Archive of Applied Mechanics

, Volume 88, Issue 1–2, pp 3–26 | Cite as

Identifiability of material parameters in solid mechanics

SPECIAL

Abstract

Material parameter identification using constitutive models of elasticity, viscoelasticity, rate-independent plasticity and viscoplasticity has a long history with regard to homogeneous and inhomogeneous deformations. For example, uniaxial tensile tests, pure shear tests, torsion experiments of thin-walled tubes or biaxial tensile tests are used to obtain the material parameters by solving the inverse problem. Frequently, the parameters are determined by numerical optimization tools. In this paper, we investigate some very basic single- and two-layered examples regarding identifiability, because these tests are the basis for more complex geometrical and physical nonlinear problems. These simple examples are the uniaxial tensile/compression case, biaxial tensile tests of a cruciform specimen, torsion of a thin-walled tube, a thick-walled tube under internal pressure and the indentation test. For the thick-walled tube under internal and external pressure with an axial pre-strain with several layers, an analytical solution is provided directly suitable for programming. The aim is to get an understanding whether some problems lead to non-identifiable parameters.

Keywords

Identifiability Material parameter identification Thick-walled tube Multi-layered materials Indentation Sensitivity analysis Finite element method 

Notes

Acknowledgements

We would like to express out sincere thanks to the German–Israeli Foundation for Scientific Research and Development (GIF) for their financial support of the project.

References

  1. 1.
    Amin, A.F.M.S., Alam, M.S., Okui, Y.: An improved hyperelasticity relation in modeling viscoelasticity response of natural and high damping rubbers in compression: experiments, parameter identification and numerical verification. Mech. Mater. 34, 75–95 (2002)CrossRefGoogle Scholar
  2. 2.
    Andresen, K., Dannemeyer, S., Friebe, H., Mahnken, R., Ritter, R., Stein, E.: Parameteridentifikation für ein plastisches Stoffgesetz mit FE-Methoden und Rasterverfahren. Bauingenieur 71, 21–31 (1996)Google Scholar
  3. 3.
    Bai, Y., Igland, T.R., Moan, T.: Tube collapse under combined external pressure, tension and bending. Mar. Struct. 10(5), 389–410 (1997)CrossRefGoogle Scholar
  4. 4.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming. Wiley, New York (1993)MATHGoogle Scholar
  5. 5.
    Beck, J.V., Arnold, K.J.: Parameter Estimation in Engineering and Science. Wiley, New York (1977)MATHGoogle Scholar
  6. 6.
    Benedix, U., Görke, U.J., Kreißig, R., Kretzschmar, S.: Local and global analysis of inhomogeneous displacement fields for the identification of material parameters. In: Hoa, S.V., De Wilde, W.P., Blain, W.R. (eds) Computer Methods in Composite Materials VI (CADCOMP 98), pp 159–168 (1998)Google Scholar
  7. 7.
    Beveridge, G.S.G., Schechter, R.S.: Optimization: Theory and Practice, 1st edn. McGraw-Hill Book Company, New York (1970)MATHGoogle Scholar
  8. 8.
    Bier, W., Dariel, M.P., Frage, N., Hartmann, S., Michailov, O.: Die compaction of copper powder designed for material parameter identification. Int. J. Mech. Sci. 49, 766–777 (2007)CrossRefGoogle Scholar
  9. 9.
    Björck, A.: Numerical Methods for Least Squares Problems. SIAM (Society for Industrial and Applied Mathematics), Philadelphia (1996)CrossRefMATHGoogle Scholar
  10. 10.
    Bourgoyne, A.: Applied Drilling Engineering. Society of Petroleum Engineers, Dallas (1986). SPE textbook seriesGoogle Scholar
  11. 11.
    Calloch, S., Marquis, D.: Triaxial tension-compression tests for multiaxial cyclic plasticity. Int. J. Plast 15, 521–549 (1999)CrossRefMATHGoogle Scholar
  12. 12.
    Carnavas, P.C., Page, N.W.: Elastic properties of compacted metal powders. J. Mater. Sci. 33, 4647–4655 (1998)CrossRefGoogle Scholar
  13. 13.
    Chen, Z., Diebels, S.: Nanoindentation of soft polymers: modeling, experiments and parameter identification. Tech. Mech. 34, 166–189 (2014)Google Scholar
  14. 14.
    Clifton, R.J., Simonson, E.R., Jones, A.H., Green, S.J.: Determination of the critical-stress-intensity factor kic from internally pressurized thick-walled vessels. Exp. Mech. 16(6), 233–238 (1976)CrossRefGoogle Scholar
  15. 15.
    Coleman, B.D., Gurtin, M.E.: Thermodynamics with internal state variables. J. Chem. Phys. 47, 597–613 (1967)CrossRefGoogle Scholar
  16. 16.
    Consigny, P.M., Tulenko, T.N., Nicosia, R.F.: Immediate and long-term effects of angioplasty-balloon dilation on normal rabbit iliac artery. Arterioscler. Thromb. Vasc. Biol. 6(3), 265–276 (1986)CrossRefGoogle Scholar
  17. 17.
    Cox, R.H.: Comparison of mechanical and chemical properties of extra- and intralobar canine pulmonary arterie. Am. J. Physiol. Heart Circ. Physiol. 242, H245–H253 (1982)CrossRefGoogle Scholar
  18. 18.
    Cox, R.H.: Comparison of arterial wall mechanics using ring and cylindrical segments. Am. J. Physiol. Heart Circ. Physiol. 244, H298–H303 (1983)CrossRefGoogle Scholar
  19. 19.
    Davis, J.R.: Tensile Testing, 2nd edn. ASM International, Materials Park (2004)Google Scholar
  20. 20.
    Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Classics in Applied Mathematics, vol. 16. SIAM Society for Industrial and Applied Mathematics, Philadelphia (1996)CrossRefMATHGoogle Scholar
  21. 21.
    Diebels, S., Chen, Z., Scheffer, T., Seibert, H.: Macroindentation of a soft polymer: identification of hyperelasticity and validation by uni/biaxial tensile tests. Mech. Mater. 64, 111–127 (2013)CrossRefGoogle Scholar
  22. 22.
    Draper, N.R., Smith, H.: Applied Regression Analysis, 3rd edn. Wiley, New York (1998)MATHGoogle Scholar
  23. 23.
    Flory, P.J.: Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57, 829–838 (1961)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Forsberg, F., Sjödahl, M., Mooser, R., Hack, E., Wyss, P.: Full three-dimensional strain measurements on wood exposed to three-point bending: analysis by use of digital volume correlation applied to synchrotron radiation micro-computed tomography image data. Strain 46, 47–60 (2010)CrossRefGoogle Scholar
  25. 25.
    Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6), 15–35 (2006)CrossRefGoogle Scholar
  26. 26.
    Gilbert, R.R., Hartmann, S., Kudela, L., Rank, E., Sahar, G., Yosibash, Z., Yossef, O.: Parameter identification of the passive response in arteries. Technical Report Series Fac3-16-01, Faculty of Mathematics/Computer Science and Mechanical Engineering, Clausthal University of Technology (Germany) (2016)Google Scholar
  27. 27.
    Hannon, A., Tiernan, P.: A review of planar biaxial tensile test systems for sheet metal. J. Mater. Process. Technol. 198(1–3), 1–13 (2008)CrossRefGoogle Scholar
  28. 28.
    Hartmann, S.: Numerical studies on the identification of the material parameters of Rivlin’s hyperelasticity using tension–torsion tests. Acta Mech. 148, 129–155 (2001a)CrossRefMATHGoogle Scholar
  29. 29.
    Hartmann, S.: Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions. Int. J. Solids Struct. 38(44–45), 7999–8018 (2001b)CrossRefMATHGoogle Scholar
  30. 30.
    Hartmann, S., Tschöpe, T., Schreiber, L., Haupt, P.: Large deformations of a carbon black-filled rubber. Experiment, optical measurement and parameter identification using finite elements. Eur. J. Mech. Ser. A Solids 22, 309–324 (2003)CrossRefMATHGoogle Scholar
  31. 31.
    Hartmann, S., Gibmeier, J., Scholtes, B.: Experiments and material parameter identification using finite elements. Uniaxial tests and validation using instrumented indentation tests. Exp. Mech. 46(1), 5–18 (2006)CrossRefGoogle Scholar
  32. 32.
    Hartmann, S., Neff, P.: Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int. J. Solids Struct. 40(11), 2767–2791 (2003)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Haupt, P.: Continuum Mechanics and Theory of Materials, 2nd edn. Springer, Berlin (2002)CrossRefMATHGoogle Scholar
  34. 34.
    Haupt, P., Lion, A.: Experimental identification and mathematical modelling of viscoplastic material behavior. J. Contin. Mech. Thermodyn. 7, 73–96 (1995)CrossRefGoogle Scholar
  35. 35.
    Haupt, P., Sedlan, K.: Viscoplasticity of elastomeric materials: experimental facts and constitutive modelling. Arch. Appl. Mech. 71, 89–109 (2001)CrossRefMATHGoogle Scholar
  36. 36.
    Huber, N., Tsakmakis, C.: Determination of constitutive properties from spherical indentation data using neural networks, Part I: plasticity with nonlinear and kinematic hardening. J. Mech. Phys. Solids 47, 1589–1607 (1999a)CrossRefMATHGoogle Scholar
  37. 37.
    Huber, N., Tsakmakis, C.: Determination of constitutive properties from spherical indentation data using neural networks, Part II: the case of pure kinematic hardening in plasticity laws. J. Mech. Phys. Solids 47, 1569–1588 (1999b)CrossRefMATHGoogle Scholar
  38. 38.
    Johlitz, M., Diebels, S., Jan, B., Steeb, H., Wulff, P.: Size effects in polyurethane bonds: experiments, modelling and parameter identification. J. Mater. Sci. 43, 4768–4779 (2008)CrossRefGoogle Scholar
  39. 39.
    Kadlowec, J., Wineman, A., Hulbert, G.: Elastomer bushing response: experiments and finite element modeling. Acta Mech. 163, 25–38 (2003)MATHGoogle Scholar
  40. 40.
    Krämer, S., Rothe, S., Hartmann, S.: Homogeneous stress-strain states computed by 3D-stress algorithms of FE-codes: application to material parameter identification. Eng. Comput. 31, 141–159 (2015)CrossRefGoogle Scholar
  41. 41.
    Kreißig, R.: Auswertung inhomogener Verschiebungsfelder zur Identifikation der Parameter elastisch-plastischer Deformationsgesetze. Forsch. Ingenieurwes. 64, 99–109 (1998)CrossRefGoogle Scholar
  42. 42.
    Kreissig, R., Benedix, U., Goerke, U.J.: Statistical aspects of the identification of material parameters for elasto-plastic models. Arch. Appl. Mech. 71, 123–134 (2001)CrossRefMATHGoogle Scholar
  43. 43.
    Lamkanfi, E., Paepegem, W.V., Degrieck, J.: Shape optimization of a cruciform geometry for biaxial testing of polymers. Polym. Testing 41, 7–16 (2015)CrossRefGoogle Scholar
  44. 44.
    Lawson, C.L., Hanson, R.J.: Solving least squares problems. Siam Society for Industrial and Applied Mathematics, Philadelphia (1995)CrossRefMATHGoogle Scholar
  45. 45.
    Lee, H., Lee, J.H., Pharr, G.M.: A numerical approach to spherical indentation techniques for material property evaluation. J. Mech. Phys. Solids 53, 2037–2069 (2005)CrossRefMATHGoogle Scholar
  46. 46.
    Lefebvre, D., Chebl, C., Thibodeau, L., Khazzari, E.: A high-strain biaxial-testing rig for thin-walled tubes under axial load and pressure. Exp. Mech. 23, 384–392 (1983)CrossRefGoogle Scholar
  47. 47.
    Lehmann, T.: Elemente der Mechanik II, Elastostatik, 2nd edn. Vieweg, Braunschweig (1984)CrossRefMATHGoogle Scholar
  48. 48.
    Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)CrossRefMATHGoogle Scholar
  49. 49.
    Liu, M.C.M., Krempl, E.: A uniaxial viscoplastic model based on total strain and overstress. J. Mech. Phys. Solids 27, 377–391 (1979)CrossRefMATHGoogle Scholar
  50. 50.
    Lubliner, J.: Plasticity Theory. Macmillan Publishing Company, New York (1990)MATHGoogle Scholar
  51. 51.
    Luenberger, D.G.: Linear and Nonlinear Programming. Addison-Wesley, Reading (1989)MATHGoogle Scholar
  52. 52.
    Mahnken, R., Stein, E.: A unified approach for parameter identification of inelastic material models in the frame of the finite element method. Comput. Methods Appl. Mech. Eng. 136, 225–258 (1996)CrossRefMATHGoogle Scholar
  53. 53.
    Mahnken, R., Stein, E.: Parameter identification for finite deformation elasto-plasticity in principal directions. Comput. Methods Appl. Mech. Eng. 147, 17–39 (1997)CrossRefMATHGoogle Scholar
  54. 54.
    Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cliffs (1969)MATHGoogle Scholar
  55. 55.
    Nedjar, B.: On a concept of directional damage gradient in transversely isotropic materials. Int. J. Solids Struct. 88–89, 56–67 (2016)CrossRefGoogle Scholar
  56. 56.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)CrossRefMATHGoogle Scholar
  57. 57.
    Ogden, R.W.: Non-linear Elastic Deformations. Ellis Horwood, Chichester (1984)MATHGoogle Scholar
  58. 58.
    Ognedal, A.S., Clausen, A.H., Polanco-Loria, M., Benallal, A., Raka, B., Hopperstad, O.S.: Experimental and numerical study on the behaviour of PVC and HDPE in biaxial tension. Mech. Mater. 54, 18–31 (2012)CrossRefGoogle Scholar
  59. 59.
    Press, W.H., Teukolsky, S.A., Vetterling, WTa: Numerical Recipes in Fortran, 2nd edn. Cambridge University Press, Cambridge (1992)MATHGoogle Scholar
  60. 60.
    Rachev, A., Shazly, T.: A preliminary analysis of the data from an in vitro inflation-extension test can validate the assumption of arterial tissue elasticity. ASME J. Biomech. Eng. 135(8), 084502 (2013)CrossRefGoogle Scholar
  61. 61.
    Rauchs, G., Bardon, J., Georges, D.: Identification of the material parameters of a viscous hyperelastic constitutive law from spherical indentation tests of rubber and validation by tensile tests. Mech. Mater. 42, 961–973 (2010)CrossRefGoogle Scholar
  62. 62.
    Rothe, S.: Electro-thermo-mechanical modeling of field assisted sintering technology: Experiments, constitutive modeling and finite element analysis. Ph.D.-thesis, report no. 1/2015, Institute of Applied Mechanics, Clausthal University of Technology, Clausthal-Zellerfeld (2015)Google Scholar
  63. 63.
    Scheday, G.: Theorie und Numerik der Parameteridentifikation von Materialmodellen der finiten Elastizität und Inelastizität auf der Grundlage optischer Feldmessmethoden. Ph.D.-thesis, Report No. I–11 (2003), University of Stuttgart (Germany), Institute of Mechanics (2003)Google Scholar
  64. 64.
    Schittkowski, K.: Numerical Data Fitting in Dynamical Systems. Kluwer Academic Publication, Dordrecht (2002)CrossRefMATHGoogle Scholar
  65. 65.
    Schmaltz, S., Willner, K.: Comparison of different biaxial tests for the identification of sheet steel material parameters. Strain 40, 389–403 (2014)Google Scholar
  66. 66.
    Schmaltz, S., Willner, K.: Material parameter identification utilizing optical full-field strain measurement and digital image correlation. J. Jpn. Soc. Exp. Mech. 13, s120–s125 (2013)Google Scholar
  67. 67.
    Schmidt, U., Mergheim, J., Steinmann, P.: Identification of elastoplastic microscopic material parameters within a homogenization scheme. Int. J. Numer. Methods Eng. 104, 391–407 (2015)MathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    Schmidt, U., Steinmann, P., Mergheim, J.: Two-scale elastic parameter identification from noisy macroscopic data. Arch. Appl. Mech. 86, 303–320 (2016)CrossRefGoogle Scholar
  69. 69.
    Serban, R., Freeman, J.S.: Identification and identifiability of unknown parameters in multibody dynamic systems. Multibody Syst. Dyn. 5, 335–350 (2001)CrossRefMATHGoogle Scholar
  70. 70.
    Shafiq, M., Ayyagari, R.S., Ehaab, M., Vural, M.: Multiaxial yield surface of transversely isotropic foams: Part II—experimental. J. Mech. Phys. Solids 76, 224–236 (2015)CrossRefGoogle Scholar
  71. 71.
    Shildip, D.U., Bhope, D.V., Khamankar, S.D.: Stress analysis of multilayer pressure vessel. J. Appl. Mech. Eng. 4(2), 1–6 (2015)Google Scholar
  72. 72.
    Sutton, M.A., Orteu, J.J., Schreier, H.W.: Image Correlation for Shape, Motion and Deformation Measurements. Springer, New York (2009)Google Scholar
  73. 73.
    Sutton, M., Badel, P., Avril, S., Lessner, S.: Mechanical identification of hyperelastic anisotropic properties of mouse carotid arteries. In: Proulx, T. (ed.) Mechanics of Biological Systems and Materials, Proceedings of the 2011 Annual Conference on Experimental and Applied Mechanics, vol. 2, pp. 11–17. Springer, New York (2011)Google Scholar
  74. 74.
    Thielecke, F.: Parameteridentifizierung von Simulationsmodellen für das viskoplastische Verhalten von Metallen—Theorie, Numerik, Anwendung. No. 34-1998, Technische Universität Braunschweig (1997)Google Scholar
  75. 75.
    Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., Yagola, A.G.: Numerical Methods for the Solution of Ill-posed Problems. Kluwer Academic Publishers, Dordrecht (1995)CrossRefMATHGoogle Scholar
  76. 76.
    Timoschenko, S.P., Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill Book Company, Singapore (1985)Google Scholar
  77. 77.
    Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics, Encyclopedia of Physics. Springer, Berlin (1965)MATHGoogle Scholar
  78. 78.
    Twizell, E.H., Ogden, R.W.: Non-linear optimization of the material constants in Ogden’s stress-deformation function for incompressible isotropic elastic materials. J. Aust. Math. Soc. Ser. B 24, 424–434 (1983)CrossRefMATHGoogle Scholar
  79. 79.
    Yeh, M., Kyriakides, S.: On the collapse of inelastic thick-walled tubes under external pressure. ASME J. Energy Resour. Technol. 108(1), 35–47 (1986)CrossRefGoogle Scholar
  80. 80.
    Young, W., Budynas, R.: Roark’s Formulas for Stress and Strain. McGraw-Hill Professional, New York (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Applied MechanicsClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations