Skip to main content
Log in

Extended planar defects and the rapid incorporation of Ti4+ into olivine

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The formation of extended planar defects in minerals such as olivine is related to high point defect concentration and can be driven by large gradients in chemical potential, where the energy of the system is lowered by the ordering of defects along specific planes in the crystal. The presence of extended defects has the potential to create the (apparently) anomalous ionic diffusion in olivine as reported recently (Spandler and O’Neill in Contrib Mineral Petrol 159(6):791–818, 2010). High-resolution transmission electron microscopy and energy-filtered imaging were done using experimental samples designed to examine the impact of a TiO2 and f O2 on the potential to form such defects in ferromagnesian olivine. Doped basalt (5 wt% TiO2)–olivine reaction couple experiments were run at 1 atm and 1,310 and 1,410 °C for 50 h at various f O2, ranging from 102 below to 102 above the quartz–fayalite–magnetite buffer. Our results show that extended planar defects in olivine, parallel to {101}ol and occurring in ordered “clusters” with a prolate spheroid geometry ~5–25 nm across and extending up to 150 nm into the olivine, are present near the olivine–glass interfaces in all of our experimental high-TiO2 basalt–olivine samples. Increased Ti content in the olivine is associated with the defects; ordering of Ti4+ and octahedral site vacancies leads to a two- or three-layer superstructure in the olivine. Defect nucleation and growth is driven by the large TiO2 chemical potential gradient across the phase boundary at the start of the experiments, which provides access to microstructures not otherwise present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Kröger–Vink notation: subscripts refer to lattice sites and the superscripts refer to defect charge, with a dot noting a single positive charge, a prime a single negative charge and ‘×’ as neutral. \(V_{\text{Mg}}^{\prime \prime }\), for example, is a vacancy on an octahedral Mg2+ site that has a (real, based on a local distortion of the valence band) 2 charge.

  2. Per Walker et al. (2009), the defect reaction \({\text{Mg}}_{\text{Mg}}^{ \times } = {\text{Mg}}_{\text{i}}^{ \cdot \cdot } + V_{\text{Mg}}^{\prime \prime }\) has a Δ r G F º = 6.73 eV; thus K eq,1,890ºC = 2.1 × 10−16 and, assuming a Mg–Frenkel intrinsic disorder, the concentration (per molecule of forsterite) of \(V_{\text{Mg}}^{\prime \prime }\) = (K eq,1,890ºC)1/2 = 1.4 × 10−8.

References

  • Asimow PD, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Miner 83:1127–1132

    Google Scholar 

  • Banfield JF, Veblen DR, Jones BF (1990) Transmission electron microscopy of subsolidus oxidation and weathering of olivine. Contrib Miner Petrol 106:110–123. doi:10.1007/bf00306412

    Article  Google Scholar 

  • Bernini D, Wiedenbeck M, Dolejš D, Keppler H (2013) Partitioning of halogens between mantle minerals and aqueous fluids: implications for the fluid flow regime in subduction zones. Contrib Miner Petrol 165:117–128. doi:10.1007/s00410-012-0799-4

    Article  Google Scholar 

  • Cava RJ (1990) Structural chemistry and the local charge picture of copper oxide superconductors. Science 247:656–662. doi:10.1126/science.247.4943.656

    Article  Google Scholar 

  • Chakraborty S (2010) Diffusion coefficients in olivine, wadsleyite and ringwoodite. Rev Miner Geochem 72:603–639. doi:10.2138/rmg.2010.72.13

    Article  Google Scholar 

  • Chen G, Song X, Richardson TJ (2006) Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem Solid-State Lett 9:A295–A298

    Article  Google Scholar 

  • Cherniak DJ (2010) REE diffusion in olivine. Am Miner 95:362–368. doi:10.2138/am.2010.3345

    Article  Google Scholar 

  • Clay PL, Baxter EF, Cherniak DJ, Kelley SP, Thomas JB, Watson EB (2010) Two diffusion pathways in quartz: a combined UV-laser and RBS study. Geochim Cosmochim Acta 74:5906–5925. doi:10.1016/j.gca.2010.07.014

    Article  Google Scholar 

  • Cole DR, Chakraborty S (2001) Rates and mechanisms of isotopic exchange. Rev Miner Geochem 43:83–223. doi:10.2138/gsrmg.43.1.83

    Article  Google Scholar 

  • Cooper RF (2010) On being a student of thermodynamics: trust your eyes; use your imagination. Elements 6:282–283

    Google Scholar 

  • Cooper RF, Kohlstedt DL (1982) Interfacial energies in the olivine–basalt system. In: Akimoto S, Manghnani MH (eds) Advances in earth and planetary sciences, vol 12: High pressure research in geophysics. Center for Academic Publications, Tokyo, pp 217–228

    Chapter  Google Scholar 

  • Cooper RF, Kohlstedt DL (1984) Sintering of olivine and olivine–basalt aggregates. Phys Chem Miner 11:5–16. doi:10.1007/bf00309372

    Article  Google Scholar 

  • Cottrell E, Spiegelman M, Langmuir CH (2002) Consequences of diffusive reequilibration for the interpretation of melt inclusions. Geochem Geophys Geosyst 3. doi:10.1029/2001GC000205

  • Dobrzhinetskaya L, Green HW, Wang S (1996) Alpe Arami: a peridotite massif from depths of more than 300 kilometers. Science 271:1841–1845. doi:10.1126/science.271.5257.1841

    Article  Google Scholar 

  • Dohmen R, Chakraborty S (2007) Fe–Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine. Phys Chem Miner 34:409–430. doi:10.1007/s00269-007-0158-6

    Article  Google Scholar 

  • Fabrichnaya O, Seifert HJ, Ludwig T, Aldinger F, Navrotsky A (2001) The assessment of thermodynamic parameters in the Al2O3–Y2O3 system and phase relations in the Y–Al–O system. Scand J Metall 30:175–183. doi:10.1034/j.1600-0692.2001.300308.x

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass-transfer in magmatic processes 4. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated-temperatures and pressures. Contrib Miner Petrol 119:197–212. doi:10.1007/BF00307281

    Article  Google Scholar 

  • Hacker BR, Christie JM (1991) Observational evidence for a possible new diffusion path. Science 251:67–70. doi:10.1126/science.251.4989.67

    Article  Google Scholar 

  • Hay RS, Evans B (1987) Chemically induced grain boundary migration in calcite: temperature dependence, phenomenology, and possible applications to geologic systems. Contrib Miner Petrol 97:127–141. doi:10.1007/bf00375220

    Article  Google Scholar 

  • Hermann J, Fitz Gerald J, Malaspina N, Berry A, Scambelluri M (2007) OH-bearing planar defects in olivine produced by the breakdown of Ti-rich humite minerals from Dabie Shan (China). Contrib Miner Petrol 153:417–428. doi:10.1007/s00410-006-0155-7

    Article  Google Scholar 

  • Hiraga T, Anderson IM, Kohlstedt DL (2004) Grain boundaries as reservoirs of incompatible elements in the Earth’s mantle. Nature 427:699–703. doi:10.1038/nature02259

    Article  Google Scholar 

  • Janney DE, Banfield JF (1998) Distribution of cations and vacancies and the structure of defects in oxidized intermediate olivine by atomic-resolution TEM and image simulation. Am Miner 83:799–810

    Google Scholar 

  • Kelemen PB, Whitehead JA, Aharonov E, Jordahl KA (1995) Experiments on flow focusing in soluble porous media, with applications to melt extraction from the mantle. J Geophys Res 100:475–496. doi:10.1029/94jb02544

    Article  Google Scholar 

  • Khisina NR, Khramov DA, Kolosov MV, Kleschev AA, Taylor LA (1995) Formation of ferriolivine and magnesioferrite from Mg–Fe-olivine: reactions and kinetics of oxidation. Phys Chem Miner 22:241–250. doi:10.1007/bf00202257

    Article  Google Scholar 

  • Kleebe HJ, Lauterbach S (2008) Exaggerated grain growth in bixbyite via fast diffusion along planar defects. Cryst Res Technol 43:1143–1149. doi:10.1002/crat.200800336

    Article  Google Scholar 

  • Koch F, Cohen JB (1969) The defect structure of Fe1−xO. Acta Crystallogr Sect B 25:275–287. doi:10.1107/S0567740869002111

    Article  Google Scholar 

  • Kofstad P (1962) Thermogravimetric studies of the defect structure of rutile (TiO2). J Phys Chem Solid 23:1579–1586. doi:10.1016/0022-3697(62)90240-8

    Article  Google Scholar 

  • Kondepudi D, Prigogine I (1998) Modern thermodynamics: from heat engines to dissipative structures. Wiley, London

    Google Scholar 

  • Kondoh S, Kitamura M, Morimoto N (1985) Synthetic laihunite (□xFe 2+2–3x Fe 3+2x SiO4), an oxidation product of olivine. Am Miner 70:737–746

    Google Scholar 

  • Lee JKW (1995) Multipath diffusion in geochronology. Contrib Miner Petrol 120:60–82. doi:10.1007/bf00311008

    Article  Google Scholar 

  • Li L, Tang Z, Sun W, Wang P (1999) Phase diagram estimation of the Al2O3–SiO2–Gd2O3 system. Phys Chem Glass 40:126–129

    Google Scholar 

  • Maier J (2004) Physical chemistry of ionic materials: Ions and electrons in solids. Wiley, West Sussex

    Book  Google Scholar 

  • Merritt RR, Hyde BG (1973) The thermodynamics of the titanium + oxygen system: an isothermal gravimetric study of the composition range Ti3O5 to TiO2 at 1304 K. Philos Trans R Soc Lond Ser A Math Phys Sci 274:627–661

    Article  Google Scholar 

  • Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  Google Scholar 

  • Qian Q, O’Neill HSC, Jr Hermann (2010) Comparative diffusion coefficients of major and trace elements in olivine at ~950°C from a xenocryst included in dioritic magma. Geology 38:331–334. doi:10.1130/G30788.1

    Article  Google Scholar 

  • Risold AC, Trommsdorff V, Grobéty B (2001) Genesis of ilmenite rods and palisades along humite-type defects in olivine from Alpe Arami. Contrib Miner Petrol 140:619–628. doi:10.1007/s004100000204

    Article  Google Scholar 

  • Schmalzried H (1981) Solid state reactions. Verlag Chemie, Weinheim

    Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to Image J: 25 years of image analysis. Nat Meth 9(7):671–675. doi:10.1038/nmeth.2089

    Article  Google Scholar 

  • Smith JR, Walsh FC, Clarke RL (1998) Electrodes based on Magnéli phase titanium oxides: the properties and applications of Ebonex® materials. J Appl Electrochem 28:1021–1033. doi:10.1023/a:1003469427858

    Article  Google Scholar 

  • Spandler C, O’Neill H (2010) Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1,300°C with some geochemical implications. Contrib Miner Petrol 159:791–818. doi:10.1007/s00410-009-0456-8

    Article  Google Scholar 

  • Spandler C, O’Neill HSC, Kamenetsky VS (2007) Survival times of anomalous melt inclusions from element diffusion in olivine and chromite. Nature 447:303–306. doi:10.1038/Nature05759

    Article  Google Scholar 

  • Tamada O, Shen B, Morimoto N (1983) The crystal structure of laihunite (□0.40Fe 2+0.80 Fe 3+0.80 SiO4)-nonstoichiometric olivine-type mineral. Miner J 11:382–391

    Article  Google Scholar 

  • Vaughan PJ, Kohlstedt DL (1982) Distribution of the glass phase in hot-pressed, olivine–basalt aggregates: an electron microscopy study. Contrib Miner Petrol 81:253–261. doi:10.1007/bf00371679

    Article  Google Scholar 

  • Veblen DR, Buseck PR (1980) Microstructures and reaction mechanisms in biopyriboles. Am Miner 65:599–623

    Google Scholar 

  • Walker AM, Woodley SM, Slater B, Wright K (2009) A computational study of magnesium point defects and diffusion in forsterite. Phys Earth Planet Inter 172:20–27. doi:10.1016/j.pepi.2008.04.001

    Article  Google Scholar 

  • Wirth R, Dobrzhinetskaya LF, Green HW II (2001) Electron microscope study of the reaction olivine + H2O + TiO2 - > titanian clinohumite + Titanian chondrodite synthesized at 8 GPa, 1300 K. Am Miner 86:601–610

    Google Scholar 

  • Wu T, Kohlstedt DL (1988) Rutherford backscattering spectroscopy study of the kinetics of oxidation of (Mg, Fe)2SiO4. J Am Ceram Soc 71:540–545. doi:10.1111/j.1151-2916.1988.tb05917.x

    Article  Google Scholar 

  • Zhang XY, Watson EB, Cherniak DJ (2007) Oxygen self-diffusion “fast-paths” in titanite single crystals and a general method for deconvolving self-diffusion profiles with “tails”. Geochim Cosmochim Acta 71:1563–1573. doi:10.1016/j.gca.2006.12.013

    Article  Google Scholar 

Download references

Acknowledgments

We thank Cameron Myers for assistance with lab work. This study made use of the Electron Microscope Facility at Brown University, supported by MRSEC/National Science Foundation under award number DMR-0079964 and by MURI2000/AFOSR under award number F49620-00-1-0331, with technical support provided by Tony McCormick and, too, of the MRSEC Shared Experimental Facilities at Massachusetts Institute of Technology, supported by the National Science Foundation under award number DMR-08-19762, with technical support provided by Dr. Yong Chen. The manuscript was improved by discussions with Paul Voyles (University of Wisconsin–Madison) and, in revision, by pointed and helpful comments from Ralf Dohmen and an anonymous reviewer. The study was supported financially, in part, by the Brown/MIT National Aeronautics and Space Agency Lunar Science Institute and by the National Science Foundation Program in Petrology and Geochemistry (EAR-1144668 to RFC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine D. Burgess.

Additional information

Communicated by Hans Keppler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burgess, K.D., Cooper, R.F. Extended planar defects and the rapid incorporation of Ti4+ into olivine. Contrib Mineral Petrol 166, 1223–1233 (2013). https://doi.org/10.1007/s00410-013-0918-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-013-0918-x

Keywords

Navigation