Advertisement

Histochemistry and Cell Biology

, Volume 149, Issue 4, pp 405–415 | Cite as

Pathologic conditions of hard tissue: role of osteoclasts in osteolytic lesion

  • Riko Kitazawa
  • Ryuma Haraguchi
  • Mana Fukushima
  • Sohei Kitazawa
Review

Abstract

Hard tissue homeostasis is regulated by the balance between bone formation by osteoblasts and bone resorption by osteoclasts. This physiologic process allows adaptation to mechanical loading and calcium homeostasis. Under pathologic conditions, however, this process is ill-balanced resulting in either over-resorption or over-formation of hard tissue. Local over-resorption by osteoclasts is typically observed in osteolytic metastases of malignancies, autoimmune arthritis, and giant cell tumor of bone (GCTB). In tumor-related local osteolysis, tumor-derived osteoclast-activating factors induce bone resorption not by directly acting on osteoclasts but by indirectly upregulating receptor activator of NFκB ligand (RANKL) on osteoblastic cells. Similarly, synovial tissue in the autoimmune arthritis model does overexpress RANKL and contains numerous osteoclast precursors, and like a landing craft, when it comes in contact with eroded bone surfaces, osteoclast precursors are immediately polarized to become mature osteoclasts, inducing rapidly progressive bone destruction at a late stage of the disease. GCTB, on the other hand, is a common primary bone tumor, usually arising at the metaphysis of the long bone in young adults. After the discovery of RANKL, the concept of GCTB as a tumor of RANKL-expressing stromal cells was established, and comprehensive exosome studies finally disclosed the causative single-point mutation at histone H3.3 (H3F3A) in stromal cells. Thus, osteolytic lesions under various pathological conditions are ultimately attributable to the overexpression of RANKL, which opens up a common, practical and useful therapeutic target for diverse osteolytic conditions.

Keywords

Osteoclasts RANKL Bone resorption Cancer Rheumatoid arthritis Giant cell tumor of bone 

Notes

Acknowledgements

This study was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan (to RK, RH and SK).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abdelgawad ME, Delaisse JM, Hinge M, Jensen PR, Alnaimi RW, Rolighed L, Engelholm LH, Marcussen N, Andersen TL (2016) Early reversal cells in adult human bone remodeling: osteoblastic nature, catabolic functions and interactions with osteoclasts. Histochem Cell Biol 145(6):603–615.  https://doi.org/10.1007/s00418-016-1414-y CrossRefPubMedGoogle Scholar
  2. Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N, Van Loo P, Wedge DC, Cooke SL, Gundem G, Davies H, Nik-Zainal S, Martin S, McLaren S, Goodie V, Robinson B, Butler A, Teague JW, Halai D, Khatri B, Myklebost O, Baumhoer D, Jundt G, Hamoudi R, Tirabosco R, Amary MF, Futreal PA, Stratton MR, Campbell PJ, Flanagan AM (2013) Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet 45(12):1479–1482.  https://doi.org/10.1038/ng.2814 CrossRefPubMedGoogle Scholar
  3. Branstetter DG, Nelson SD, Manivel JC, Blay JY, Chawla S, Thomas DM, Jun S, Jacobs I (2012) Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone. Clin Cancer Res 18(16):4415–4424.  https://doi.org/10.1158/1078-0432.CCR-12-0578 CrossRefPubMedGoogle Scholar
  4. Buenzli PR, Jeon J, Pivonka P, Smith DW, Cummings PT (2012) Investigation of bone resorption within a cortical basic multicellular unit using a lattice-based computational model. Bone 50(1):378–389.  https://doi.org/10.1016/j.bone.2011.10.021 CrossRefPubMedGoogle Scholar
  5. Bukari BA, Citartan M, Ch’ng ES, Bilibana MP, Rozhdestvensky T, Tang TH (2017) Aptahistochemistry in diagnostic pathology: technical scrutiny and feasibility. Histochem Cell Biol 147(5):545–553.  https://doi.org/10.1007/s00418-017-1561-9 CrossRefPubMedGoogle Scholar
  6. Cafforio P, Savonarola A, Stucci S, De Matteo M, Tucci M, Brunetti AE, Vecchio VM, Silvestris F (2014) PTHrP produced by myeloma plasma cells regulates their survival and pro-osteoclast activity for bone disease progression. J Bone Miner Res 29(1):55–66.  https://doi.org/10.1002/jbmr.2022 CrossRefPubMedGoogle Scholar
  7. Chen X, Wang Z, Duan N, Zhu G, Schwarz EM, Xie C (2017) Osteoblast–osteoclast interactions. Connect Tissue Res.  https://doi.org/10.1080/03008207.2017.1290085 PubMedCentralGoogle Scholar
  8. Dougall WC, Holen I, Gonzalez Suarez E (2014) Targeting RANKL in metastasis. Bonekey Rep 3:519.  https://doi.org/10.1038/bonekey.2014.14 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fahimi HD (1973) Diffusion artifacts in cytochemistry of catalase. J Histochem Cytochem 21(11):999–1009.  https://doi.org/10.1177/21.11.999 CrossRefPubMedGoogle Scholar
  10. Frost HM (1992) Perspectives: bone’s mechanical usage windows. Bone Miner 19(3):257–271CrossRefPubMedGoogle Scholar
  11. Ghert M, Simunovic N, Cowan RW, Colterjohn N, Singh G (2007) Properties of the stromal cell in giant cell tumor of bone. Clin Orthop Relat Res 459:8–13.  https://doi.org/10.1097/BLO.0b013e31804856a1 CrossRefPubMedGoogle Scholar
  12. Gonzalez-Chavez SA, Pacheco-Tena C, Macias-Vazquez CE, Luevano-Flores E (2013) Assessment of different decalcifying protocols on osteopontin and osteocalcin immunostaining in whole bone specimens of arthritis rat model by confocal immunofluorescence. Int J Clin Exp Pathol 6(10):1972–1983PubMedPubMedCentralGoogle Scholar
  13. Gyoja F (2017) Basic helix-loop-helix transcription factors in evolution: roles in development of mesoderm and neural tissues. Genesis.  https://doi.org/10.1002/dvg.23051 PubMedGoogle Scholar
  14. Johnson RW, Suva LJ (2017) Hallmarks of bone metastasis. Calcif Tissue Int.  https://doi.org/10.1007/s00223-017-0362-4 PubMedPubMedCentralGoogle Scholar
  15. Katagiri T, Takahashi N (2002) Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis 8(3):147–159CrossRefPubMedGoogle Scholar
  16. Kinomura M, Shimada N, Nishikawa M, Omori K, Jo T, Ueda Y, Notohara K, Kitazawa R, Kitazawa S, Fukushima M, Asano K (2015) Parathyroid hormone-related peptide-producing multiple myeloma and renal impairment. Intern Med 54(23):3029–3033.  https://doi.org/10.2169/internalmedicine.54.5085 CrossRefPubMedGoogle Scholar
  17. Kitazawa S, Kitazawa R (2002) RANK ligand is a prerequisite for cancer-associated osteolytic lesions. J Pathol 198(2):228–236.  https://doi.org/10.1002/path.1199 CrossRefPubMedGoogle Scholar
  18. Kitazawa S, Kitazawa R, Maeda S (1999) In situ hybridization with polymerase chain reaction-derived single-stranded DNA probe and S1 nuclease. Histochem Cell Biol 111(1):7–12CrossRefPubMedGoogle Scholar
  19. Kitazawa R, Kitazawa S, Kajimoto K, Sowa H, Sugimoto T, Matsui T, Chihara K, Maeda S (2002) Expression of parathyroid hormone-related protein (PTHrP) in multiple myeloma. Pathol Int 52(1):63–68CrossRefPubMedGoogle Scholar
  20. Kohno N, Kitazawa S, Sakoda Y, Kanbara Y, Furuya Y, Ohashi O, Kitazawa R (1994) Parathyroid hormone-related protein in breast cancer tissues: relationship between primary and metastatic sites. Breast Cancer 1(1):43–49CrossRefPubMedGoogle Scholar
  21. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2):165–176CrossRefPubMedGoogle Scholar
  22. Le Pape F, Vargas G, Clezardin P (2016) The role of osteoclasts in breast cancer bone metastasis. J Bone Oncol 5(3):93–95.  https://doi.org/10.1016/j.jbo.2016.02.008 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lindroth AM, Plass C (2013) Recurrent H3.3 alterations in childhood tumors. Nat Genet 45(12):1413–1414.  https://doi.org/10.1038/ng.2832 CrossRefPubMedGoogle Scholar
  24. Liu W, Vivian CJ, Brinker AE, Hampton KR, Lianidou E, Welch DR (2014) Microenvironmental influences on metastasis suppressor expression and function during a metastatic cell’s journey. Cancer Microenviron 7(3):117–131.  https://doi.org/10.1007/s12307-014-0148-4 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lopez IA, Ishiyama G, Hosokawa S, Hosokawa K, Acuna D, Linthicum FH, Ishiyama A (2016) Immunohistochemical techniques for the human inner ear. Histochem Cell Biol 146(4):367–387.  https://doi.org/10.1007/s00418-016-1471-2 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ludwig RJ, Vanhoorelbeke K, Leypoldt F, Kaya Z, Bieber K, McLachlan SM, Komorowski L, Luo J, Cabral-Marques O, Hammers CM, Lindstrom JM, Lamprecht P, Fischer A, Riemekasten G, Tersteeg C, Sondermann P, Rapoport B, Wandinger KP, Probst C, El Beidaq A, Schmidt E, Verkman A, Manz RA, Nimmerjahn F (2017) Mechanisms of autoantibody-induced pathology. Front Immunol 8:603.  https://doi.org/10.3389/fimmu.2017.00603 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Martin TJ, Ng KW (1994) Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. J Cell Biochem 56(3):357–366.  https://doi.org/10.1002/jcb.240560312 CrossRefPubMedGoogle Scholar
  28. Martin TJ, Suva LJ (1988) Parathyroid hormone-related protein: a novel gene product. Baillieres Clin Endocrinol Metab 2(4):1003–1029CrossRefPubMedGoogle Scholar
  29. Matsuo K, Irie N (2008) Osteoclast–osteoblast communication. Arch Biochem Biophys 473(2):201–209.  https://doi.org/10.1016/j.abb.2008.03.027 CrossRefPubMedGoogle Scholar
  30. Mbalaviele G, Novack DV, Schett G, Teitelbaum SL (2017) Inflammatory osteolysis: a conspiracy against bone. J Clin Invest 127(6):2030–2039.  https://doi.org/10.1172/JCI93356 CrossRefPubMedGoogle Scholar
  31. McCarthy EF (1980) Giant-cell tumor of bone: an historical perspective. Clin Orthop Relat Res (153):14–25Google Scholar
  32. Mori H, Kitazawa R, Mizuki S, Nose M, Maeda S, Kitazawa S (2002) RANK ligand, RANK, and OPG expression in type II collagen-induced arthritis mouse. Histochem Cell Biol 117(3):283–292.  https://doi.org/10.1007/s00418-001-0376-9 CrossRefPubMedGoogle Scholar
  33. Nohr E, Lee LH, Cates JM, Perizzolo M, Itani D (2017) Diagnostic value of histone 3 mutations in osteoclast-rich bone tumors. Hum Pathol 68:119–127.  https://doi.org/10.1016/j.humpath.2017.08.030 CrossRefPubMedGoogle Scholar
  34. Orr C, Vieira-Sousa E, Boyle DL, Buch MH, Buckley CD, Canete JD, Catrina AI, Choy EHS, Emery P, Fearon U, Filer A, Gerlag D, Humby F, Isaacs JD, Just SA, Lauwerys BR, Le Goff B, Manzo A, McGarry T, McInnes IB, Najm A, Pitzalis C, Pratt A, Smith M, Tak PP, Thurlings R, Fonseca JE, Veale DJ (2017) Synovial tissue research: a state-of-the-art review. Nat Rev Rheumatol 13(8):463–475.  https://doi.org/10.1038/nrrheum.2017.115 CrossRefPubMedGoogle Scholar
  35. Ottewell PD, O’Donnell L, Holen I (2015) Molecular alterations that drive breast cancer metastasis to bone. Bonekey Rep 4:643.  https://doi.org/10.1038/bonekey.2015.10 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Piemontese M, Almeida M, Robling AG, Kim HN, Xiong J, Thostenson JD, Weinstein RS, Manolagas SC, O’Brien CA, Jilka RL (2017) Old age causes de novo intracortical bone remodeling and porosity in mice. JCI Insight.  https://doi.org/10.1172/jci.insight.93771 PubMedPubMedCentralGoogle Scholar
  37. Roux S, Meignin V, Quillard J, Meduri G, Guiochon-Mantel A, Fermand JP, Milgrom E, Mariette X (2002) RANK (receptor activator of nuclear factor-kappaB) and RANKL expression in multiple myeloma. Br J Haematol 117(1):86–92CrossRefPubMedGoogle Scholar
  38. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang DA, Tonjes M, Hovestadt V, Albrecht S, Kool M, Nantel A, Konermann C, Lindroth A, Jager N, Rausch T, Ryzhova M, Korbel JO, Hielscher T, Hauser P, Garami M, Klekner A, Bognar L, Ebinger M, Schuhmann MU, Scheurlen W, Pekrun A, Fruhwald MC, Roggendorf W, Kramm C, Durken M, Atkinson J, Lepage P, Montpetit A, Zakrzewska M, Zakrzewski K, Liberski PP, Dong Z, Siegel P, Kulozik AE, Zapatka M, Guha A, Malkin D, Felsberg J, Reifenberger G, von Deimling A, Ichimura K, Collins VP, Witt H, Milde T, Witt O, Zhang C, Castelo-Branco P, Lichter P, Faury D, Tabori U, Plass C, Majewski J, Pfister SM, Jabado N (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482(7384):226–231.  https://doi.org/10.1038/nature10833 CrossRefPubMedGoogle Scholar
  39. Sims NA, Martin TJ (2014) Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep 3:481.  https://doi.org/10.1038/bonekey.2013.215 PubMedPubMedCentralGoogle Scholar
  40. Singh T, Kaur V, Kumar M, Kaur P, Murthy RS, Rawal RK (2015) The critical role of bisphosphonates to target bone cancer metastasis: an overview. J Drug Target 23(1):1–15.  https://doi.org/10.3109/1061186X.2014.950668 CrossRefPubMedGoogle Scholar
  41. Sobti A, Agrawal P, Agarwala S, Agarwal M (2016) Giant cell tumor of bone—an overview. Arch Bone Jt Surg 4(1):2–9PubMedPubMedCentralGoogle Scholar
  42. Suva LJ, Winslow GA, Wettenhall RE, Hammonds RG, Moseley JM, Diefenbach-Jagger H, Rodda CP, Kemp BE, Rodriguez H, Chen EY et al (1987) A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression. Science 237(4817):893–896CrossRefPubMedGoogle Scholar
  43. Teitelbaum SL (2006) Osteoclasts; culprits in inflammatory osteolysis. Arthritis Res Ther 8(1):201.  https://doi.org/10.1186/ar1857 CrossRefPubMedGoogle Scholar
  44. Teitelbaum SL, Abu-Amer Y, Ross FP (1995) Molecular mechanisms of bone resorption. J Cell Biochem 59(1):1–10.  https://doi.org/10.1002/jcb.240590102 CrossRefPubMedGoogle Scholar
  45. Terpos E, Christoulas D, Gavriatopoulou M, Dimopoulos MA (2017) Mechanisms of bone destruction in multiple myeloma. Eur J Cancer Care (Engl).  https://doi.org/10.1111/ecc.12761 Google Scholar
  46. Theriault RL, Theriault RL (2012) Biology of bone metastases. Cancer Control 19(2):92–101.  https://doi.org/10.1177/107327481201900203 CrossRefPubMedGoogle Scholar
  47. Tsuboi K, Hasegawa T, Yamamoto T, Sasaki M, Hongo H, de Freitas PH, Shimizu T, Takahata M, Oda K, Michigami T, Li M, Kitagawa Y, Amizuka N (2016) Effects of drug discontinuation after short-term daily alendronate administration on osteoblasts and osteocytes in mice. Histochem Cell Biol 146(3):337–350.  https://doi.org/10.1007/s00418-016-1450-7 CrossRefPubMedGoogle Scholar
  48. Udagawa N, Kotake S, Kamatani N, Takahashi N, Suda T (2002) The molecular mechanism of osteoclastogenesis in rheumatoid arthritis. Arthritis Res 4(5):281–289.  https://doi.org/10.1186/ar431 CrossRefPubMedPubMedCentralGoogle Scholar
  49. van der Heijden L, Dijkstra PDS, Blay JY, Gelderblom H (2017) Giant cell tumour of bone in the denosumab era. Eur J Cancer 77:75–83.  https://doi.org/10.1016/j.ejca.2017.02.021 CrossRefPubMedGoogle Scholar
  50. von Wasielewski R, Werner M, Nolte M, Wilkens L, Georgii A (1994) Effects of antigen retrieval by microwave heating in formalin-fixed tissue sections on a broad panel of antibodies. Histochemistry 102(3):165–172CrossRefGoogle Scholar
  51. Wallington EA (1979) Artifacts in tissue sections. Med Lab Sci 36(1):3–61PubMedGoogle Scholar
  52. Wang H, Wan N, Hu Y (2012) Giant cell tumour of bone: a new evaluating system is necessary. Int Orthop 36(12):2521–2527.  https://doi.org/10.1007/s00264-012-1664-9 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Werner M (2006) Giant cell tumour of bone: morphological, biological and histogenetical aspects. Int Orthop 30(6):484–489.  https://doi.org/10.1007/s00264-006-0215-7 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M, Zhang J, Gajjar A, Dyer MA, Mullighan CG, Gilbertson RJ, Mardis ER, Wilson RK, Downing JR, Ellison DW, Zhang J, Baker SJ, St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome P (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44(3):251–253.  https://doi.org/10.1038/ng.1102 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wu C, Sun Z, Guo B, Ye Y, Han X, Qin Y, Liu S (2017) Osthole inhibits bone metastasis of breast cancer. Oncotarget 8(35):58480–58493.  https://doi.org/10.18632/oncotarget.17024 PubMedPubMedCentralGoogle Scholar
  56. Xu L, Mohammad KS, Wu H, Crean C, Poteat B, Cheng Y, Cardoso AA, Machal C, Hanenberg H, Abonour R, Kacena MA, Chirgwin J, Suvannasankha A, Srour EF (2016) Cell adhesion molecule CD166 drives malignant progression and osteolytic disease in multiple myeloma. Cancer Res 76(23):6901–6910.  https://doi.org/10.1158/0008-5472.CAN-16-0517 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yamada Y, Kinoshita I, Kenichi K, Yamamoto H, Iwasaki T, Otsuka H, Yoshimoto M, Ishihara S, Toda Y, Kuma Y, Setsu N, Koga Y, Honda Y, Inoue T, Yanai H, Yamashita K, Ito I, Takahashi M, Ohga S, Furue M, Nakashima Y, Oda Y (2017) Histopathological and genetic review of phosphaturic mesenchymal tumours, mixed connective tissue variant. Histopathology.  https://doi.org/10.1111/his.13377 Google Scholar
  58. Yamamoto H, Iwasaki T, Yamada Y, Matsumoto Y, Otsuka H, Yoshimoto M, Kohashi K, Taguchi K, Yokoyama R, Nakashima Y, Oda Y (2017) Diagnostic utility of histone H3.3G34 W, G34R, and G34 V mutant-specific antibodies for giant cell tumors of bone. Hum Pathol.  https://doi.org/10.1016/j.humpath.2017.11.020 Google Scholar
  59. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95(7):3597–3602CrossRefPubMedPubMedCentralGoogle Scholar
  60. Yoneda T, Tanaka S, Hata K (2013) Role of RANKL/RANK in primary and secondary breast cancer. World J Orthop 4(4):178–185.  https://doi.org/10.5312/wjo.v4.i4.178 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Yuan L, Chan GC, Fung KL, Chim CS (2014) RANKL expression in myeloma cells is regulated by a network involving RANKL promoter methylation, DNMT1, microRNA and TNFalpha in the microenvironment. Biochim Biophys Acta 1843(9):1834–1838.  https://doi.org/10.1016/j.bbamcr.2014.05.010 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Diagnostic PathologyEhime University HospitalToonJapan
  2. 2.Department of Molecular Pathology, Graduate School of MedicineEhime University Graduate School of MedicineToonJapan

Personalised recommendations