Skip to main content
Log in

Identifiability of material parameters in solid mechanics

  • SPECIAL
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Material parameter identification using constitutive models of elasticity, viscoelasticity, rate-independent plasticity and viscoplasticity has a long history with regard to homogeneous and inhomogeneous deformations. For example, uniaxial tensile tests, pure shear tests, torsion experiments of thin-walled tubes or biaxial tensile tests are used to obtain the material parameters by solving the inverse problem. Frequently, the parameters are determined by numerical optimization tools. In this paper, we investigate some very basic single- and two-layered examples regarding identifiability, because these tests are the basis for more complex geometrical and physical nonlinear problems. These simple examples are the uniaxial tensile/compression case, biaxial tensile tests of a cruciform specimen, torsion of a thin-walled tube, a thick-walled tube under internal pressure and the indentation test. For the thick-walled tube under internal and external pressure with an axial pre-strain with several layers, an analytical solution is provided directly suitable for programming. The aim is to get an understanding whether some problems lead to non-identifiable parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Amin, A.F.M.S., Alam, M.S., Okui, Y.: An improved hyperelasticity relation in modeling viscoelasticity response of natural and high damping rubbers in compression: experiments, parameter identification and numerical verification. Mech. Mater. 34, 75–95 (2002)

    Article  Google Scholar 

  2. Andresen, K., Dannemeyer, S., Friebe, H., Mahnken, R., Ritter, R., Stein, E.: Parameteridentifikation für ein plastisches Stoffgesetz mit FE-Methoden und Rasterverfahren. Bauingenieur 71, 21–31 (1996)

    Google Scholar 

  3. Bai, Y., Igland, T.R., Moan, T.: Tube collapse under combined external pressure, tension and bending. Mar. Struct. 10(5), 389–410 (1997)

    Article  Google Scholar 

  4. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming. Wiley, New York (1993)

    MATH  Google Scholar 

  5. Beck, J.V., Arnold, K.J.: Parameter Estimation in Engineering and Science. Wiley, New York (1977)

    MATH  Google Scholar 

  6. Benedix, U., Görke, U.J., Kreißig, R., Kretzschmar, S.: Local and global analysis of inhomogeneous displacement fields for the identification of material parameters. In: Hoa, S.V., De Wilde, W.P., Blain, W.R. (eds) Computer Methods in Composite Materials VI (CADCOMP 98), pp 159–168 (1998)

  7. Beveridge, G.S.G., Schechter, R.S.: Optimization: Theory and Practice, 1st edn. McGraw-Hill Book Company, New York (1970)

    MATH  Google Scholar 

  8. Bier, W., Dariel, M.P., Frage, N., Hartmann, S., Michailov, O.: Die compaction of copper powder designed for material parameter identification. Int. J. Mech. Sci. 49, 766–777 (2007)

    Article  Google Scholar 

  9. Björck, A.: Numerical Methods for Least Squares Problems. SIAM (Society for Industrial and Applied Mathematics), Philadelphia (1996)

    Book  MATH  Google Scholar 

  10. Bourgoyne, A.: Applied Drilling Engineering. Society of Petroleum Engineers, Dallas (1986). SPE textbook series

    Google Scholar 

  11. Calloch, S., Marquis, D.: Triaxial tension-compression tests for multiaxial cyclic plasticity. Int. J. Plast 15, 521–549 (1999)

    Article  MATH  Google Scholar 

  12. Carnavas, P.C., Page, N.W.: Elastic properties of compacted metal powders. J. Mater. Sci. 33, 4647–4655 (1998)

    Article  Google Scholar 

  13. Chen, Z., Diebels, S.: Nanoindentation of soft polymers: modeling, experiments and parameter identification. Tech. Mech. 34, 166–189 (2014)

    Google Scholar 

  14. Clifton, R.J., Simonson, E.R., Jones, A.H., Green, S.J.: Determination of the critical-stress-intensity factor kic from internally pressurized thick-walled vessels. Exp. Mech. 16(6), 233–238 (1976)

    Article  Google Scholar 

  15. Coleman, B.D., Gurtin, M.E.: Thermodynamics with internal state variables. J. Chem. Phys. 47, 597–613 (1967)

    Article  Google Scholar 

  16. Consigny, P.M., Tulenko, T.N., Nicosia, R.F.: Immediate and long-term effects of angioplasty-balloon dilation on normal rabbit iliac artery. Arterioscler. Thromb. Vasc. Biol. 6(3), 265–276 (1986)

    Article  Google Scholar 

  17. Cox, R.H.: Comparison of mechanical and chemical properties of extra- and intralobar canine pulmonary arterie. Am. J. Physiol. Heart Circ. Physiol. 242, H245–H253 (1982)

    Article  Google Scholar 

  18. Cox, R.H.: Comparison of arterial wall mechanics using ring and cylindrical segments. Am. J. Physiol. Heart Circ. Physiol. 244, H298–H303 (1983)

    Article  Google Scholar 

  19. Davis, J.R.: Tensile Testing, 2nd edn. ASM International, Materials Park (2004)

    Google Scholar 

  20. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Classics in Applied Mathematics, vol. 16. SIAM Society for Industrial and Applied Mathematics, Philadelphia (1996)

    Book  MATH  Google Scholar 

  21. Diebels, S., Chen, Z., Scheffer, T., Seibert, H.: Macroindentation of a soft polymer: identification of hyperelasticity and validation by uni/biaxial tensile tests. Mech. Mater. 64, 111–127 (2013)

    Article  Google Scholar 

  22. Draper, N.R., Smith, H.: Applied Regression Analysis, 3rd edn. Wiley, New York (1998)

    MATH  Google Scholar 

  23. Flory, P.J.: Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57, 829–838 (1961)

    Article  MathSciNet  Google Scholar 

  24. Forsberg, F., Sjödahl, M., Mooser, R., Hack, E., Wyss, P.: Full three-dimensional strain measurements on wood exposed to three-point bending: analysis by use of digital volume correlation applied to synchrotron radiation micro-computed tomography image data. Strain 46, 47–60 (2010)

    Article  Google Scholar 

  25. Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6), 15–35 (2006)

    Article  Google Scholar 

  26. Gilbert, R.R., Hartmann, S., Kudela, L., Rank, E., Sahar, G., Yosibash, Z., Yossef, O.: Parameter identification of the passive response in arteries. Technical Report Series Fac3-16-01, Faculty of Mathematics/Computer Science and Mechanical Engineering, Clausthal University of Technology (Germany) (2016)

  27. Hannon, A., Tiernan, P.: A review of planar biaxial tensile test systems for sheet metal. J. Mater. Process. Technol. 198(1–3), 1–13 (2008)

    Article  Google Scholar 

  28. Hartmann, S.: Numerical studies on the identification of the material parameters of Rivlin’s hyperelasticity using tension–torsion tests. Acta Mech. 148, 129–155 (2001a)

    Article  MATH  Google Scholar 

  29. Hartmann, S.: Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions. Int. J. Solids Struct. 38(44–45), 7999–8018 (2001b)

    Article  MATH  Google Scholar 

  30. Hartmann, S., Tschöpe, T., Schreiber, L., Haupt, P.: Large deformations of a carbon black-filled rubber. Experiment, optical measurement and parameter identification using finite elements. Eur. J. Mech. Ser. A Solids 22, 309–324 (2003)

    Article  MATH  Google Scholar 

  31. Hartmann, S., Gibmeier, J., Scholtes, B.: Experiments and material parameter identification using finite elements. Uniaxial tests and validation using instrumented indentation tests. Exp. Mech. 46(1), 5–18 (2006)

    Article  Google Scholar 

  32. Hartmann, S., Neff, P.: Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int. J. Solids Struct. 40(11), 2767–2791 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Haupt, P.: Continuum Mechanics and Theory of Materials, 2nd edn. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  34. Haupt, P., Lion, A.: Experimental identification and mathematical modelling of viscoplastic material behavior. J. Contin. Mech. Thermodyn. 7, 73–96 (1995)

    Article  Google Scholar 

  35. Haupt, P., Sedlan, K.: Viscoplasticity of elastomeric materials: experimental facts and constitutive modelling. Arch. Appl. Mech. 71, 89–109 (2001)

    Article  MATH  Google Scholar 

  36. Huber, N., Tsakmakis, C.: Determination of constitutive properties from spherical indentation data using neural networks, Part I: plasticity with nonlinear and kinematic hardening. J. Mech. Phys. Solids 47, 1589–1607 (1999a)

    Article  MATH  Google Scholar 

  37. Huber, N., Tsakmakis, C.: Determination of constitutive properties from spherical indentation data using neural networks, Part II: the case of pure kinematic hardening in plasticity laws. J. Mech. Phys. Solids 47, 1569–1588 (1999b)

    Article  MATH  Google Scholar 

  38. Johlitz, M., Diebels, S., Jan, B., Steeb, H., Wulff, P.: Size effects in polyurethane bonds: experiments, modelling and parameter identification. J. Mater. Sci. 43, 4768–4779 (2008)

    Article  Google Scholar 

  39. Kadlowec, J., Wineman, A., Hulbert, G.: Elastomer bushing response: experiments and finite element modeling. Acta Mech. 163, 25–38 (2003)

    MATH  Google Scholar 

  40. Krämer, S., Rothe, S., Hartmann, S.: Homogeneous stress-strain states computed by 3D-stress algorithms of FE-codes: application to material parameter identification. Eng. Comput. 31, 141–159 (2015)

    Article  Google Scholar 

  41. Kreißig, R.: Auswertung inhomogener Verschiebungsfelder zur Identifikation der Parameter elastisch-plastischer Deformationsgesetze. Forsch. Ingenieurwes. 64, 99–109 (1998)

    Article  Google Scholar 

  42. Kreissig, R., Benedix, U., Goerke, U.J.: Statistical aspects of the identification of material parameters for elasto-plastic models. Arch. Appl. Mech. 71, 123–134 (2001)

    Article  MATH  Google Scholar 

  43. Lamkanfi, E., Paepegem, W.V., Degrieck, J.: Shape optimization of a cruciform geometry for biaxial testing of polymers. Polym. Testing 41, 7–16 (2015)

    Article  Google Scholar 

  44. Lawson, C.L., Hanson, R.J.: Solving least squares problems. Siam Society for Industrial and Applied Mathematics, Philadelphia (1995)

    Book  MATH  Google Scholar 

  45. Lee, H., Lee, J.H., Pharr, G.M.: A numerical approach to spherical indentation techniques for material property evaluation. J. Mech. Phys. Solids 53, 2037–2069 (2005)

    Article  MATH  Google Scholar 

  46. Lefebvre, D., Chebl, C., Thibodeau, L., Khazzari, E.: A high-strain biaxial-testing rig for thin-walled tubes under axial load and pressure. Exp. Mech. 23, 384–392 (1983)

    Article  Google Scholar 

  47. Lehmann, T.: Elemente der Mechanik II, Elastostatik, 2nd edn. Vieweg, Braunschweig (1984)

    Book  MATH  Google Scholar 

  48. Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  49. Liu, M.C.M., Krempl, E.: A uniaxial viscoplastic model based on total strain and overstress. J. Mech. Phys. Solids 27, 377–391 (1979)

    Article  MATH  Google Scholar 

  50. Lubliner, J.: Plasticity Theory. Macmillan Publishing Company, New York (1990)

    MATH  Google Scholar 

  51. Luenberger, D.G.: Linear and Nonlinear Programming. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  52. Mahnken, R., Stein, E.: A unified approach for parameter identification of inelastic material models in the frame of the finite element method. Comput. Methods Appl. Mech. Eng. 136, 225–258 (1996)

    Article  MATH  Google Scholar 

  53. Mahnken, R., Stein, E.: Parameter identification for finite deformation elasto-plasticity in principal directions. Comput. Methods Appl. Mech. Eng. 147, 17–39 (1997)

    Article  MATH  Google Scholar 

  54. Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cliffs (1969)

    MATH  Google Scholar 

  55. Nedjar, B.: On a concept of directional damage gradient in transversely isotropic materials. Int. J. Solids Struct. 88–89, 56–67 (2016)

    Article  Google Scholar 

  56. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  57. Ogden, R.W.: Non-linear Elastic Deformations. Ellis Horwood, Chichester (1984)

    MATH  Google Scholar 

  58. Ognedal, A.S., Clausen, A.H., Polanco-Loria, M., Benallal, A., Raka, B., Hopperstad, O.S.: Experimental and numerical study on the behaviour of PVC and HDPE in biaxial tension. Mech. Mater. 54, 18–31 (2012)

    Article  Google Scholar 

  59. Press, W.H., Teukolsky, S.A., Vetterling, WTa: Numerical Recipes in Fortran, 2nd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  60. Rachev, A., Shazly, T.: A preliminary analysis of the data from an in vitro inflation-extension test can validate the assumption of arterial tissue elasticity. ASME J. Biomech. Eng. 135(8), 084502 (2013)

    Article  Google Scholar 

  61. Rauchs, G., Bardon, J., Georges, D.: Identification of the material parameters of a viscous hyperelastic constitutive law from spherical indentation tests of rubber and validation by tensile tests. Mech. Mater. 42, 961–973 (2010)

    Article  Google Scholar 

  62. Rothe, S.: Electro-thermo-mechanical modeling of field assisted sintering technology: Experiments, constitutive modeling and finite element analysis. Ph.D.-thesis, report no. 1/2015, Institute of Applied Mechanics, Clausthal University of Technology, Clausthal-Zellerfeld (2015)

  63. Scheday, G.: Theorie und Numerik der Parameteridentifikation von Materialmodellen der finiten Elastizität und Inelastizität auf der Grundlage optischer Feldmessmethoden. Ph.D.-thesis, Report No. I–11 (2003), University of Stuttgart (Germany), Institute of Mechanics (2003)

  64. Schittkowski, K.: Numerical Data Fitting in Dynamical Systems. Kluwer Academic Publication, Dordrecht (2002)

    Book  MATH  Google Scholar 

  65. Schmaltz, S., Willner, K.: Comparison of different biaxial tests for the identification of sheet steel material parameters. Strain 40, 389–403 (2014)

  66. Schmaltz, S., Willner, K.: Material parameter identification utilizing optical full-field strain measurement and digital image correlation. J. Jpn. Soc. Exp. Mech. 13, s120–s125 (2013)

    Google Scholar 

  67. Schmidt, U., Mergheim, J., Steinmann, P.: Identification of elastoplastic microscopic material parameters within a homogenization scheme. Int. J. Numer. Methods Eng. 104, 391–407 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  68. Schmidt, U., Steinmann, P., Mergheim, J.: Two-scale elastic parameter identification from noisy macroscopic data. Arch. Appl. Mech. 86, 303–320 (2016)

    Article  Google Scholar 

  69. Serban, R., Freeman, J.S.: Identification and identifiability of unknown parameters in multibody dynamic systems. Multibody Syst. Dyn. 5, 335–350 (2001)

    Article  MATH  Google Scholar 

  70. Shafiq, M., Ayyagari, R.S., Ehaab, M., Vural, M.: Multiaxial yield surface of transversely isotropic foams: Part II—experimental. J. Mech. Phys. Solids 76, 224–236 (2015)

    Article  Google Scholar 

  71. Shildip, D.U., Bhope, D.V., Khamankar, S.D.: Stress analysis of multilayer pressure vessel. J. Appl. Mech. Eng. 4(2), 1–6 (2015)

    Google Scholar 

  72. Sutton, M.A., Orteu, J.J., Schreier, H.W.: Image Correlation for Shape, Motion and Deformation Measurements. Springer, New York (2009)

    Google Scholar 

  73. Sutton, M., Badel, P., Avril, S., Lessner, S.: Mechanical identification of hyperelastic anisotropic properties of mouse carotid arteries. In: Proulx, T. (ed.) Mechanics of Biological Systems and Materials, Proceedings of the 2011 Annual Conference on Experimental and Applied Mechanics, vol. 2, pp. 11–17. Springer, New York (2011)

    Google Scholar 

  74. Thielecke, F.: Parameteridentifizierung von Simulationsmodellen für das viskoplastische Verhalten von Metallen—Theorie, Numerik, Anwendung. No. 34-1998, Technische Universität Braunschweig (1997)

  75. Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., Yagola, A.G.: Numerical Methods for the Solution of Ill-posed Problems. Kluwer Academic Publishers, Dordrecht (1995)

    Book  MATH  Google Scholar 

  76. Timoschenko, S.P., Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill Book Company, Singapore (1985)

    Google Scholar 

  77. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics, Encyclopedia of Physics. Springer, Berlin (1965)

    MATH  Google Scholar 

  78. Twizell, E.H., Ogden, R.W.: Non-linear optimization of the material constants in Ogden’s stress-deformation function for incompressible isotropic elastic materials. J. Aust. Math. Soc. Ser. B 24, 424–434 (1983)

    Article  MATH  Google Scholar 

  79. Yeh, M., Kyriakides, S.: On the collapse of inelastic thick-walled tubes under external pressure. ASME J. Energy Resour. Technol. 108(1), 35–47 (1986)

    Article  Google Scholar 

  80. Young, W., Budynas, R.: Roark’s Formulas for Stress and Strain. McGraw-Hill Professional, New York (2001)

    Google Scholar 

Download references

Acknowledgements

We would like to express out sincere thanks to the German–Israeli Foundation for Scientific Research and Development (GIF) for their financial support of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hartmann.

Appendices

Appendix

Thick-walled tube under internal and external pressure and axial strains

The analytical solution of the thick-walled tube under both agencies, internal and external pressure and axial strains for isotropic, linear elasticity in the small-strain regime, is recapped, since it is required for the more general multi-layered results in 8, see references cited in [80] as well. We assume a displacement field

$$\begin{aligned} \mathbf {u} (r,z) = u(r) \mathbf {e} _r+ w(z) \mathbf {e} _z, \end{aligned}$$
(49)

leading to the linearized Green strain tensor \({\mathbf {E}} = u,_r \mathbf {e} _r\otimes \mathbf {e} _r+ (u/r) \mathbf {e} _\vartheta \otimes \mathbf {e} _\vartheta + w,_z \mathbf {e} _z\otimes \mathbf {e} _z\). \(r,\vartheta ,z\) are cylindrical coordinates, \(\mathbf {e} _r, \mathbf {e} _\vartheta \) and \(\mathbf {e} _z\) the normalized tangent vectors in radial, circumferential and axial direction. The notation \(u,_r\) symbolizes the partial derivative of the radial displacement u with respect to r, \(u,_r = \partial u/ \partial r\). u(r) is unknown and \(w(0) = 0\) and \(w(H) = w_{\text {max}}\) are prescribed (H is the thickness of the circular plate), see Fig. 6a. The radial and circumferential strains are \(\varepsilon _r = u,_r\) and \(\varepsilon _\vartheta = u/r\), respectively, and the axial strain \(\varepsilon _z = w,_z = \text {const.}\) is assumed to be constant over z. Using the elasticity relation (24), we have

$$\begin{aligned} \begin{aligned} \sigma _r&= \frac{E}{(1+\nu )(1-2\nu )} \big ( (1-\nu ) \varepsilon _r + \nu \varepsilon _\vartheta + \nu \varepsilon _z \big ), \\ \sigma _\vartheta&= \frac{E}{(1+\nu )(1-2\nu )} \big ( \nu \varepsilon _r + (1-\nu ) \varepsilon _\vartheta + \nu \varepsilon _z \big ), \\ \sigma _z&= \frac{E}{(1+\nu )(1-2\nu )} \big ( \nu \varepsilon _r + \nu \varepsilon _\vartheta + (1-\nu ) \varepsilon _z \big ), \end{aligned} \end{aligned}$$
(50)

or the inverse relation

$$\begin{aligned} \begin{aligned} \varepsilon _r = u,_r&= \frac{\displaystyle 1}{\displaystyle E} \big ( \sigma _r - \nu \sigma _\vartheta - \nu \sigma _z \big ), \\ \varepsilon _\vartheta = \frac{u}{r}&= \frac{\displaystyle 1}{\displaystyle E} \big ( -\nu \sigma _r + \sigma _\vartheta - \nu \sigma _z \big ), \\ \varepsilon _z = w,_z&= \frac{\displaystyle 1}{\displaystyle E} \big ( -\nu \sigma _r - \nu \sigma _\vartheta + \sigma _z \big ). \end{aligned} \end{aligned}$$
(51)

Additionally, we have to fulfill the equilibrium conditions \({{\mathrm{div}}}{\mathbf {T}} = \mathbf {0} \) in the absence of specific body forces, leading to

$$\begin{aligned} \begin{aligned} \sigma _r,_r + \frac{\sigma _r - \sigma _\vartheta }{r} = 0 \quad&\rightarrow \quad (r \sigma _r),_r - \sigma _\vartheta = 0 \\ \sigma _\vartheta ,_\vartheta = 0 \quad&\rightarrow \quad \sigma _\vartheta \text { is constant over } \vartheta \\ \sigma _z,_z = 0 \quad&\rightarrow \quad \sigma _z \text { is constant over } z \end{aligned} \end{aligned}$$
(52)

see, for example, [54].

We insert Eqs. (50)\(_1\) and (50)\(_2\) into Eq. (51)\(_3\) and obtain

$$\begin{aligned} \sigma _z = E \varepsilon _z + \nu (\sigma _r + \sigma _\vartheta ) \end{aligned}$$
(53)

leading to

$$\begin{aligned} \sigma _z,_r = \nu (\sigma _r,_r + \sigma _\vartheta ,_r), \end{aligned}$$
(54)

because of a constant axial strain \(\varepsilon _z\). Now, we multiply Eq. (51)\(_2\) with the Young modulus E and the radial coordinate r—evaluating \(\varepsilon _\vartheta = u/r\)—leading to

$$\begin{aligned} E u = r (\sigma _\vartheta - \nu \sigma _r - \nu \sigma _z). \end{aligned}$$
(55)

The derivative with respect to the radial coordinate employing \(u,_r = \varepsilon _r\) and Eq. (51)\(_1\) leads to

$$\begin{aligned} E u,_r = \sigma _\vartheta - \nu \sigma _r - \nu \sigma _z + r \big ( \sigma _\vartheta ,_r - \nu \sigma _r,_r - \nu \sigma _z,_r \big ) = E \varepsilon _r = \sigma _r - \nu \sigma _\vartheta - \nu \sigma _z. \end{aligned}$$

After inserting Eq. (54), we arrive at

$$\begin{aligned} \sigma _\vartheta - \sigma _r + r (1-\nu ) \sigma _\vartheta ,_r - r \nu \sigma _r,_r = 0, \end{aligned}$$
(56)

where, additionally, the equilibrium conditions (52)\(_1\) have to be considered. This leads to

$$\begin{aligned} \sigma _r,_r + \sigma _\vartheta ,_r = 0, \end{aligned}$$
(57)

i.e., in view of Eq. (54), the axial stresses are constant over r, \(\sigma _z,_r = 0\). If we integrate Eq.(57)

$$\begin{aligned} \sigma _r + \sigma _\vartheta = 2 C_1, \end{aligned}$$
(58)

and again insert the circumferential stress from Eq. (52)\(_1\) and multiply the relation with r, we arrive at

$$\begin{aligned} \big (r^2 \sigma _r\big ),_r = 2 C_1 r, \end{aligned}$$

or, if we integrate this relation, the radial stress

$$\begin{aligned} r^2 \sigma _r = C_1 r^2 + C_2 \quad \Rightarrow \quad \sigma _r = C_1 + \frac{C_2}{r^2} \end{aligned}$$
(59)

can be derived. Since \(\sigma _z,_r = 0\) vanishes, we obtain the circumferential stress from Eq. (58),

$$\begin{aligned} \sigma _\vartheta = C_1 - \frac{C_2}{r^2}. \end{aligned}$$
(60)

The constants are determined by the boundary conditions

$$\begin{aligned} \begin{aligned} \sigma _r(r_i) = -p_i&= C_1 + \frac{C_2}{r_i^2} \\ \sigma _r(r_o) = -p_o&= C_1 + \frac{C_2}{r_o^2} \\ \end{aligned} \end{aligned}$$
(61)

leading to the coefficients

$$\begin{aligned} C_1 = \frac{p_i r_i^2 - p_o r_o^2}{r_o^2 - r_i^2}, \qquad C_2 = \frac{r_i^2 r_o^2}{r_o^2 - r_i^2} (p_o - p_i). \end{aligned}$$
(62)

\(p_i\) and \(p_o\) are the internal and external pressure, respectively. \(r_i\) and \(r_o\) are the internal and external radius.

In view of experimental results, we can measure the axial force by integrating the axial stresses (53) using Eqs. (59) and (60),

$$\begin{aligned} F_z = 2 \pi \int _{r_i}^{r_o} \sigma _z(r) r {\mathrm {d}}r = \sigma _z a, \quad \text {with} \quad \sigma _z = E \varepsilon _z + 2 \nu C_1, \end{aligned}$$
(63)

with the cross section \(a = \pi (r_o^2 - r_i^2)\). Additionally, the radial displacements (or the circumferential strains) on the outside are measurable,

$$\begin{aligned} u(r_o) = \frac{2 r_o r_i^2 (1-\nu ^2)}{E (r_o^2 - r_i^2)} p_i - \frac{r_o \big (r_i^2 (1+\nu ) + r_o^2 (1-\nu +2 \nu ^2)\big )}{E (r_o^2 - r_i^2)} p_o - \nu r_o \varepsilon _z. \end{aligned}$$
(64)

Analytical solution of thick-walled cylinder with several layers

Multi-layered thick-walled tubes occur, for example, in drilling pipes, pressure vessels, or arteries. In the following, each layer k, \(k=1, \ldots , N\), is assumed to be of an isotropic, linear elastic material behavior. The layers are defined by the radius \(r^{(k)}\), \(k=0,\ldots ,N\), with the internal and external radius \(r^{(0)} = r_i\) and \(r^{(N)} = r_o\), respectively, see Fig. 6b. As in 7, we assume that the lower cut of the tube is fixed in axial direction and the upper part is stretched by \(w_{\text {max}}\). The pressures \(p_i\) and \(p_o\) are applied internally and externally. Thus, we have the boundary conditions

$$\begin{aligned} \sigma _r^{(1)}(r_i) = \sigma _r^{(1)}(r^{(0)}) = -p_i, \quad \sigma _r^{(N)}(r_o) = \sigma _r^{(1)}(r^{(N)}) = -p_0. \end{aligned}$$
(65)

Additionally, the internal constraints in between the layers are given,

$$\begin{aligned} \begin{aligned} u^{(k-1)}(r^{(k-1)})&= u^{(k)}(r^{(k-1)}), \\ \sigma _r^{(k-1)}(r^{(k-1)})&= \sigma _r^{(k)}(r^{(k-1)}), \end{aligned} \end{aligned}$$
(66)

for \(k=2,\ldots ,N\). The right superscript (k), \(k=1,\ldots ,N\), in the stress and displacement field, defines the layer number. In view of Eq. (59), and for the radial displacements (55) the two unknowns \(C_1^{(k)}\) and \(C_2^{(k)}\) have to be specified in each layer, i.e., we have a total of 2N unknowns. On the other hand, we have with Eqs. (65) and (66) \(n_{\text {eq}} = 2 (N-1) + 2 = 2 N\) equations. From the conditions (65), the two equations

$$\begin{aligned} \sigma _r^{(1)}(r^{(0)})&= C_1^{(1)} + \frac{C_2^{(1)}}{{r^{(0)}}^2} = - p_i \end{aligned}$$
(67)
$$\begin{aligned} \sigma _r^{(N)}(r^{(N)})&= C_1^{(N)} + \frac{C_2^{(N)}}{{r^{(N)}}^2} = - p_o \end{aligned}$$
(68)

are obtained. Applying Eq. (59) for the internal constraint (66)\(_2\), we arrive at

$$\begin{aligned} C_1^{(k-1)} + \frac{C_2^{(k-1)}}{{r^{(k-1)}}^2} = C_1^{(k)} + \frac{C_2^{(k)}}{{r^{(k-1)}}^2} \end{aligned}$$
(69)

Next, we insert the radial, circumferential and axial stresses (59), (60) and (63) depending on the constants \(C_1\) and \(C_2\) into the radial displacements (55). This leads to

$$\begin{aligned} u = \frac{r}{E} \left( (1-\nu - 2 \nu ^2) C_1 - \frac{1+\nu }{r^2} C_2\right) - \nu r \varepsilon _z. \end{aligned}$$
(70)

For each layer, the constraint (66)\(_1\) yields

$$\begin{aligned} A_1^{(k-1)} C_1^{(k-1)} - \frac{A_2^{(k-1)}}{{r^{(k-1)}}^2} C_2^{(k-1)} - \left( A_1^{(k)} C_1^{(k)} - \frac{A_2^{(k)}}{{r^{(k-1)}}^2} C_2^{(k)} \right) = \big (\nu ^{(k-1)} - \nu ^{(k)}\big ) \varepsilon _z, \end{aligned}$$
(71)

with

$$\begin{aligned} A_1^{(k)} = \frac{1 - \nu ^{(k)} - 2 {\nu ^{(k)}}^2}{E^{(k)}}, \quad A_2^{(k)} = \frac{1 + \nu ^{(k)}}{E^{(k)}}, \end{aligned}$$
(72)

The combination of Eqs. (67), (68), (69) and (71) leads to the system of linear equations

(73)

with

(74)

and

(75)

After solving the linear system (73), we can determine the stress distribution in each layer , , and , and the displacements. In view of a sensitivity analysis of an experiment, the resulting force

(76)

with the partial cross sections of layers, \(a_k = \pi \big ({r^{(k)}}^2 - {r^{(k-1)}}^2\big )\), \(k=1,\ldots ,N\), can be calculated. Additionally, we can compute the outer surface displacement

$$\begin{aligned} u(r_o) = u^{(N)}(r^{(N)}) = r^{(N)} \big (A_1^{(N)} C_1^{(N)} - A_2^{(N)} C_2^{(N)}\big ) - \nu ^{(N)} r^{(N)} \varepsilon _z. \end{aligned}$$
(77)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartmann, S., Gilbert, R.R. Identifiability of material parameters in solid mechanics. Arch Appl Mech 88, 3–26 (2018). https://doi.org/10.1007/s00419-017-1259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-017-1259-4

Keywords

Navigation