigzag theory for buckling and free vibration analysis of laminated composite and sandwich plates. Compos. Struct. 117, 316–332 (2014)

    Article  Google Scholar 

  27. Nejad, M.Z., Taghizadeh, T., Mehrabadi, S.J., Herasati, S.: Elastic analysis of carbon nanotube-reinforced composite plates with piezoelectric layers using shear deformation theory. Int. J. Appl. Mech. 9(01), 1750011 (2017)

    Article  Google Scholar 

  28. Wattanasakulpong, N., Ungbhakorn, V.: Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Comput. Mater. Sci. 71, 201–208 (2013)

    Article  Google Scholar 

  29. Mayandi, K., Jeyaraj, P.: Bending, buckling and free vibration characteristics of FGCNT- reinforced polymer composite beam under non-uniform thermal load. Proc. Inst. Mech. Eng., Part L J. Mater. Des. Appl. 229, 13–28 (2015)

    Article  Google Scholar 

  30. Lin, F., Xiang, Y.: Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories. Appl. Math. Model 38, 3741–3754 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yas, M., Samadi, N.: Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. Int. J. Press Vessels Pip 98, 119–128 (2012)

    Article  Google Scholar 

  32. Lei, Z., Zhang, L., Liew, K.: Analysis of laminated CNT reinforced functionally graded plates using the element-free kp-Ritz method. Compos. B Eng. 84, 211–221 (2016)

    Article  Google Scholar 

  33. Zhu, P., Lei, Z.X., Liew, K.M.: Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos. Struct. 94(4), 1450–1460 (2012)

    Article  Google Scholar 

  34. Garcia-Macias, E., Castro-Triguero, R., Flores, E.I.S., Friswell, M.I., Gallego, R.: Static and free vibration analysis of functionally graded carbon nanotube reinforced skew plates. Compos. Struct. 140, 473–490 (2016)

    Article  Google Scholar 

  35. Soni, A., Grover, N., Bhardwaj, G., Singh, B.N.: Non-polynomial framework for static analysis of functionally graded carbon nano-tube reinforced plates. Compos. Struct. 233, 111569 (2020)

    Article  Google Scholar 

  36. Grover, N., Maiti, D.K., Singh, B.N.: A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates. Compos. Struct. 95, 667–675 (2013)

    Article  Google Scholar 

  37. Di Sciuva, M., Sorrenti, M.: Bending, free vibration and buckling of functionally graded carbon nanotube-reinforced sandwich plates, using the extended Refined Zigzag Theory. Compos. Struct. 227, 111324 (2019)

    Article  Google Scholar 

  38. Natarajan, S., Haboussi, M., Manickam, G.: Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite facesheets. Compos. Struct. 113, 197–207 (2014)

    Article  Google Scholar 

  39. Alibeigloo, A.: Static analysis of functionally graded carbon nanotube-reinforced composite plate embedded in piezoelectric layers by using theory of elasticity. Compos. Struct. 95, 612–622 (2013)

    Article  Google Scholar 

  40. Alibeigloo, A., Liew, K.: Thermoelastic analysis of functionally graded carbon nanotube-reinforced composite plate using theory of elasticity. Compos. Struct. 106, 873–881 (2013)

    Article  Google Scholar 

  41. Mehar, K., Panda, S.K.: Thermoelastic analysis of FG-CNT reinforced shear deformable composite plate under various loadings. Int. J. Comput. Methods 14, 1750019 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lei, Z., Zhang, L., Liew, K.: Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method. Compos. Struct. 127, 245–259 (2015)

    Article  Google Scholar 

  43. Draoui, A., Zidour, M., Tounsi, A., Adim, B.: Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT). In: Journal of Nano Research, vol. 57, pp. 117–135, Trans Tech Publications (2019)

  44. Wang, Z.X., Shen, H.S.: Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Compos. Part B Eng. 43(2), 411–421 (2012)

    Article  Google Scholar 

  45. Grover, N., Singh, B.N., Maiti, D.K.: New nonpolynomial shear-deformation theories for structural behavior of laminated-composite and sandwich plates. AIAA J. 51(8), 1861–1871 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The corresponding author acknowledges IIT (BHU) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalin Sahoo.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.D., Sahoo, R. Analytical solution for static and free vibration analysis of functionally graded CNT-reinforced sandwich plates. Arch Appl Mech 91, 3819–3834 (2021). https://doi.org/10.1007/s00419-021-01979-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01979-1

Keywords

Navigation