Advertisement

Archive for History of Exact Sciences

, Volume 68, Issue 5, pp 599–639 | Cite as

Correspondence principle versus Planck-type theory of the atom

  • Sandro Petruccioli
Article

Abstract

This article examines the problem of the origins of the correspondence principle formulated by Bohr in 1920 and intends to test the correctness of the argument that the essential elements of that principle were already present in the 1913 “trilogy”. In contrast to this point of view, moreover widely shared in the literature, this article argues that it is possible to find a connection between the formulation of the correspondence principle and the assessment that led Bohr to abandon the search for a Planck-type theory. In fact, a thorough examination of Bohr’s works shows that the birth of this principle coincided with the depletion of a research program whose origins may date back to Bohr’s stay at the Rutherford’s laboratory (summer 1912). Finally, this article argues that original program of research was abandoned when it became clear that Planck’s quantum hypothesis for the harmonic oscillator was not an adequate support for the theoretical architecture of atomic physics; namely, there was evidence enough to justify a most drastic conclusion, according to Bohr: “I do not think that a theory of the Planck type can be made logical consistent”.

Keywords

Quantum Theory Harmonic Oscillator Atomic System Correspondence Principle Philosophical Magazine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bohr, N. 1913a. On the theory of the decrease of velocity of moving electrified particles on passing through matter. Philosophical Magazine 25: 10–31.CrossRefzbMATHGoogle Scholar
  2. Bohr, N. 1913b. On the constitution of atoms and molecules, part I. Philosophical Magazine 26: 1–25.CrossRefzbMATHGoogle Scholar
  3. Bohr, N. 1913c. On the constitution of atoms and molecules, part II. Philosophical Magazine 26: 476–502.CrossRefGoogle Scholar
  4. Bohr, N. 1913d. On the constitution of atoms and molecules, part III. Philosophical Magazine 26: 857–875.CrossRefGoogle Scholar
  5. Bohr, N. 1914a. Om Brintspektret. Fysisk Tidsskrift 12: 97–114.Google Scholar
  6. Bohr, N. 1914b. On the effect of electric and magnetic fields on spectral lines. Philosophical Magazine 27: 506–524.CrossRefGoogle Scholar
  7. Bohr, N. 1915a. On the quantum theory of radiation and the structure of the atom. Philosophical Magazine 30: 394–415.CrossRefGoogle Scholar
  8. Bohr, N. 1915b. On the decrease of velocity of swiftly moving electrified particles in passing through matter. Philosophical Magazine 30: 581–612.CrossRefGoogle Scholar
  9. Bohr, N. 1918a. On the quantum theory of the line-spectra, part I: On the general theory. Kongelige Danske Viedenskabernes Skrifter, Naturvidenskabelig og matematisk Afdeling, 8 Roekke. IV. I: 1–36.Google Scholar
  10. Bohr, N. 1918b. On the quantum theory of the line-spectra, part II: On the hydrogen spectrum. Kongelige Danske Viedenskabernes Skrifter, Naturvidenskabelig og matematisk Afdeling, 8 Roekke. IV. I: 37–100.Google Scholar
  11. Bohr, N. 1920. Über die Serienspektren der Elemente. Zeitschrift für Physik 2: 423–469.CrossRefGoogle Scholar
  12. Bohr, N. 1921. Abhandlungen über Atombau aus den Jahren 1913–1916. Braunschweig: Vieweg & Sohn.Google Scholar
  13. Bohr, N. 1922a. On the quantum theory of the line-spectra, part III: On the spectra of elements of higher atomic number. Kongelige Danske Viedenskabernes Skrifter, Naturvidenskabelig og matematisk Afdeling, 8 Roekke. IV. I: 101–108.Google Scholar
  14. Bohr, N. 1922b. The theory of spectra and atomic constitution. Cambridge: Cambridge University Press.Google Scholar
  15. Bohr, N. 1923. L’application de la théorie des quanta aux problèmes atomiques. In [Solvay III] 228–247.Google Scholar
  16. Bohr, N. 1924. On the Application of the quantum theory to atomic structure. Proceedings of the Cambridge Philosophical Society 24(Suppl): 1–42.Google Scholar
  17. Bohr, N. 1925. Atomic theory and mechanics. Nature 116(Suppl.): 845–852.Google Scholar
  18. Bohr, N. 1928. The quantum postulate and the recent development of atomic theory. Nature 121(Suppl.): 579–590.Google Scholar
  19. Bohr, N. 1961. The Rutherford memorial lecture 1958. Reminiscences of the founder of nuclear science and of some developments based on his work. Proceedings of the Physical Society 78: 1083–1115.CrossRefGoogle Scholar
  20. Bohr, N. 1972. Collected works, vol. 1, Early work (1905–1911), ed. J. Rud Nielsen. Amsterdam.Google Scholar
  21. Bohr, N. 1976. Collected works, vol. 3, The correspondence principle (1918–1923), ed. J. Rud Nielsen. Amsterdam.Google Scholar
  22. Bohr, N. 1981. Collected works, vol. 2, Work in atomic physics (1912–1917), ed. U. Hoyer. Amsterdam.Google Scholar
  23. CW1 see Bohr, N. 1972.Google Scholar
  24. CW2 see Bohr, N. 1981.Google Scholar
  25. CW3 see Bohr, N. 1976.Google Scholar
  26. Darrigol, O. 1992. From c-numbers to q-numbers: The classical analogy in the history of quantum theory. Berkeley: University of California Press.Google Scholar
  27. Darrigol, O. 1997. Classical concepts in Bohr’s atomic theory (1913–1925). Physis 34: 545–567.MathSciNetGoogle Scholar
  28. Darwin, C.G. 1912. A theory of the absorption and scattering of the \(\alpha \) rays. Philosophical Magazine 23: 901–920.CrossRefzbMATHGoogle Scholar
  29. Darwin, C.G. 1913. On some orbits of an electron. Philosophical Magazine 25: 201–210.CrossRefzbMATHGoogle Scholar
  30. Debye, P. 1910. Der Wahrscheinlichkeitsbegriff in der Theorie der Strahlung. Annalen der Physik 33: 1427–1434.CrossRefzbMATHGoogle Scholar
  31. Evans, E.J. 1913. The spectra of helium and hydrogen. Nature 92: 5.CrossRefGoogle Scholar
  32. Eve, A.S. 1939. Rutherford. Being the life and letters of the Rt Hon, Lord Rutherford. Cambridge: Cambridge University Press.Google Scholar
  33. Geiger, H. 1912. Note on the scattering of \(\alpha \) particles. Proceedings of the Royal Society 86: 235–240.CrossRefGoogle Scholar
  34. Geiger, H., and E. Marsden. 1913. The laws of deflexion of \(\alpha \) particles through large angle. Philosophical Magazine 25: 604–623.CrossRefGoogle Scholar
  35. Heilbron, J.L. 2013. Nascent science. The scientific and psychological background to Bohr’s Trilogy. In Love, literature and the quantum atom, ed. F. Aaserud, and J.L. Heilbron, 103–200. Oxford: Oxford University Press.Google Scholar
  36. Heilbron, J.L., and Th.S. Kuhn. 1969. The genesis of the Bohr atom. Historical studies in the physical sciences 1: 211–290.Google Scholar
  37. Jeans, J.H. 1913. Discussion on radiation. Report of the British Association for the Advancement of Science, Birmingham (376–381).Google Scholar
  38. Klein, M.J. 1970. Paul Ehrenfest. Vol. 1: The making of a theoretical physicist. Amsterdam: North-Holland.Google Scholar
  39. Kragh, H. 2012. Niels Bohr and the quantum atom. The Bohr model of atomic structure 1913–1925. Oxford: Oxford University Press.Google Scholar
  40. Kuhn, Th.S. 1978. Black-body theory and the quantum discontinuity, 1984–1912. Oxford: Oxford University Press.Google Scholar
  41. Langevin, P., and M. de Broglie (eds.). 1912. La théorie du rayonnement et les quanta. Rapports et discussions de la réunion tenue à Bruxelles du 30 octobre au 3 novembre 1911. Paris: Gauthier-Villars.Google Scholar
  42. Lodge, O.J. 1913. President’s address. Report of the British Association for the Advancement of Science, Birmingham (3–42).Google Scholar
  43. Marsden, H., and T.S. Taylor. 1913. The decrease in velocity of \(\alpha \)-particles in passing through matter. Proceedings of the Royal Society 88: 443–454.CrossRefGoogle Scholar
  44. Mayer, F. 1913. Zerstreuung der \(\alpha \)-Strahlen. Annalen der Physik 41: 931–970.CrossRefGoogle Scholar
  45. Moseley, H.G.J. 1913. The high-frequency spectra of the elements. Philosophical Magazine 26: 1024–1034.CrossRefGoogle Scholar
  46. Nicholson, J.W. 1912a. The constitution of the solar corona. I. Monthly Notices of the Royal Astronomical Society 72: 139–150.CrossRefGoogle Scholar
  47. Nicholson, J.W. 1912b. The constitution of the solar corona. II. Monthly Notices of the Royal Astronomical Society 72: 677–693.CrossRefGoogle Scholar
  48. Nicholson, J.W. 1912c. The constitution of the solar corona. III. Monthly Notices of the Royal Astronomical Society 72: 729–739.CrossRefGoogle Scholar
  49. Nicholson, J.W. 1914. The high-frequency spectra of the elements and the structure of the atom. Philosophical Magazine 27: 541–564.CrossRefGoogle Scholar
  50. Pais, A. 1994. Niels Bohr’s times: In physics, philosophy, and polity. Oxford: Oxford University Press.Google Scholar
  51. Petruccioli, S. 2006. Atoms metaphors and paradoxes. Niels Bohr and the construction of new physics. Cambridge: Cambridge University Press.Google Scholar
  52. Petruccioli, S. 2011. Complementarity before uncertainty. Archives for History of Exact Sciences 65: 591–624.CrossRefzbMATHMathSciNetGoogle Scholar
  53. Planck, M. 1913. Vorlesungen über die Theorie der Wärmestrahlung, 2nd ed. Leipzig: Barth.zbMATHGoogle Scholar
  54. Rosenfeld, L. (ed.). 1963. Niels Bohr: On the constitution of atoms and molecules. Copenhagen: Munksgaard.Google Scholar
  55. Rosenfeld, L., and E. Rüdinger. 1967. The decisive years 1911–1918. In Niels Bohr, his life and work as seen by his friends and colleagues, ed. S. Rozental, 38–73. New York: Interscience.Google Scholar
  56. Rud Nielsen, J. 1976. Introduction in CW3 3–46.Google Scholar
  57. Rutherford, E. 1911. The scattering of \(\alpha \) and \(\beta \) particles by matter and the structure of the atom. Philosophical Magazine 23: 669–688.CrossRefGoogle Scholar
  58. Rutherford, E. 1912. The origin of \(\beta \) and \(\gamma \) rays from radioactive substances. Philosophical Magazine 24: 453–462.CrossRefGoogle Scholar
  59. Rutherford, E., and J.M. Nuttal. 1913. The scattering of \(\alpha \) particles by gases. Philosophical Magazine 26: 702–712.CrossRefGoogle Scholar
  60. [Solvay I] La théorie du rayonnement et les quanta. Rapports et discussions de la Réunion tenue à Bruxelles du 30 octobre au 3 novembre 1911 sous les auspices de M. E. Solvay. 1912. Paris: Gauthier-Villars.Google Scholar
  61. [Solvay II] La structure de la matière. Rapports et discussions du Conseil de physique tenu à Bruxelles du 27 au 31 octobre 1913 sous les auspices de l’Institut international de physique Solvay. 1921. Paris: Gauthier-Villars.Google Scholar
  62. [Solvay III] Atomes et électrons. Rapports et discussions du Conseil de physique tenu à Bruxelles du 1er au 6 avril 1921 sous les auspices de l’Institut international de physique Solvay. 1923. Paris: Gauthier-Villars.Google Scholar
  63. Sommerfeld, A. 1915. Zur Theorie der Balmerschen Serie. Sitzungsberichte der Bayerischen Akademie der Wissenschaften München 425–458.Google Scholar
  64. Sommerfeld, A. 1916. Zur Quantentheorie der Spektrallinien. Annalen der Physik 51: 1–94.CrossRefGoogle Scholar
  65. Sommerfeld, A. 1919. Atombau und Spektrallinien. Braunschweig: Vieweg.Google Scholar
  66. Stark, J. 1913. Observation of the separation of spectral lines by an electric field. Nature 92: 401.CrossRefGoogle Scholar
  67. Thomson, J.J. 1904. On the structure of the atom. Philosophical Magazine 7: 237–265.CrossRefzbMATHMathSciNetGoogle Scholar
  68. Thomson, J.J. 1913. On the structure of the atom. Philosophical Magazine 26: 792–799. Google Scholar
  69. Thomson, J.J. (1921). La structure de l’atome. In [Solvay II] 1–74.Google Scholar
  70. Wilson, C.T.R. 1912. On an expansion apparatus for making visible the tracks of ionizing particles in gases and some results obtained by its use. Proceedings of the Royal Society 87: 277–292.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Università dell’AquilaL’AquilaItaly

Personalised recommendations