Skip to main content
Log in

Vibration of carbon nanotube-reinforced plates via refined nth-higher-order theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This article presents the free vibration frequencies of composite plates reinforced with single-walled carbon nanotubes by using a refined simplified two-variable nth-higher-order theory. Four kinds of distribution of uniaxially aligned reinforcement material are presented. The most famous one is the uniform; in addition, three types of functionally graded distributions of carbon nanotubes in the through-thickness direction of the plates are investigated. The effective physical properties of composite media are given according to a refined rule of mixtures approach that contains the efficiency parameters. Exact closed-form formulation based on a refined simplified two-variable nth-higher-order plate theory that can be adapted to the vibration of such plates is investigated. Accuracy of presented approach is validated by comparing its results with those given by other investigators

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gibson, R.F., Ayorinde, E.O., Wen, Y.-F.: Vibrations of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 67, 128 (2007)

    Google Scholar 

  2. Formica, G., Lacarbonara, W., Alessi, R.: Vibrations of carbon nanotube-reinforced composites. J. Sound Vib. 329, 187589 (2010)

    Google Scholar 

  3. Zhang, L.W., Song, Z.G., Liew, K.M.: Optimal shape control of CNT reinforced functionally graded composite plates using piezoelectric patches. Compos. B 29(85), 140149 (2016)

    Google Scholar 

  4. Liew, K.M., Lei, Z.X., Zhang, L.W.: Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos. Struct. 28(120), 9097 (2015)

    Google Scholar 

  5. Shi, D.-L., Feng, X.-Q., Huang, Y.Y., Hwang, K.-C., Gao, H.: The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube reinforced composites. J. Eng. Mater. Technol. 126, 250157 (2004)

    Google Scholar 

  6. Esawi, A.M.K., Farag, M.M.: Carbon nanotube reinforced composites: potential and current challenges. Mater. Des. 28, 23942401 (2007)

    Google Scholar 

  7. Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K., Wagner, H.D.: Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Compos. A 36, 15551561 (2005)

    Google Scholar 

  8. Shen, S.H.: Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments. Compos. Struct. 91, 919 (2009)

    Google Scholar 

  9. Shen, H.S., Xiang, Y.: Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments. Comput. Methods Appl. Mech. Eng. 213, 196205 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Formica, G., Lacarbonara, W., Alessi, R.: Vibrations of carbon nanotube-reinforced composites. J. Sound Vib. 329, 18751889 (2010)

    Google Scholar 

  11. Wang, Z.-X., Shen, H.-S.: Nonlinear vibration of nanotube-reinforced composite plates in thermal environments. Comput. Mater. Sci. 50, 23192330 (2011)

    Google Scholar 

  12. Zhu, P., Lei, Z.X., Liew, K.M.: Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos. Struct. 94, 14501460 (2012)

    Google Scholar 

  13. Lei, Z.X., Liew, K.M., Yu, J.L.: Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment. Compos. Struct. 106, 128138 (2013)

    Google Scholar 

  14. Ansari, R., Hasrati, E., Shojaei, M.F., Gholami, R., Shahabodini, A.: Forced vibration analysis of functionally graded carbon nanotube-reinforced composite plates using a numerical strategy. Phys. E 69, 294305 (2015)

    Google Scholar 

  15. Yas, M.H., Pourasghar, A., Kamarian, S., Heshmati, M.: Three-dimensional free vibration analysis of functionally graded nanocomposite cylindrical panels reinforced by carbon nanotube. Mater. Des. 49, 583590 (2013)

    Google Scholar 

  16. Zenkour, A.M.: Torsional dynamic response of a carbon nanotube embedded in visco-Pasternak’s medium. Math. Model. Anal. 21(6), 852–868 (2016)

    MathSciNet  Google Scholar 

  17. Thomas, B., Roy, T.: Vibration analysis of functionally graded carbon nanotube reinforced composite shell structures. Acta Mech. 227(2), 581–599 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Mehri, M., Asadi, H., Wang, Q.: Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method. Comput Meth Appl. Mech. Eng. 303, 75–100 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Selim, B.A., Zhang, L.W., Liew, K.M.: Vibration analysis of CNT reinforced functionally graded composite plates in a thermal environment based on Reddy’s higher-order shear deformation theory. Compos. Struct. 156, 276290 (2016)

    Google Scholar 

  20. Mehar, K., Panda, S.K.: Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field. Compos. Struct. 143, 336346 (2016)

    Google Scholar 

  21. Zhang, L.W., Lei, Z.X., Liew, K.M.: Vibration characteristic of moderately thick functionally graded carbon nanotube reinforced composite skew plates. Compos. Struct. 122, 17283 (2015)

    Google Scholar 

  22. Mehar, K., Panda, S.K., Mahapatra, T.R.: Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure. Int. J. Mech. Sci. 133, 319329 (2017)

    Google Scholar 

  23. Wu, H., Kitipornchai, S., Yang, J.: Thermal buckling and postbuckling analysis of functionally graded carbon nanotube-reinforced composite beams. Appl. Mech. Mater. 846, 182187 (2016)

    Google Scholar 

  24. Alibeigloo, A., Liew, K.M.: Elasticity solution of free vibration and bending behavior of functionally graded carbon nanotube-reinforced composite beam with thin piezoelectric layers using differential quadrature method. Int. J. Appl. Mech. 7(1), 1550002 (2015)

    Google Scholar 

  25. Malekzadeh, P., Dehbozorgi, M., Monajjemzadeh, S.M.: Vibration of functionally graded carbon nanotube-reinforced composite plates under a moving load. Sci. Eng. Compos. Mater. 22, 37–55 (2015)

    Google Scholar 

  26. Zenkour, A.M.: Nonlocal elasticity and shear deformation effects on thermal buckling of a CNT embedded in a viscoelastic medium. Eur. Phys. J. Plus 133(196), 1–14 (2018)

    Google Scholar 

  27. Wu, C.P., Li, H.Y.: Three-dimensional free vibration analysis of functionally graded carbon nanotube-reinforced composite plates with various boundary conditions. J. Vib. Control 22, 89107 (2016)

    MathSciNet  Google Scholar 

  28. Nami, M.R., Janghorban, M.: Free vibration of thick functionally graded carbon nanotube-reinforced rectangular composite plates based on three-dimensional elasticity theory via differential quadrature method. Adv. Compos. Mater. 24(5), 112 (2014)

    Google Scholar 

  29. Shahrbabaki, E.A., Alibeigloo, A.: Three-dimensional free vibration of carbon nanotube-reinforced composite plates with various boundary conditions using Ritz method. Compos. Struct. 111, 362–370 (2014)

    Google Scholar 

  30. Malekzadeh, P., Zarei, A.R.: Free vibration of quadrilateral laminated plates with carbon nanotube reinforced composite layers. Thin-Walled Struct. 82, 221232 (2014)

    Google Scholar 

  31. Sobhy, M., Zenkour, A.M.: Magnetic field effect on thermomechanical buckling and vibration of viscoelastic sandwich nanobeams with CNT reinforced face sheets on a viscoelastic substrate. Compos. B 154, 492506 (2018)

    Google Scholar 

  32. Sankar, A., Natarajan, S., Ganapathi, M.: Dynamic instability analysis of sandwich plates with CNT reinforced facesheets. Compos. Struct. 146, 187200 (2016)

    Google Scholar 

  33. Natarajana, S., Haboussib, M., Ganapathic, M.: Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite facesheets. Compos. Struct. 113, 197–207 (2014)

    Google Scholar 

  34. Thomas, B., Roy, T.: Vibration analysis of functionally graded carbon nanotube reinforced composite shell structures. Acta Mech. 227, 581599 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Farid, M., Zahedinejad, P., Malekzadeh, P.: Three-dimensional temperature dependent free vibration analysis of functionally graded material curved panels resting on two-parameter elastic foundation using a hybrid semianalytic, differential quadrature method. Mater. Des. 31, 213 (2010)

    Google Scholar 

  36. SobhaniAragh, B., NasrollahBarati, A.H., Hedayati, H.: Eshelby–Mori–Tanaka approach for vibrational behaviour of continuously graded carbon nanotube-reinforced cylindrical panels. Compos. B 43, 19431954 (2012)

    Google Scholar 

  37. Wattanasakulpong, N., Chaikittiratana, A.: Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation. Appl. Math. Model. 39, 54595472 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Fan, Y., Wang, H.: Nonlinear dynamics of matrix-cracked hybrid laminated plates containing carbon nanotube-reinforced composite layers resting on elastic foundations. Nonlinear Dyn. 84, 11811199 (2016)

    MATH  Google Scholar 

  39. Fan, Y., Wang, H.: The effects of matrix cracks on the nonlinear vibration characteristics of shear deformable laminated beams containing carbon nanotube reinforced composite layers. Int. J. Mech. Sci. 124–125, 216–228 (2017)

    Google Scholar 

  40. Fan, Y., Wang, H.: Nonlinear vibration of matrix cracked laminated beams containing carbon nanotube reinforced composite layers in thermal environments. Compos. Struct. 124, 3543 (2015)

    Google Scholar 

  41. Ahmadi, M., Ansari, R., Rouhi, H.: Multi-scale bending, buckling and vibration analyses of carbon fiber/carbon nanotube-reinforced polymer nanocomposite plates with various shapes. Physica E 93, 1725 (2017)

    Google Scholar 

  42. Shenas, A.G., Malekzadeh, P., Ziaee, S.: Vibration analysis of pre-twisted functionally graded carbon nanotube reinforced composite beams in thermal environment. Compos. Struct. 162, 325340 (2017)

    Google Scholar 

  43. Kiani, Y.: Free vibration of FG-CNT reinforced composite spherical shell panels using Gram–Schmidt shape functions. Compos. Struct. 159, 368381 (2017)

    Google Scholar 

  44. Civalek, Ö.: Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method. Compos. B 111, 4559 (2017)

    Google Scholar 

  45. Zghal, S., Frikha, A., Dammak, F.: Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures. Appl. Math. Model. 53, 132155 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Duc, N.D., Lee, J., Nguyen-Thoi, T., Thang, P.T.: Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler–Pasternak elastic foundations. Aerosp. Sci. Technol. 68, 391402 (2017)

    Google Scholar 

  47. Ardestani, M.M., Zhang, L.W., Liewa, K.M.: Isogeometric analysis of the effect of CNT orientation on the static and vibration behaviors of CNT-reinforced skew composite plates. Comput. Methods Appl. Mech. Eng. 317, 341379 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Mohammadzadeh-Keleshteri, M., Asadi, H., Aghdama, M.M.: Geometrical nonlinear free vibration responses of FG-CNT reinforced composite annular sector plates integrated with piezoelectric layers. Compos. Struct. 171, 100112 (2017)

    Google Scholar 

  49. Fantuzzi, N., Tornabene, F., Bacciocchi, M., Dimitri, R.: Free vibration analysis of arbitrarily shaped functionally graded carbon nanotube-reinforced plates. Compos. B 115, 384408 (2017)

    Google Scholar 

  50. Selim, B.A., Zhang, L.W., Liew, K.M.: Active vibration control of CNT-reinforced composite plates with piezoelectric layers based on Reddy’s higher-order shear deformation theory. Compos. Struct. 163, 350364 (2017)

    Google Scholar 

  51. Kiani, Y.: Free vibration of carbon nanotube reinforced composite plate on point supports using Lagrangian multipliers. Meccanica 52, 13531367 (2017)

    MathSciNet  MATH  Google Scholar 

  52. Benveniste, Y.: A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech. Mater. 6, 147–157 (1987)

    Google Scholar 

  53. Chen, C.H., Cheng, C.H.: Effective elastic moduli of misoriented short-fiber composites. Int. J. Solids Struct. 33, 2519–2539 (1996)

    MATH  Google Scholar 

  54. Shady, E., Gowayed, Y.: Effect of nanotube geometry on the elastic properties of nanocomposites. Compos. Sci. Technol. 70, 1476–1481 (2010)

    Google Scholar 

  55. Odegard, G.M., Gates, T.S., Wise, K.E., Park, C., Siochi, E.J.: Constitutive modelling of nanotube reinforced polymer composites. Compos. Sci. Technol. 63, 1671–1687 (2003)

    Google Scholar 

  56. Sobhani Aragh, B., Hedayati, H.: Eshelby–Mori–Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels. Compos. B 43(4), 1943–1954 (2012)

    Google Scholar 

  57. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A 241, 376–396 (1957)

    MathSciNet  MATH  Google Scholar 

  58. Eshelby, J.D.: The elastic field outside an ellipsoidal inclusion. Proc R. Soc A. 252, 561–569 (1959)

    MathSciNet  MATH  Google Scholar 

  59. Giordano, S., Palla, P.L., Colombo, L.: Nonlinear elasticity of composite materials. Landau coefficients in dispersions of spherical and cylindrical inclusions. Eur. Phys. J. B 68, 89–101 (2009)

    Google Scholar 

  60. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Google Scholar 

  61. Formica, G., Lacarbonara, W., Alessi, R.: Vibrations of carbon nanotube-reinforced composites. J. Sound Vib. 329, 18751889 (2010)

    Google Scholar 

  62. Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C., Gao, H.: The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. J. Eng. Mater. Technol. 126, 250–257 (2004)

    Google Scholar 

  63. Bouazza, M., Kenouza, Y., Benseddiq, N., Zenkour, A.M.: A two-variable simplified nth-higher-order theory for free vibration behavior of laminated plates. Compos. Struct. 182, 533541 (2017)

    Google Scholar 

  64. Civalek, Ö.: Linear vibration analysis of isotropic conical shells by discrete singular convolution (DSC). Struct. Eng. Mech. 25(1), 127–130 (2007)

    MathSciNet  MATH  Google Scholar 

  65. Civalek, Ö.: Vibration analysis of conical panels using the method of discrete singular convolution. Commun. Numer. Methods Eng. 24, 169–181 (2008)

    MathSciNet  MATH  Google Scholar 

  66. Civalek, Ö., Acar, M.H.: Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations. Int J Press. Vessels Pip. 84(9), 527–535 (2007)

    Google Scholar 

  67. Civalek, Ö.: Geometrically nonlinear dynamic analysis of doubly curved isotropic shells resting on elastic foundation by a combination of harmonic differential quadrature-finite difference methods. Int. J. Press. Vessels Pip. 82, 470–479 (2005)

    Google Scholar 

  68. Ye, T., Jin, G., Zhu, S., Jia, X.: A unified Chebyshev–Ritz formulation for vibration analysis of composite laminated deep open shells with arbitrary boundary conditions. Arch. Appl. Mech. 84, 441–471 (2014)

    MATH  Google Scholar 

  69. Shi, D.Y., Wang, Q.S., Shi, X.J., Pang, F.Z.: A series solution for the in-plane vibration analysis of orthotropic rectangular plates with non-uniform elastic boundary constraints and internal line supports. Arch. Appl. Mech. 85(1), 51–73 (2015)

    Google Scholar 

  70. Akgöz, B., Civalek, Ö.: Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameter elastic foundations. Steel Compos. Struct. 11, 403–421 (2011)

    Google Scholar 

  71. Bao, S., Wang, S.: A unified procedure for free transverse vibration of rectangular and annular sectorial plates. Arch. Appl. Mech. 89, 1485–1499 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mokhtar Bouazza or Ashraf M. Zenkour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouazza, M., Zenkour, A.M. Vibration of carbon nanotube-reinforced plates via refined nth-higher-order theory. Arch Appl Mech 90, 1755–1769 (2020). https://doi.org/10.1007/s00419-020-01694-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01694-3

Keywords

Navigation