Skip to main content
Log in

Polymineralic inclusions in oxide minerals of the Afrikanda alkaline-ultramafic complex: Implications for the evolution of perovskite mineralisation

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The exceptional accumulation of perovskite in the alkaline-ultramafic Afrikanda complex (Kola Peninsula, Russia) led to the study of polymineralic inclusions hosted in perovskite and magnetite to understand the development of the perovskite-rich zones in the olivinites, clinopyroxenites and silicocarbonatites. The abundance of inclusions varies across the three perovskite textures, with numerous inclusions hosted in the fine-grained equigranular perovskite, fewer inclusions in the coarse-grained interlocked perovskite and rare inclusions in the massive perovskite. A variety of silicate, carbonate, sulphide, phosphate and oxide phases are assembled randomly and in variable proportions in the inclusions. Our observations reveal that the inclusions are not bona fide melt inclusions. We propose that the inclusions represent material trapped during subsolidus sintering of magmatic perovskite. The continuation of the sintering process resulted in the coarsening of inclusion-rich subhedral perovskite into inclusion-poor anhedral and massive perovskite. These findings advocate the importance of inclusion studies for interpreting the origin of oxide minerals and their associated economic deposits and suggest that the formation of large scale accumulations of minerals in other oxide deposits may be a result of annealing of individual disseminated grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afanasyev BV (2011) Mineral resources of the alkaline–ultramafic massifs of the Kola Peninsula. Roza Vetrov, St. Petersburg, pp 224 (in Russian)

  • Armbrustmacher TJ (1981) The complex of alkaline Rocks at Iron Hill, Powderhorn district, Gunnison county, Colorado. In: Callender JF (ed) Epis RC. New Mexico Geological Society, Colorado, pp 293–296

    Google Scholar 

  • Barbosa ESR, Brod JA, Junqueira-Brod TC, Dantas EL, de Cordeiro PF, Gomide CS (2012) Bebedourite from its type area (Salitre I complex): A key petrogenetic series in the Late-Cretaceous Alto Paranaíba kamafugite–carbonatite–phoscorite association, central Brazil. Lithos 144:56–72

    Article  Google Scholar 

  • Borisova AY, Ceuleneer G, Kamenetsky VS, Arai S, Béjina F, Abily B, Bindeman IN, Polvé M, De Parseval P, Aigouy T, Pokrovski GS (2012) A new view on the petrogenesis of the oman ophiolite chromitites from microanalyses of chromite-hosted inclusions. J Petrol 53(12):2411–2440

    Article  Google Scholar 

  • Borrok DM, Kelser SE, Boer RH, Essene EJ (1998) The Vergenoeg magnetite-fluorite deposit, South Africa: Support for a hydrothermal model for massive iron oxide deposits. Econ Geol 93:564–586

    Article  Google Scholar 

  • Brod JA (1999) Petrology and geochemistry of the Tapira alkaline complex, Minas Gerais State, Brazil. Dissertation. Durham University

  • Butcher AR, Merkle RK (1987) Postcumulus modification of magnetite grains in the upper zone of the Bushveld Complex, South Africa. Lithos 20:247–260

    Article  Google Scholar 

  • Campbell LS, Henderson P, Wall F, Nielsen TF (1997) Rare earth chemistry of perovskite group minerals from the Gardiner Complex, East Greenland. Mineral Mag 61:197–212

    Article  Google Scholar 

  • Chakhmouradian AR, Mitchell RH (1997) Compositional variation of perovskite-group minerals from the carbonatite complexes of the Kola Alkaline Province, Russia. Can Miner 35:1293–1310

    Google Scholar 

  • Chakhmouradian AR, Zaitsev AN (1999) Calcite-amphibole-clinopyroxene rock from the Afrikanda complex, Kola Peninsula, Russia: mineralogy and a possible link to carbonatites I. Oxide minerals. Can Miner 37:177–198

    Google Scholar 

  • Chakhmouradian AR, Zaitsev AN (2002) Calcite–amphibole–clinopyroxene rock from the Afrikanda complex, Kola Peninsula, Russia: mineralogy and a possible link to carbonatites III. Silicate minerals. Can Miner 40(5):1347–1374

    Article  Google Scholar 

  • Chakhmouradian AR, Zaitsev AN (2004) Afrikanda: An association of ultramafic, alkaline and alkali-silica-rich carbonatitic rocks from mantle-derived melts. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: The key example of the Kola Alkaline Province. Mineralogical Society (UK) Series, London, pp 247–291

    Google Scholar 

  • Christiansen FG (1985) Deformation fabric and microstructures in ophiolitic chromitites and host ultramafics, Sultanate of Oman. Geol Rundsch 74:61–76

    Article  Google Scholar 

  • Christiansen FG (1986) Deformation of chromite: SEM investigations. Tectonophysics 121:175–196

    Article  Google Scholar 

  • Danyushevsky LV, McNeill AW, Sobolev AV (2002) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem Geol 183:5–24

    Article  Google Scholar 

  • Dawson JB (1998) Peralkaline nephelinite-natrocarbonatite relationships at Oldoinyo Lengai, Tanzania. J Petrol 39:2077–2094

    Article  Google Scholar 

  • Dawson JB, Hawthorn JB (1973) Magmatic sedimentation and carbonatitic differentiation in kimberlite sills at Benfontein, South Africa. J Geol Soc 129:61–85

    Article  Google Scholar 

  • Downes H, Balaganskaya E, Beard A, Liferovich R, Demaiffe D (2005) Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: A review. Lithos 85:48–75

    Article  Google Scholar 

  • Ferrero S, Angel RJ (2018) Micropetrology: Are inclusions grains of truth? J Petrol 59:1671–1700

    Google Scholar 

  • Force ER (1991) Geology of titanium-mineral deposits. Geological Society of America, Colorado, p 112

    Google Scholar 

  • Ghisler M (1976) The geology, mineralogy and geochemistry of the pre-orogenic archaean stratiform chromite deposits at Fiskenaesset. Monograph Series on Mineral Deposits, Greb. Borntraeger, West Greenland, p 156

    Google Scholar 

  • Guzmics T, Mitchell RH, Szabó C, Berkesi M, Milke R, Ratter K (2012) Liquid immiscibility between silicate, carbonate and sulfide melts in melt inclusions hosted in co-precipitated minerals from Kerimasi volcano (Tanzania): evolution of carbonated nephelinitic magma. Contrib Miner Petrol 164:101–122

    Article  Google Scholar 

  • Herz N (1976) Titanium deposits in alkalic igneous rocks. In: Geology and Resources of Titanium, Geological Survey, pp 1–5

  • Hou B, Keeling J, Van Gosen BS (2017) Geological and exploration models of beach placer deposits, integrated from case-studies of Southern Australia. Ore Geol Rev 80:437–459

    Article  Google Scholar 

  • Hulbert L, Von Gruenewaldt G (1985) Textural and compositional features of chromite in the lower and critical zones of the Bushveld Complex south of Potgietersrus. Econ Geol 80:872–895

    Article  Google Scholar 

  • Irvine T (1977) Origin of chromitite layers in the Muskox intrusion and other stratiform intrusions: A new interpretation. Geology 5:273–277

    Article  Google Scholar 

  • Johnson E, Hollister L (1995) Syndeformational fluid trapping in quartz: determining the pressure-temperature conditions of deformation from fluid inclusions and the formation of pure CO2 fluid inclusions during grain-boundary migration. J Metamorph Geol 13:239–249

    Article  Google Scholar 

  • Jones A, Ralph B, Hansen N (1979) Subgrain coalescence and the nucleation of recrystallization at grain boundaries in aluminium. Proc Royal Soc London 368:345–357

    Google Scholar 

  • Kamenetsky VS, Kamenetsky MB (2010) Magmatic fluids immiscible with silicate melts: examples from inclusions in phenocrysts and glasses, and implications for magma evolution and metal transport. Geofluids 10:293–311

    Google Scholar 

  • Kogarko L, Plant D, Henderson C, Kjarsgaard B (1991) Na-rich carbonate inclusions in perovskite and calzirtite from the Guli intrusive Ca-carbonatite, Polar Siberia. Contrib Miner Petrol 109:124–129

    Article  Google Scholar 

  • Kogarko L, Henderson C, Pacheco H (1995) Primary Ca-rich carbonatite magma and carbonate-silicate-sulphide liquid immiscibility in the upper mantle. Contrib Miner Petrol 121:267–274

    Article  Google Scholar 

  • Kukharenko A, Orlova M, Bulakh A (1965) The Caledonian complex of ultrabasic, alkaline rocks, and carbonatites of Kola Peninsula and Northern Karelia. Geology 19:145–162

    Google Scholar 

  • Latypov R, Chistyakova S, Mukherjee R (2017) A novel hypothesis for origin of massive chromitites in the Bushveld Igneous Complex. J Petrol 1:41

    Google Scholar 

  • Li JC (1962) Possibility of subgrain rotation during recrystallization. J Appl Phys 33:2958–2965

    Article  Google Scholar 

  • Lorand J, Cottin J (1987) Na-Ti-Zr-H 2 O-rich mineral inclusions indicating postcumulus chrome-spinel dissolution and recrystallization in the Western Laouni mafic intrusion, Algeria. Contrib Miner Petrol 97:251–263

    Article  Google Scholar 

  • Martins T, Kressall R, Medici L, Chakhmouradian AR (2017) Cancrinite–vishnevite solid solution from Cinder Lake (Manitoba, Canada): crystal chemistry and implications for alkaline igneous rocks. Mineral Mag 81:1261–1277

    Article  Google Scholar 

  • McElduff B, Stumpfl E (1991) The chromite deposits of the Troodos complex, Cyprus - Evidence for the role of a fluid phase accompanying chromite formation. Miner Deposita 26:307–318

    Article  Google Scholar 

  • McOnie A, Fawcett JJ, James R (1975) The stability of intermediate chlorites of the clinochlore-daphnite series at 2 kbar PH2O. Am Miner 60:1047–1062

    Google Scholar 

  • Nielsen TFD (1980) The petrology of a melilitolite, melteigite, carbonatite and syenite ring dike system, in the Gardiner complex, East Greenland. Lithos 13:181–197

    Article  Google Scholar 

  • Nielsen TFD, Solovova IP, Veksler IV (1997) Parental melts of melilitolite and origin of alkaline carbonatite: Evidence from crystallised melt inclusions, Gardiner complex. Contrib Miner Petrol 126:331–344

    Article  Google Scholar 

  • Panina LI (2005) Multiphase carbonate-salt immiscibility in carbonatite melts: Data on melt inclusions from the Krestovskiy massif minerals (Polar Siberia). Contrib Miner Petrol 150:19–36

    Article  Google Scholar 

  • Pekov IV, Olysych LV, Chukanov NV, Zubkova NV, Pushcharovsky DY, Van KV, Giester G, Tillmanns E (2011) Crystal chemistry of cancrinite-group minerals with an AB-type framework: A review and new data. I Chemical and structural variations. Can Miner 49:1129–1150

    Article  Google Scholar 

  • Potter NJ, Ferguson MR, Kamenetsky VS, Chakhmouradian AR, Sharygin VV, Thompson JM, Goemann K (2018) Textural evolution of perovskite in the Afrikanda alkaline–ultramafic complex, Kola Peninsula Russia. Contrib Mineral Petrol 173:100

    Article  Google Scholar 

  • Pushkarev EV, Kamenetsky VS, Morozova AV, Khiller VV, Glavatskykh SP, Rodemann T (2015) Ontogeny of ore Cr-spinel and composition of inclusions as indicators of the pneumatolytic–hydrothermal origin of PGM-bearing chromitites from Kondyor massif, the Aldan Shield. Geol Ore Depos 57:352–380

    Article  Google Scholar 

  • Rios PR, Siciliano F Jr, Sandim HRZ, Plaut RL, Padilha AF (2005) Nucleation and growth during recrystallization. Mater Res 8:225–238

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions. Reviews in mineralogy, Volume 12. Mineralogical Society of America, Washington, pp 646

  • Sobolev A (1996) Melt inclusions in minerals as a source of principle petrological information. Petrology 4:209–220

    Google Scholar 

  • Veksler I, Nielsen T, Sokolov S (1998) Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: Implications for carbonatite genesis. J Petrol 39:2015–2031

    Article  Google Scholar 

  • Yagi K, Kikuchi T, Kakuta H (1968) Thermal decomposition of pectolite and its hydrothermal synthesis Journal of the Faculty of Science, Hokkaido University Series 4. Geol Mineral 14:123–134

    Google Scholar 

  • Yudovskaya MA, Kinnaird JA (2010) Chromite in the Platreef (Bushveld Complex, South Africa): Occurrence and evolution of its chemical composition. Miner Depos 45:369–391

    Article  Google Scholar 

  • Zaitsev AN, Chakhmouradian AR (2002) Calcite - amphibole - clinopyroxene rocks from the Afrikanda Complex, Kola Peninsula, Russia: mineralogy and a possible link to carbonatites. II. Oxysalt minerals. Can Mineral 40(1):103–120

    Article  Google Scholar 

Download references

Acknowledgements

Geological Institute of the Kola Science Centre (Russian Academy of Sciences) in Apatity donated samples for this study. Financial support was provided by the Australian Research Council (Discovery Grant DP130100257, 2013–2015) and Russian Science Foundation (grant #19-17-13013) to V. Kamenetsky.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. J. Potter.

Additional information

Communicated by Chris Ballhaus.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potter, N.J., Kamenetsky, V.S., Chakhmouradian, A.R. et al. Polymineralic inclusions in oxide minerals of the Afrikanda alkaline-ultramafic complex: Implications for the evolution of perovskite mineralisation. Contrib Mineral Petrol 175, 18 (2020). https://doi.org/10.1007/s00410-020-1654-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-020-1654-7

Keywords

Navigation