Skip to main content
Log in

Microsatellite-centromere mapping in common carp through half-tetrad analysis in diploid meiogynogenetic families

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Gene-centromere (G-C) mapping provides insights into the understanding of the composition, structure, and evolution of vertebrate genomes. Common carp (Cyprinus carpio) is an important aquaculture fish and has been proposed to undertake tetraploidization. In this study, we selected 214 informative microsatellite markers across 50 linkage groups of a common carp genetic map to perform gene-centromere mapping using half-tetrad analysis. A total of 199 microsatellites were segregated under the Mendelian expectations in at least one of the three gynogenetic families and were used for G-C distance estimation. The G-C recombination frequency (y) ranged from 0 to 0.99 (0.43 on average), corresponding to a fixation index (F) of 0.57 after one generation of gynogenesis. Large y values for some loci together with significant correlation between G-C distances and genetic linkage map distances suggested the presence of high interference in common carp. Under the assumption of complete interference, 50 centromeres were localized onto corresponding linkage groups (LGs) of common carp, with G-C distances of centromere-linked markers per LG ranging from 0 to 10.3 cM (2.9 cM on average). Based on the information for centromere positions, we proposed a chromosome formula of 2n = 100 = 58 m/sm + 42 t/st with 158 chromosome arms for common carp, which was similar to a study observed by cytogenetic method. The examination of crossover distributions along 10 LGs revealed that the proportion of crossover chromatids was overall higher than that of non-crossover chromatids in gynogenetic progenies, indicating high recombination levels across most LGs. Comparative genomics analyses suggested that the chromosomes of common carp have undergone extensive rearrangement after genome duplication. This study would be valuable to elucidate the mechanism of genome evolution and integrate physical and genetic maps in common carp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allendorf FW, Leary RF (1984) Heterozygosity in gynogenetic diploids and triploids estimated by gene-centromere recombination rates. Aquaculture 43:413–420

    Article  Google Scholar 

  • Alsaqufi AS, Gomelsky B, Schneider KJ, Pomper KW (2012) Verification of mitotic gynogenesis in ornamental (koi) carp (Cyprinus carpio L.) using microsatellite DNA markers. Aquac Res. doi:10.1111/j.1365-2109.2012.03242.x

    Google Scholar 

  • Arai K, Fujino K, Sei N, Chiba T, Kawamura M (1991) Estimating rate of gene-centromere recombination at 11 isozyme loci in the Salvelinus species. Nippon Suisan Gakkaishi 57:1043–1055

    Article  CAS  Google Scholar 

  • Bai FY, Liang HY, Jia JH (2000) Taxonomic relationships among the taxa in the Candida guilliermondii complex, as revealed by comparative electrophoretic karyotyping. Int J Syst Evol Microbiol 50:417–422

    Article  CAS  PubMed  Google Scholar 

  • Chiarelli AB, Capanna E (1973) Cytotaxonomy and vertebrate evolution. Academic Press, London

    Google Scholar 

  • Choo KHA (1998) Why is the centromere so cold? Genome Res 8:81–82

    CAS  PubMed  Google Scholar 

  • Danzmann RG, Gharbi K (2001) Gene mapping in fishes: a means to an end. Genetica 111:3–23

    Article  CAS  PubMed  Google Scholar 

  • David L, Blum S, Feldman MW, Lavi U, Hillel J (2003) Recent duplication of the, common carp (Cyprinus carpio L.) genome as revealed by analyses of microsatellite loci. Mol Biol Evol 20:1425–1434

    Article  CAS  PubMed  Google Scholar 

  • Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A et al (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403:776–781

    Article  CAS  PubMed  Google Scholar 

  • FAO (2010) Yearbook of Fishery Statistics Summary tables. Available at ftp://ftp.fao.org/FI/STAT/summary/default.htm#aqua

  • Guo X, Li Q, Wang QZ, Kong LF (2012) Genetic mapping and QTL analysis of growth-related traits in the pacific oyster. Mar Biotechnol 14:218–226

    Article  CAS  PubMed  Google Scholar 

  • Guo WJ, Tong JG, Yu XM, Zhu CK, Feng X, Fu BD, He SP, Zeng FZ et al (2013) A second generation genetic linkage map for silver carp (Hypophthalmichehys molitrix) using microsatellite markers. Aquaculture 412:97–106

    Article  Google Scholar 

  • Guyomard R, Mauger S, Tabet-Canale K, Martineau S, Genet C, Krieg F, Quillet E (2006) A type I and type II microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) with presumptive coverage of all chromosome arms. BMC Genomics 7:302

    Article  PubMed Central  PubMed  Google Scholar 

  • Haldane JBS (1919) The mapping function. J Genet 8:299–309

    Article  Google Scholar 

  • Hubert S, Cognard E, Hedgecock D (2009) Centromere mapping in triploid families of the Pacific oyster Crassostrea gigas (Thunberg). Aquaculture 288:172–183

    Article  CAS  Google Scholar 

  • Hussain MG, Mcandrew BJ, Penman DJ, Sodsuk P (1994) Estimating gene centromere recombination frequencies in gynogenetic diploids of Oreochromis niloticus L. using allozymes, skin color and a putative sex-determination locus (Sdl-2). Genet Evol Aquat Org:502–509

  • Jin SB, Zhang XF, Jia ZY, Fu HT, Zheng XH, Sun XW (2012) Genetic linkage mapping and genetic analysis of QTL related to eye cross and eye diameter in common carp (Cyprinus carpio L.) using microsatellites and SNPs. Aquaculture 358:176–182

    Article  Google Scholar 

  • Johnson KR, Wright JE, May B (1987) Linkage relationships reflecting ancestral tetraploidy in salmonid fish. Genetics 116:579–591

    PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson SL, Gates MA, Johnson M, Talbot WS, Horne S, Baik K, Rude S, Wong JR et al (1996) Centromere-linkage analysis and consolidation of the zebrafish genetic map. Genetics 142:1277–1288

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kalitsis P, Choo KHA (2012) The evolutionary life cycle of the resilient centromere. Chromosoma 121:327–340

    Article  CAS  PubMed  Google Scholar 

  • Kocher TD, Lee WJ, Sobolewska H, Penman D, McAndrew B (1998) A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus). Genetics 148:1225–1232

    PubMed Central  CAS  PubMed  Google Scholar 

  • Komen H, Thorgaard GH (2007) Androgenesis, gynogenesis and the production of clones in fishes: a review. Aquaculture 269:150–173

    Article  Google Scholar 

  • Komen J, Duynhouwer J, Richter CJJ, Huisman EA (1988) Gynogenesis in common carp (Cyprinus Carpio L). I. Effects of genetic manipulation of sexual products and incubation conditions of eggs. Aquaculture 69:227–239

    Article  Google Scholar 

  • Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S, Barnard J et al (2002) A high-resolution recombination map of the human genome. Nat Genet 31:241–247

    CAS  PubMed  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugenics 12:172–175

    Article  Google Scholar 

  • Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. Publications Kottelat, Switzerland

    Google Scholar 

  • Kruiswijk CP, Hermsen TT, Westphal AH, Savelkoul HF, Stet RJ (2002) A novel functional class I lineage in zebrafish (Danio rerio), carp (Cyprinus carpio), and large barbus (Barbus intermedius) showing an unusual conservation of the peptide binding domains. J Immunol 169:1936–1947

    Article  CAS  PubMed  Google Scholar 

  • Laghari MY, Zhang Y, Lashari P, Zhang X, Xu P, Xin BP, Sun XW (2013) Quantitative trait loci (QTL) associated with growth rate trait in common carp (Cyprinus carpio). Aquac Int 21:1373–1379

    Article  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Consortium IHGS et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Larhammar D, Risinger C (1994) Molecular genetic aspects of tetraploidy in the common carp Cyprinus Carpio. Mol Phylogenet Evol 3:59–68

    Article  CAS  PubMed  Google Scholar 

  • Launey S, Hedgecock D (2001) High genetic load in the Pacific oyster Crassostrea gigas. Genetics 159:255–265

    PubMed Central  CAS  PubMed  Google Scholar 

  • Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220

    Article  Google Scholar 

  • Li Y, Cai M, Wang Z, Guo W, Liu X, Wang X, Ning Y (2008) Microsatellite-centromere mapping in large yellow croaker (Pseudosciaena crocea) using gynogenetic diploid families. Mar Biotechnol 10:83–90

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Goudie CA, Simco BA, Davis KB, Morizot DC (1992) Gene-centromere mapping of 6 enzyme loci in gynogenetic channel catfish. J Hered 83:245–248

    Google Scholar 

  • Liu L, Tong J, Guo W, Yu X (2012) Microsatellite–centromere mapping in bighead carp (Aristichthys nobilis) using gynogenetic diploid families. Aquac Res 44:1470–1488

    Article  Google Scholar 

  • Lou YD, Purdom CE (1984) Diploid gynogenesis induced by hydrostatic pressure in rainbow trout, Salmo Gairdneri Richardson. J Fish Biol 24:665–670

    Article  Google Scholar 

  • Martinez P, Hermida M, Pardo BG, Fernandez C, Castro J, Cal RM, Alvarez-Dios JA, Gomez-Tato A et al (2008) Centromere-linkage in the turbot (Scophthalmus maximus) through half-tetrad analysis in diploid meiogynogenetics. Aquaculture 280:81–88

    Article  Google Scholar 

  • Mather K (1937) The determination of position in crossing-over. II. The chromosome length-chiasma frequency relation. Cytologia 1:514–526

    Article  Google Scholar 

  • Naruse K, Shimada A, Shima A (1988) Gene-centromere mapping for 5 visible mutant loci in multiple recessive tester stock of the medaka (Oryzias latipes). Zool Sci 5:489–492

    Google Scholar 

  • Nichols KM, Young WP, Danzmann RG, Robison BD, Rexroad C, Noakes M, Phillips RB, Bentzen P et al (2003) A consolidated linkage map for rainbow trout (Oncorhynchus mykiss). Anim Genet 34:102–115

    Article  CAS  PubMed  Google Scholar 

  • Ojima Y, Hitotsum S (1967) Cytogenetic studies in lower vertebrates. IV. A note on the chromosomes of carp (cyprinos carpio) in comparison with those of funa and the goldfish (carassius auratus). Jpn J Genet 42:163–167

    Article  Google Scholar 

  • Pandian TJ, Koteeswaran R (1998) Ploidy induction and sex control in fish. Hydrobiologia 384:167–243

    Article  Google Scholar 

  • Perkins DD (1962) Crossing-over and interference in a multiply marked chromosome arm of Neurospora. Genetics 47:1253

    PubMed Central  CAS  PubMed  Google Scholar 

  • Phillips RB, Amores A, Morasch MR, Wilson C, Postlethwait JH (2006a) Assignment of zebrafish genetic linkage groups to chromosomes. Cytogenet Genome Res 114:155–162

    Article  CAS  PubMed  Google Scholar 

  • Phillips RB, Nichols KM, DeKoning JJ, Morasch MR, Keatley KA, Rexroad C, Thorgaard GH (2006b) Assignment of rainbow trout linkage groups to specific chromosomes. Genetics 174:1661–1670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poompuang S, Sukkorntong C (2011) Microsatellite–centromere mapping in walking catfish Clarias macrocephalus (Günther, 1864) using gynogenetic diploids. Aquac Res 42:210–220

    Article  CAS  Google Scholar 

  • Refstie T (1983) Induction of diploid gynogenesis in Atlantic salmon and rainbow trout using irradiated sperm and heat-shock. Can J Zool 61:2411–2416

    Article  Google Scholar 

  • Refstie T, Stoss J, Donaldson EM (1982) Production of all female coho salmon (Oncorhynchus kisutch) by diploid gynogenesis using irradiated sperm and cold shock. Aquaculture 29:67–82

    Article  Google Scholar 

  • Reid DP, Smith CA, Rommens M, Blanchard B, Martin-Robichaud D, Reith M (2007) A genetic linkage map of Atlantic halibut (Hippoglossus hippoglossus L.). Genetics 177:1193–1205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robertson WRB (1916) Chromosome studies I. Taxonomic relationships shown in the chromosomes of Tettigidae and Acrididae : V-shaped chromosomes and their significance in Acrididae, Locustidae, and Gryllidae: chromosomes and variation. J Morphol 27:179–331

    Article  Google Scholar 

  • Seeb JE, Seeb LW (1986) Gene mapping of isozyme loci in chum salmon. J Hered 77:399–402

    CAS  PubMed  Google Scholar 

  • Sola L, Gornung E (2001) Classical and molecular cytogenetics of the zebrafish, Danio rerio (Cyprinidae, Cypriniformes): an overview. Genetica 111:397–412

    Article  CAS  PubMed  Google Scholar 

  • Sola L, Arcangeli R, Cataudella S (1986) Nucleolus organizer chromosomes in a teleostean species of tetraploid origin, Cyprinus carpio. Cytogenet Cell Genet 42:183–186

    Article  Google Scholar 

  • Solinastoldo S, Lengauer C, Fries R (1995) Comparative genome map of human and cattle. Genomics 27:489–496

    Article  CAS  Google Scholar 

  • Song WT, Li YZ, Zhao YW, Liu Y, Niu YZ, Pang RY, Miao GD, Liao XL et al (2012a) Construction of a high-density microsatellite genetic linkage map and mapping of sexual and growth-related traits in half-smooth tongue sole (Cynoglossus semilaevis). PLos ONE 7:e52097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song WT, Pang RY, Niu YZ, Gao FT, Zhao YW, Zhang J, Sun J, Shao CG et al (2012b) Construction of high-density genetic linkage maps and mapping of growth-related quantitative trail loci in the Japanese flounder (Paralichthys olivaceus). PLos ONE 7:e50404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Streisinger G, Singer F, Walker C, Knauber D, Dower N (1986) Segregation analyses and gene-centromere distances in zebrafish. Genetics 112:311–319

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sun XW, Liang LQ (2004) A genetic linkage map of common carp (Cyprinus carpio L.) and mapping of a locus associated with cold tolerance. Aquaculture 238:165–172

    Article  CAS  Google Scholar 

  • Taboada X, Pansonato-Alves JC, Foresti F, Martínez P, Viñas A, Pardo BG, Bouza C (2014) Consolidation of the genetic and cytogenetic maps of turbot (Scophthalmus maximus) using FISH with BAC clones. Chromosoma 123:281–291

    Article  PubMed  Google Scholar 

  • Taniguchi N, Kijima A, Fukai J (1987) High heterozygosity at Gpi-1 in gynogenetic diploids and triploids of ayu Plecoglossus Altivelis. Nippon Suisan Gakkaishi 53:717–720

    Article  Google Scholar 

  • Thorgaard GH, Allendorf FW, Knudsen KL (1983) Gene-centromere mapping in rainbow trout: high interference over long map distances. Genetics 103:771–783

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang RF, Shi LM, He WS (1985) Studies on nucleolus organizer regions in several species of carp (cyprinus) by silver-staining. Zool Res 6:391–398

    Google Scholar 

  • Wang CM, Bai ZY, He XP, Lin G, Xia JH, Sun F, Lo LC, Feng F et al (2011) A high-resolution linkage map for comparative genome analysis and QTL fine mapping in Asian seabass, Lates calcarifer. BMC Genomics 12:174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang JT, Li JT, Zhang XF, Sun XW (2012) Transcriptome analysis reveals the time of the fourth round of genome duplication in common carp (Cyprinus carpio). BMC Genomics 13:96

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu ZA, Yang HY (1980) Cytogenetic studies on fishes II. Karyotype analysis of Cyprinus carpio and Carassius auratus by peripheral blood lymphocyte culture. Acta Genet Sin 7:370–375

    Google Scholar 

  • Xia JH, Liu F, Zhu ZY, Fu JJ, Feng JB, Li JL, Yue GH (2010) A consensus linkage map of the grass carp (Ctenopharyngodon idella) based on microsatellites and SNPs. BMC Genomics 11:135

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu YL, Zhang XF, Zheng XH, Kuang YY, Lu CY, Cao DC, Yin S, Li C et al (2013) Studies on quantitative trait loci related to superoxide dismutase in mirror carp (Cyprinus carpio L.). Aquac Res 44:1860–1871

    Article  CAS  Google Scholar 

  • Yu X, Zhou T, Li Y (1989) Chromosomes of Chinese fresh-water fishes. Science Press, Beijing, pp 4–18

    Google Scholar 

  • Zan RG, Song Z (1980) Analysis and comparison between the karyotypes of Cyprinus carpio and Carassius auratus as well as Aristichthys nobilis and Hypophthalmichthys molitrix. Acta Genet Sin 7:72–77

    Google Scholar 

  • Zhang H, Okamoto N, Ikeda Y (1995) Two c-myc genes from a tetraploid fish, the common carp (Cyprinus carpio). Gene 153:231–236

    Article  CAS  PubMed  Google Scholar 

  • Zhang XF, Zhang Y, Zheng XH, Kuang YY, Zhao ZX, Zhao L, Li C, Jiang L et al (2013a) A consensus linkage map provides insights on genome character and evolution in common carp (Cyprinus carpio L.). Mar Biotechnol 15:275–312

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang S, Li J, Zhang X, Jiang L, Xu P, Lu C, Wan Y et al (2013b) Primary genome scan for complex body shape-related traits in the common carp Cyprinus carpio. J Fish Biol 82:125–140

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Zhang Y, Ji PF, Zhang XF, Zhao ZX, Hou GY, Huo LH, Liu GM et al (2013) A dense genetic linkage map for common carp and its integration with a BAC-based physical map. PLos ONE 8:e63928

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu CK, Sun YH, Yu XM, Tong JG (2013) Centromere localization for bighead carp (Aristichthys nobilis) through half-tetrad analysis in diploid gynogenetic families. PLos ONE 8:e82950

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank J. Qian, H. Liu, W. Guo, C. Zhu, M. Pang, and Y. Sun for sample preparation and laboratory technical assistance. This work was supported by MOST (2010CB126305), FEBL (2011FBZ20), and MOA (2011-G12) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingou Tong.

Additional information

Xiu Feng and Xinhua Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

A summary of linear relation between the two LGs in the map reported by Xu et al. (2013) and the LG23 in the map reported by Zhao et al. (2013). (PDF 409 kb)

Fig. S2

The crossover patterns in chromosomes of 11 LGs in diploid meiogynogenetic families (showed in parentheses) for common carp. The horizontal dotted lines stand for centromeres in 11 LGs. The right bars of each figure represent two chromosomes in dams of families. Each chromosome segment in progenies of each family is filled with grey or black color to indicate the genotype at microsatellite loci; changes in color within a bar represent exchanges between non-sister maternal chromatids. Double crossovers and triple crossovers are labelled by arrows and hollow arrows, respectively. n is the frequency of each four-locus genotype in gynogenetic families. (PDF 189 kb)

Fig. S3

The positions of centromeres on chromosomes of zebrafish and on LGs of common carp map reported by Xu et al. (2013). The chromosomes of zebrafish are showed in red on the left; two LGs (originating from the same chromosome on the left of zebrafish) of common carp map are showed on the right. (PDF 80 kb)

Fig. S4

Conserved regions of synteny between three pairs of common carp homeologous LGs and zebrafish chromosomes. The centromere regions of common carp homeologous LGs and zebrafish chromosomes are painted green, blue and red, respectively. (PDF 679 kb)

Table S1

Information of microsatellites used in this study. (XLS 66 kb)

Table S2

Gene-centromere (G-C) recombination rates (second meiosis segregation frequency, y) and G-C distances of 214 microsatellite markers examined in three meiogynogenetic families of common carp. (XLS 80 kb)

Table S3

Genotypic segregation in three control families at 214 microsatellite loci of common carp. (XLS 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Wang, X., Yu, X. et al. Microsatellite-centromere mapping in common carp through half-tetrad analysis in diploid meiogynogenetic families. Chromosoma 124, 67–79 (2015). https://doi.org/10.1007/s00412-014-0485-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-014-0485-6

Keywords

Navigation