Skip to main content
Log in

Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1,300°C with some geochemical implications

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Lattice diffusion coefficients have been determined for 19 elements (Li, Be, Na, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Eu, Gd, Lu and Hf) in a single crystal of San Carlos olivine as a function of crystallographic orientation, at 1,300°C, 1 bar and fO2 = 10−8.3 bars, by equilibration with a synthetic silicate melt. Results for Li, Na, V, Cr, Fe and Zn are from diffusion of these elements out of the olivine, starting from their indigenous concentrations; those for all other elements are from diffusion into the olivine, from the silicate melt reservoir. Our 25-day experiment produced diffusion profiles 50 to > 700 μm in length, which are sufficiently long that precise analyses could be achieved by scanning laser ablation inductively coupled plasma mass spectrometry, even at concentration levels well below 1 μg g−1. For the divalent cations Ca, Mn, Fe and Ni, profiles were also obtained by electron microprobe analysis. The results of the two methods agree well with each other, and are consistent with divalent cation diffusion coefficients previously determined using different experimental methodologies. Olivine/melt partition coefficients retrieved from the data are also consistent with other published partitioning data, indicating that element incorporation and transport in olivine in our experiment occurred via mechanisms appropriate to natural conditions. Most of the examined trace elements diffuse through olivine at similar rates to the major octahedral cations Fe and Mg, showing that cation charge and radius have little direct influence on diffusion rates. Aluminium and P remain low and constant in the olivine, implying negligible transport at our analytical scale, hence Al and P diffusion rates that are at least two orders of magnitude slower than the other cations studied here. All determined element diffusivities are anisotropic, with diffusion fastest along the [001] axis, except Y and the REEs, which diffuse isotropically. The results suggest that element diffusivity in olivine is largely controlled by cation site preference, charge balance mechanisms and point-defect concentrations. Elements that are present on multiple cation sites in olivine (e.g. Be and Ti) and trivalent elements that are charge-balanced by octahedral site vacancies tend to diffuse at relatively fast rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Beattie P (1994) Systematics and energetics of trace-element partitioning between olivine and silicate melts: implications for the nature of mineral/melt partitioning. Chem Geol 117:57–71

    Article  Google Scholar 

  • Bedard JH (2005) Partitioning coefficients between olivine and silicate melts. Lithos 83:394–419

    Article  Google Scholar 

  • Berry AJ, Hermann J, HStC O’Neill, Foran GJ (2005) Fingerprinting the water site in mantle olivine. Geology 33:869–872

    Article  Google Scholar 

  • Berry AJ, HStC O’Neill, Hermann J, Scott DR (2007) The infrared signature of water associated with trivalent cations in olivine. Earth Planet Sci Lett 261:134–142

    Article  Google Scholar 

  • Birle JD, Gibbs GV, Moore PB, Smith JV (1968) Crystal structures of natural olivines. Am Mineral 53:807–824

    Google Scholar 

  • Borg RJ, Dienes GJ (1988) An introduction to solid state diffusion. Academic, San Diego, 360 pp

  • Boström D (1989a) Cation ordering at 1300°C in the (Ni, Mg)-olivine solid-solution series. Acta Chem Scand 43:116–120

    Article  Google Scholar 

  • Boström D (1989b) Single crystal x-ray diffraction studies of synthetic (Co, Mg)-olivine solid solutions. Acta Chem Scand 43:121–127

    Article  Google Scholar 

  • Brenan JM, Neroda E, Lundstrom CC, Shaw HF, Ryerson FJ, Phinney DL (1998) Behaviour of boron, beryllium and lithium during melting and crystallization: constraints from mineral-melt partitioning experiments. Geochim Cosmochim Acta 62:2129–2141

    Article  Google Scholar 

  • Brown GE (1982) Olivines and silicate spinels. In: Ribbe PH (ed) Orthosilicates. Reviews in mineralogy, vol 5. Mineralogical Society of America, Washington, pp 275–381

    Google Scholar 

  • Canil D (1997) Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature 389:842–845

    Article  Google Scholar 

  • Canil D, Fedortchouk Y (2001) Olivine-liquid partitioning of vanadium and other trace elements, with application to modern and ancient picrites. Am Mineral 39:319–330

    Google Scholar 

  • Chakraborty S (1997) Rates and mechanisms of Fe-Mg interdiffusion in olivine at 980–1300°C. J Geophys Res 102:12317–12331

    Article  Google Scholar 

  • Chakraborty S (2008) Diffusion in solid silicates: a tool to track timescales of processes comes of age. Ann Rev Earth Planet Sci 36:153–190

    Article  Google Scholar 

  • Cherniak DJ (1998a) REE diffusion in calcite. Earth Planet Sci Lett 160:273–287

    Article  Google Scholar 

  • Cherniak DJ (1998b) Rare earth element and gallium diffusion in yttrium aluminum garnet. Phys Chem Miner 26:156–163

    Article  Google Scholar 

  • Cherniak DJ (2000) Rare earth element diffusion in apatite. Geochim Cosmochim Acta 64:3871–3885

    Article  Google Scholar 

  • Cherniak DJ (2003) REE diffusion in feldspar. Chem Geol 193:25–41

    Article  Google Scholar 

  • Cherniak DJ (2006) Pb and rare earth element diffusion in xenotime. Lithos 88:1–14

    Article  Google Scholar 

  • Cherniak DJ (2007) REE diffusion in olivine. American Geophysical Union Fall Meeting, Abstract MR13C-1397, Arlington

  • Cherniak DJ, Liang Y (2007) Rare earth element diffusion in natural enstatite. Geochim Cosmochim Acta 71:1324–1340

    Article  Google Scholar 

  • Cherniak DJ, Hanchar JM, Watson EB (1997) Rare-earth diffusion in zircon. Chem Geol 134:289–301

    Article  Google Scholar 

  • Cherniak DJ, Zhang XY, Wayne NK, Watson EB (2001) Sr, Y, and REE diffusion in fluorite. Chem Geol 181:99–111

    Article  Google Scholar 

  • Coogan LA, Hain A, Stahl S, Chakraborty S (2005a) Experimental determination of the diffusion coefficient for calcium in olivine between 900°C and 1500°C. Geochim Cosmochim Acta 69:3683–3694

    Article  Google Scholar 

  • Coogan LA, Kasemann SA, Chakraborty S (2005b) Rates of hydrothermal cooling of new oceanic upper crust derived from lithium-geospeedometry. Earth Planet Sci Lett 240:415–424

    Article  Google Scholar 

  • Costa F, Chakraborty S (2008) The effect of water on Si and O diffusion rates in olivine and implications for transport properties and processes in the upper mantle. Phys Earth Planet Inter 166:11–29

    Article  Google Scholar 

  • Costa F, Dungan M (2005) Short time scales of magmatic assimilation from diffusion modelling of multiple elements in olivine. Geology 33:837–840

    Article  Google Scholar 

  • Crank J (1975) The mathematics of diffusion. Oxford University Press, London

    Google Scholar 

  • Czaya R (1971) Refinement of the structure of γ-Ca2SiO4. Acta Crystallogr B 27:848–849

    Article  Google Scholar 

  • Danyushevsky LV, Della-Pasqua FN, Sokolov S (2000) Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. Contrib Mineral Petrol 138:68–83

    Article  Google Scholar 

  • Danyushevsky LV, Sokolov S, Falloon TJ (2002) Melt inclusions in olivine phenocrysts: using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks. J Petrol 43:1651–1671

    Article  Google Scholar 

  • Danyushevsky LV, Leslie RAJ, Crawford AJ, Durance P (2004) Melt inclusions in primitive olivine phenocrysts: the role of localized reaction processes in the origin of anomalous compositions. J Petrol 45:2531–2553

    Article  Google Scholar 

  • Darken LS, Gurry RW (1953) Physical chemistry of metals. McGraw-Hill Book Company Inc., New York

    Google Scholar 

  • Demouchy S, Mackwell S (2006) Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine. Phys Chem Miner 33:347–355

    Article  Google Scholar 

  • Dempsey MJ, Freer R (1980) Novel rapid technique for the simulation of thermal vibration figures and diffusion routes in ionic solids. J Phys C6:257–260

    Google Scholar 

  • Dieckmann R, Schmalzried H (1977) Defect and cation diffusion in magnetite. 1. Phys Chem Chem Phys 81:344–347

    Google Scholar 

  • Dohmen R, Chakraborty S (2007) Fe–Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for the calculation of diffusion coefficients in natural olivine. Phys Chem Miner 34:409–430

    Article  Google Scholar 

  • Dohmen R, Chakraborty S, Becker H-W (2002) Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle. Geophys Res Lett 29. doi:10.1029/2002GL015480

  • Dohmen R, Becker H-W, Chakraborty S (2007) Fe–Mg diffusion in olivine I: experimental determination between 700 and 1200°C as a function of composition, crystal orientation and oxygen fugacity. Phys Chem Miner 34:389–407

    Article  Google Scholar 

  • Dohmen R, Kasemann S, Coogan LA, Chakraborty S (in review) Diffusion of Li in olivine: 1. Experimental observations and a multi species diffusion model Geochim Cosmochim Acta

  • Dollase WA (1974) A method of determining the distortion of coordination polyhedra. Acta Crystallogr A 30:513–517

    Article  Google Scholar 

  • Dyar MD, Kahlenberg V, Langer K, Terzenbach H (1996) Polarized single crystal spectra of natural and reheated olivines in the near ultraviolet spectral region and the problem of Fe3+-bearing structural defects. Phys Chem Miner 23:285–286

    Article  Google Scholar 

  • Eggins S, De Deckker P, Marshall J (2003) Mg/Ca variation in planktonic foraminifera tests: implications for reconstructing palaeo-seawater temperature and habitat migration. Earth Planet Sci Lett 212:291–306

    Article  Google Scholar 

  • Ehlers K, Grove TL, Sisson TW, Recca SI, Zervas DA (1992) The effect of oxygen fugacity on the partitioning of nickel and cobalt between olivine, silicate melt and metal. Geochim Cosmochim Acta 56:3733–3743

    Article  Google Scholar 

  • Elburg M, Kamenetsky VS, Nikogosian I, Foden J, Sobolev AV (2006) Coexisting high- and low-calcium melts identified by mineral and melt inclusion studies of a subduction-influenced syn-collisional magma from South Sulawesi, Indonesia. J Petrol 47:2433–2462

    Article  Google Scholar 

  • Elliott T, Jeffcoate A, Bouman C (2004) The terrestrial Li isotope cycle: light-weight constraints on mantle convection. Earth Planet Sci Lett 220:231–245

    Article  Google Scholar 

  • Evans TM, HStC O’Neill, Tuff J (2008) The influence of melt composition on the partitioning of REEs, Y, Sc, Zr and Al between forsterite and melt in the system CMAS. Geochim Cosmochim Acta 72:5708–5721

    Article  Google Scholar 

  • Gaetani GA, Grove TL (1997) Partitioning of moderately siderophile elements among olivine, silicate melt and sulfide melt: constraints on core formation in the Earth and Mars. Geochim Cosmochim Acta 61:1829–1846

    Article  Google Scholar 

  • Gaetani GA, Watson EB (2000) Open system behaviour of olivine-hosted melt inclusions. Earth Planet Sci Lett 183:27–41

    Article  Google Scholar 

  • Galer SJG, O’Nions RK (1989) Chemical and isotopic studies of ultramafic inclusions from the San-Carlos volcanic field, Arizona—a bearing on their petrogenesis. J Petrol 30:1033–1064

    Google Scholar 

  • Gurenko AA, Sobolev AV (2006) Crust-primitive magma interaction beneath neovolcanic rift zone of Iceland recorded in gabbro xenoliths from Midfell, SW Iceland. Contrib Mineral Petrol 151:495–520

    Article  Google Scholar 

  • Halama R, McDonough WF, Rudnick RL, Bell K (2008) Tracking the lithium isotope evolution of the mantle using carbonatites. Earth Planet Sci Lett 265:726–742

    Article  Google Scholar 

  • Hamilton DL, Henderson CMB (1968) The preparation of silicate compositions by a gelling method. Mineral Mag 36:832–838

    Article  Google Scholar 

  • Hanson B, Jones JH (1998) The systematics of Cr3+ and Cr2+ partitioning between olivine and liquid in the presence of spinel. Am Mineral 83:669–684

    Google Scholar 

  • Hart SR, Davis KE (1978) Nickel partitioning between olivine and silicate melt. Earth Planet Sci Lett 40:203–219

    Article  Google Scholar 

  • Hawthorne FC, Huminicki DMC (2002) The crystal chemistry of beryllium. In: Grew ES (ed) Beryllium: mineralogy, petrology and geochemistry. Reviews in Mineralogy and Geochemistry, vol 50. Mineralogical Society of America, Washington, pp 333–404

    Google Scholar 

  • Hier-Majumder S, Anderson IM, Kohlstedt DL (2005) Influence of protons on Fe–Mg interdiffusion in olivine. J Geophys Res 110. doi:10.1029/2004JB003292

  • Henderson CMB, Redfern SAT, Smith RI et al (2001) Composition and temperature dependence of cation ordering in Ni–Mg olivine solid solutions: a time-of-flight neutron powder diffraction and EXAFS study. Am Mineral 86:1170–1187

    Google Scholar 

  • Hermann J, HStC O’Neill, Berry AJ (2005) Titanium solubility in olivine in the system TiO2–MgO–SiO2: no evidence for an ultra-deep origin of Ti-bearing olivine. Contrib Mineral Petrol 148:746–760

    Article  Google Scholar 

  • Ito M, Ganguly J (2006) Diffusion kinetics of Cr in olivine and the 53Mn–53Cr thermochronology of early solar system objects. Geochim Cosmochim Acta 70:799–809

    Article  Google Scholar 

  • Ito M, Yurimoto H, Morioka M, Nagasawa H (1999) Co2+ and Ni2+ diffusion in olivine by secondary ion mass spectrometry. Phys Chem Miner 26:425–431

    Article  Google Scholar 

  • Jackson MG, Hart SR, Saal AE, Shimizu N, Kurz MD, Lusztajn JS, Skovgaard AC (2008) Globally elevated titanium, tantalum, and niobium (TITAN) in ocean island basalts with high 3He/4He. Geochem Geophys Geosyst 9:Q04027. doi:10.1029/2007GC001876

    Article  Google Scholar 

  • Jeffcoate AB, Elliott T, Kasemann SA, Ionov D, Cooper K, Brooker R (2007) Li isotope fractionation in peridotites and mafic melts. Geochim Cosmochim Acta 71:202–218

    Article  Google Scholar 

  • Jurewicz AJG, Watson EB (1988a) Cations in olivine, part 1: calcium partitioning and calcium-magnesium distribution between olivines and coexisting melts, with petrologic applications. Contrib Mineral Petrol 99:176–185

    Article  Google Scholar 

  • Jurewicz AJG, Watson EB (1988b) Cations in olivine, part 2: diffusion in olivine xenocrysts, with applications to petrology and mineral physics. Contrib Mineral Petrol 99:186–201

    Article  Google Scholar 

  • Kennedy AK, Lofgren GE, Wasserburg GJ (1993) An experimental study of trace element partitioning between olivine, orthopyroxene and melt in chondrules: equilibrium values and kinetic effects. Earth Planet Sci Lett 115:177–195

    Article  Google Scholar 

  • Kent AJR, Norman MD, Hutcheon ID, Stolper EM (1999) Assimilation of seawater-derived components in an oceanic volcano: evidence from matrix glasses and glass inclusions from Loihi seamount, Hawaii. Chem Geol 156:299–319

    Article  Google Scholar 

  • Khisina NR, Langer K, Partzsch G (1992) Effect of Fe3+-bearing point defects on the UV-spectra of two natural olivines. Phys Chem Miner 18(8):514–516

    Article  Google Scholar 

  • Khisina NR, Wirth R, Langer K, Andrut M, Ukhanov AV (2001) Microstructure of experimentally oxidized olivine from a mantle nodule. I. Modes of Fe3+ and OH occurrence. Geochem Int 39:327–335

    Google Scholar 

  • Kohlstedt DL, Keppler H, Rubie DC (1996) solubility of water in the α, β and γ phases of (Mg, Fe)2SiO4. Contrib Mineral Petrol 123:345–357

    Article  Google Scholar 

  • Lasaga AC (1979) Multicomponent exchange and diffusion in silicates. Geochim Cosmochim Acta 43:455–469

    Article  Google Scholar 

  • Li J-P, HStC O’Neill, Seifert F (1995) Subsolidus phase relations in the system MgO–SiO2–Cr–O in equilibrium with metallic Cr, and their significance for the petrochemistry of chromium. J Petrol 36:107–132

    Google Scholar 

  • Libourel G (1999) Systematics of calcium partitioning between olivine and silicate melt: implications for melt structure and calcium content of magmatic olivines. Contrib Mineral Petrol 136:63–80

    Article  Google Scholar 

  • Longerich HP, Jackson SE, Gunther D (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom 11:899–904

    Article  Google Scholar 

  • Lowry RK, Henderson P, Nolan J (1982) Tracer diffusion of some alkali, alkaline-earth and transition element ions in a basaltic and an andesitic melt, and the implications concerning melt structure. Contrib Mineral Petrol 80:254–261

    Article  Google Scholar 

  • Lumpkin GR, Ribbe PH (1983) Composition order–disorder and lattice parameters of olivines—relationships in silicate, germanate, beryllate, phosphate and borate olivines. Am Mineral 68:164–176

    Google Scholar 

  • Mallmann G, HStC O’Neill (2007) The effect of oxygen fugacity on the partitioning of Re between crystals and silicate melt during mantle melting. Geochim Cosmochim Acta 71:2837–2857

    Article  Google Scholar 

  • Mallmann G, HStC O’Neill (2009) The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J Petrol 50:1765–1794

    Article  Google Scholar 

  • Mallmann G, O’Neill HStC, Klemme S (2009) Heterogeneous distribution of phosphorus in olivine from otherwise well-equilibrated spinel peridotite xenoliths and its implications for the mantle geochemistry of lithium. Contrib Mineral Petrol doi:10.1007/s00410-009-0393-6

  • McDale P, Blundy JD, Wood BJ (2003) Trace element partitioning on the Tinaquillo Lherzolite. Phys Earth Planet Inter 139:129–147

    Article  Google Scholar 

  • McKay GA (1986) Crystal/liquid partitioning of REE in basaltic systems: extreme fractionation of REE in olivine. Geochim Cosmochim Acta 50:69–79

    Article  Google Scholar 

  • Milman-Barris MS, Beckett JR, Baker MB, Hofmann AE, Morgan Z, Crowley MR, Vielzeuf D, Stolper E (2008) Zoning of phosphorus in igneous olivine. Contrib Mineral Petrol 155:739–765

    Article  Google Scholar 

  • Miyamoto M, Takeda H (1983) Atomic diffusion coefficients calculated for transition metals in olivine. Nature 303:602–603

    Article  Google Scholar 

  • Nakamura A, Schmalzried H (1983) On the nonstoichiometry and point defects of olivine. Phys Chem Miner 10:27–37

    Article  Google Scholar 

  • Nielsen RL, Gallahan WE, Newberger F (1992) Experimentally determined mineral-melt partition coefficients for Sc, Y, REE for olivine, orthopyroxene, pigeonite, magnetite and ilmenite. Contrib Mineral Petrol 110:488–499

    Article  Google Scholar 

  • Norman M, Garcia MO, Pietruska AJ (2005) Trace-element distribution coefficients for pyroxenes, plagioclase, and olivine in evolved tholeiites from the 1955 eruption of Kilauea Volcano, Hawaii and petrogenesis of differentiated rift-zone lavas. Am Mineral 90:888–899

    Article  Google Scholar 

  • Ohashi Y, Finger LW (1973) Diffusion anisotropy in olivine—model calculations. Year B Carnegie Inst Wash 73:403–405

    Google Scholar 

  • O’Neill HStC, Mavrogenes JA (2002) The sulfide capacity and the sulfur content at sulfide saturation of silicate melts at 1400°C and 1 bar. J Petrol 43:1049–1087

    Article  Google Scholar 

  • O’Neill HStC, Rubie DC, Canil D, Geiger CA, Ross CR, Seifert F, Woodland AB (1993) Ferric iron in the upper-mantle and in transition zone assemblages: implications for relative oxygen fugacities in the mantle. In: Takahashi E, Jeanloz R, Rubie D (eds) Evolution of the earth and planets. Geophysical Monographs 74. IUGG, Washington DC, pp 73–88

    Google Scholar 

  • Pack A, Palme H (2003) Partitioning of Ca and Al between forsterite and silicate melt in dynamic systems with implications for the origin of Ca, Al-rich forsterites in primitive meteorites. Meteorit Planet Sci 38:1263–1281

    Article  Google Scholar 

  • Parkinson IJ, Hammond SJ, James RH, Rogers NW (2007) High-temperature lithium isotope fractionation: Insights from lithium isotope diffusion in magmatic systems. Earth Planet Sci Lett 257:609–621

    Article  Google Scholar 

  • Petry C, Chakraborty S, Palme H (2004) Experimental determination of Ni diffusion coefficients in olivine and their dependence on temperature, composition, oxygen fugacity, and crystallographic orientation. Geochim Cosmochim Acta 68:4179–4188

    Article  Google Scholar 

  • Qian Q, O’Neill HStC, Hermann J (in press) Comparative diffusion coefficients of major and trace elements in olivine at ~950°C from a xenocryst included in dioritic magma. Geology

  • Qin Z, Lu F, Anderson AT Jr (1992) Diffusive reequilibration of melt and fluid inclusions. Am Mineral 77:565–576

    Google Scholar 

  • Redfern SAT, Henderson CMB, Knight KS et al (1997) High-temperature order disorder in (Fe0.5Mn0.5)2SiO4 and (Mg0.5Mn0.5)2SiO4 olivines: an in situ neutron diffraction study. Eur J Mineral 9:287–300

    Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289

    Article  Google Scholar 

  • Rudnick RL, Ionov DA (2007) Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far-east Russia: products of recent melt/fluid-rock reaction. Earth Planet Sci Lett 256:278–293

    Article  Google Scholar 

  • Schiano P (2003) Primitive mantle magmas recorded as silicate melt inclusions in igneous minerals. Earth Sci Rev 63:121–144

    Article  Google Scholar 

  • Schmalzried H (1995) Chemical kinetics of solids. Weinheim, New York

    Book  Google Scholar 

  • Schock RN, Duba AG, Shankland TJ (1989) Electrical conductivity of olivine. J Geophys Res 94:5829–5839

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  • Slater L, McKenzie D, Grönvold K, Shimizu N (2001) Melt generation and movement beneath Theistareykir, NE Iceland. J Petrol 42:321–354

    Article  Google Scholar 

  • Sobolev AV (1996) Melt inclusions in minerals as a source of principle petrological information. Petrology 4:209–220

    Google Scholar 

  • Sobolev AV, Hofmann AW, Nikogosian IK (2000) Recycled oceanic crust observed in ‘ghost plagioclase’ within the source of Mauna Loa lava. Nature 404:986–990

    Article  Google Scholar 

  • Spandler C, HStC O’Neill, Kamenetsky VS (2007) Survival times of anomalous melt inclusions: constraints from element diffusion in olivine and chromite. Nature 447:303–306

    Article  Google Scholar 

  • Spandler C, Pettke T, Berger A, Ulmer P, Magee C (in review) Trace and high-field-strength element concentration of NIST SRM 610 and 612 glasses: constraints from electron microprobe, x-ray fluorescence and laser ablation ICP-MS analyses. Geostand Geoanal Res

  • Stocker RL, Smyth DM (1978) Effect of enstatite activity and oxygen partial pressure on the point-defect chemistry of olivine. Phys Earth Planet Inter 16:145–156

    Article  Google Scholar 

  • Taura H, Yurimoto H, Kurita K, Sueno S (1998) Pressure dependence on partition coefficients for trace elements between olivine and the coexisting melts. Phys Chem Miner 25:469–484

    Article  Google Scholar 

  • Thomas JB, Cherniak DJ, Watson EB (2008) Lattice diffusion and solubility of argon in forsterite, enstatite, quartz and corundum. Chem Geol 253:1–22

    Article  Google Scholar 

  • Tsai T-L, Dieckmann R (2002) Variation of the oxygen content and point defects in olivines, (Fe x Mg 1 − x)2SiO4, 0.2 ≤ x ≤ 1.0. Phys Chem Miner 29:680–694

    Article  Google Scholar 

  • Van Orman JA, Grove TL, Shimizu N (2001) Rare earth element diffusion in diopside: influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contrib Mineral Petrol 141:687–703

    Google Scholar 

  • Van Orman JA, Grove TL, Shimizu N, Layne GD (2002) Rare earth element diffusion in a natural pyrope single crystal at 2.8 GPa. Contrib Mineral Petrol 142:416–424

    Google Scholar 

  • Van Orman JA, Li C, Crispin KL (2008) Aluminum diffusion and Al-vacancy associated in periclase. Phys Earth Planet Inter 172:34–42

    Google Scholar 

  • Wan Z, Coogan LA, Canil D (2008) Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. Am Mineral 93:1142–1147

    Article  Google Scholar 

  • Wang Z, Hiraga T, Kohlstedt DL (2004) Effect of H + on Fe–Mg interdiffusion in olivine (Fe, Mg)2SiO4. Appl Phys Lett 85:209–211

    Article  Google Scholar 

  • Watson EB (1979) Calcium diffusion in a simple silicate melt to 30 kbar. Geochim Cosmochim Acta 43:313–322

    Article  Google Scholar 

  • Witt-Eickschen G, HStC O’Neill (2005) The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chem Geol 221:65–101

    Article  Google Scholar 

  • Wood BJ, Blundy JD (2003) Trace element partitioning under crustal and uppermost mantle conditions: the influence of ionic radius, cation charge, pressure and temperature. In: Carlson RW, Holland HD, Turekian KK (eds) The mantle and core: treatise on geochemistry, vol 2. Elsevier, Oxford, pp 395–424

    Google Scholar 

  • Zanetti A, Tiepolo M, Oberti R, Vannucci R (2004) Trace-element partitioning in olivine: modelling of a complete data set from a synthetic hydrous basanite melt. Lithos 75:39–54

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Australian National University and the Australian Research Council. We thank Dean Scott for help with the experimental set-up and Mike Shelley, Alfons Berger Thomas Pettke and Andreas Ebert with the electron microprobe, LA ICP-MS and EBSD analyses. The manuscript was greatly improved by an insightful review by Ralf Dohmen and editorial work by Jon Blundy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Spandler.

Additional information

Communicated by J. Blundy.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spandler, C., O’Neill, H.S. Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1,300°C with some geochemical implications. Contrib Mineral Petrol 159, 791–818 (2010). https://doi.org/10.1007/s00410-009-0456-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0456-8

Keywords

Navigation