Skip to main content

Advertisement

Log in

Bioinformatic analysis of key pathways and genes shared between endometriosis and ovarian cancer

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the study is to identify potential key genes and pathways, using bioinformatics, underlying the potentially common molecular mechanisms between endometriosis (EMS) and ovarian cancer (OC).

Methods

Two datasets were collected from the Gene Expression Omnibus database, and the limma package identified common differentially expressed genes (DEGs) in the EMS and OC groups compared to controls. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, gene interaction network, and module analyses identified the enriched pathways associated with DEGs. A protein–protein interaction (PPI) network was then constructed, and the CytoHubba plugin of Cytoscape was used to calculate the degree of connectivity for proteins in the PPI network.

Results

A total of 571 overlapping DEGs were identified between EMS and OC (vs. controls). Enriched DEGs were associated with 36 gene ontology terms and 7 Kyoto Encyclopedia of Genes and Genomes pathways, which were mainly associated with deactivation of the p53 signaling pathway. The Kaplan–Meier plotter platform confirmed the expression of the identified hub genes, and survival analysis suggested that CCNB1, CCNB2, BUB1B, CCNA2, KIF2C, and TOP2A are associated with decreased survival and disease-free survival rates of OC.

Conclusion

The key pathways identified herein elucidate the possible mechanism by which EMS evolves into OC; further, the identified hub genes may serve as potential biomarkers to predict OC occurrence and prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

The datasets generated and/or analyzed during the current study are available in the [GEO] repository, through the following urls: (1) https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7305; (2) https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14407.

Code availability

The code used in this study is available from the corresponding author upon reasonable request.

References

  1. Reid BM, Permuth JB, Sellers TA (2017) Epidemiology of ovarian cancer: a review. Cancer Biol Med 14:9–32. https://doi.org/10.20892/j.issn.2095-3941.2016.0084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Králíčková M, Vetvicka V (2014) Endometriosis and ovarian cancer. World J Clin Oncol 5:800–805. https://doi.org/10.5306/wjco.v5.i5.800

    Article  PubMed  PubMed Central  Google Scholar 

  3. Audebert A, Petousis S, Margioula-Siarkou C, Ravanos K, Prapas N, Prapas Y (2018) Anatomic distribution of endometriosis: a reappraisal based on series of 1101 patients. Eur J Obstet Gynecol Reprod Biol 230:36–40. https://doi.org/10.1016/j.ejogrb.2018.09.001

    Article  CAS  PubMed  Google Scholar 

  4. Hunn J, Rodriguez GC (2012) Ovarian cancer: etiology, risk factors, and epidemiology. Clin Obstet Gynecol 55:3–23. https://doi.org/10.1097/grf.0b013e31824b4611

    Article  PubMed  Google Scholar 

  5. Dzatic-Smiljkovic O, Vasiljevic M, Djukic M, Vugdelic R, Vugdelic J (2011) Frequency of ovarian endometriosis in epithelial ovarian cancer patients. Clin Exp Obstet Gynecol 38:394–398

    CAS  PubMed  Google Scholar 

  6. Wang C, Liang Z, Liu X, Zhang Q, Li S (2016) The association between endometriosis, tubal ligation, hysterectomy and epithelial ovarian cancer: meta-analyses. Int J Environ Res Public Health 13:1138. https://doi.org/10.3390/ijerph13111138

    Article  PubMed Central  Google Scholar 

  7. Brilhante AV, Augusto KL, Portela MC, Sucupira LC, Oliveira LA, Pouchaim AJ, Nόbrega LRM, de Magalhães TF, Sobreira LRP (2017) Endometriosis and ovarian cancer: an integrative review (endometriosis and ovarian cancer). Asian Pac J Cancer Prev 18:11–16. https://doi.org/10.22034/APJCP.2017.18.1.11

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ruderman R, Pavone ME (2017) Ovarian cancer in endometriosis: an update on the clinical and molecular aspects. Minerva Ginecol 69:286–294. https://doi.org/10.23736/S0026-4784.17.04042-4

    Article  PubMed  Google Scholar 

  9. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M et al (2013) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41:D991–D995. https://doi.org/10.1093/nar/gks1193

    Article  CAS  PubMed  Google Scholar 

  10. Hever A, Roth RB, Hevezi P, Marin ME, Acosta JA, Acosta H et al (2007) Human endometriosis is associated with plasma cells and overexpression of B lymphocyte stimulator. Proc Natl Acad Sci USA 104:12451–12456. https://doi.org/10.1073/pnas.0703451104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bowen NJ, Walker LD, Matyunina LV, Logani S, Totten KA, Benigno BB, McDonald JF (2009) Gene expression profiling supports the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as ovarian cancer initiating cells. BMC Med Genomics 2:71. https://doi.org/10.1186/1755-8794-2-71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  13. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D et al (2007) DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 35:W169–W175. https://doi.org/10.1093/nar/gkm415

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alonso-Calvo R, Maojo V, Billhardt H, Martin-Sanchez F, Garcia-Remesal M, Perez-Rey D (2007) An agent- and ontology-based system for integrating public gene, protein, and disease databases. J Biomed Inform 40:17–29. https://doi.org/10.1016/j.jbi.2006.02.014

    Article  CAS  PubMed  Google Scholar 

  16. Yao T (2002) Bioinformatics for the genomic sciences and towards systems biology. Japanese activities in the post-genome era. Prog Biophys Mol Biol 80:23–42. https://doi.org/10.1016/s0079-6107(02)00011-1

    Article  PubMed  Google Scholar 

  17. Luo W, Pant G, Bhavnasi YK, Blanchard SG Jr, Brouwer C (2017) Pathview Web: user friendly pathway visualization and data integration. Nucleic Acids Res 45:W501–W508. https://doi.org/10.1093/nar/gkx372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Doncheva NT, Morris JH, Gorodkin J, Jensen LJ (2019) Cytoscape StringApp: network analysis and visualization of proteomics data. J Proteome Res 18:623–632. https://doi.org/10.1021/acs.jproteome.8b00702

    Article  CAS  PubMed  Google Scholar 

  19. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY (2014) cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8(Suppl 4):S11. https://doi.org/10.1186/1752-0509-8-s4-s11

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hess AS, Hess JR (2020) Kaplan-Meier survival curves. Transfusion 60:670–672. https://doi.org/10.1111/trf.15725

    Article  PubMed  Google Scholar 

  21. Lagana AS, Garzon S, Gotte M, Vigano P, Franchi M, Ghezzi F, Martin DC (2019) The pathogenesis of endometriosis: molecular and cell biology insights. Int J Mol Sci 20:5615. https://doi.org/10.3390/ijms20225615

    Article  CAS  PubMed Central  Google Scholar 

  22. Brilhante AV, Augusto KL, Portela MC, Sucupira LC, Oliveira LA, Pouchaim AJ, Nobrega LR, Magalhaes TF, Sobreira LR (2017) Endometriosis and ovarian cancer: an integrative review (Endometriosis and Ovarian Cancer). Asian Pac J Cancer Prev 18:11–16. https://doi.org/10.22034/apjcp.2017.18.1.11

    Article  PubMed  PubMed Central  Google Scholar 

  23. Králíčková M, Laganà AS, Ghezzi F, Vetvicka V (2020) Endometriosis and risk of ovarian cancer: what do we know? Arch Gynecol Obstet 301:1–10. https://doi.org/10.1007/s00404-019-05358-8

    Article  PubMed  Google Scholar 

  24. Saavalainen L, Lassus H, But A, Tiitinen A, Harkki P, Gissler M, Pukkala E, Heikinheimo O (2018) Risk of gynecologic cancer according to the type of endometriosis. Obstet Gynecol 131:1095–1102. https://doi.org/10.1097/AOG.0000000000002624

    Article  PubMed  Google Scholar 

  25. Dochez V, Caillon H, Vaucel E, Dimet J, Winer N, Ducarme G (2019) Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review. J Ovarian Res 12:28. https://doi.org/10.1186/s13048-019-0503-7

    Article  PubMed  PubMed Central  Google Scholar 

  26. Carter JH, Deddens JA, Mueller G, Lewis TG, Dooley MK, Robillard MC, Frydl M, Duvall L, Pemberton JO, Douglass LE (2018) Transcription factors WT1 and p53 combined: a prognostic biomarker in ovarian cancer. Br J Cancer 119:462–470. https://doi.org/10.1038/s41416-018-0191-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hodgson DR, Dougherty BA, Lai Z, Fielding A, Grinsted L, Spencer S et al (2018) Candidate biomarkers of PARP inhibitor sensitivity in ovarian cancer beyond the BRCA genes. Br J Cancer 119:1401–1409. https://doi.org/10.1038/s41416-018-0274-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kawashima N, Yoshida H, Miwa M, Fujiwara K (2019) MLH1 is a prognostic biomarker for serous ovarian cancer treated with platinum- and taxane-based chemotherapy. Anticancer Res 39:5505–5513. https://doi.org/10.21873/anticanres.13743

    Article  CAS  PubMed  Google Scholar 

  29. Greene AD, Lang SA, Kendziorski JA, Sroga-Rios JM, Herzog TJ, Burns KA (2016) Endometriosis: where are we and where are we going? Reproduction 152:R63–R78. https://doi.org/10.1530/REP-16-0052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wenzel ES, Singh ATK (2018) Cell-cycle checkpoints and aneuploidy on the path to cancer. In Vivo 32:1–5. https://doi.org/10.21873/invivo.11197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Potapova TA, Zhu J, Li R (2013) Aneuploidy and chromosomal instability: a vicious cycle driving cellular evolution and cancer genome chaos. Cancer Metastasis Rev 32:377–389. https://doi.org/10.1007/s10555-013-9436-6

    Article  PubMed  Google Scholar 

  32. Lingle WL, Lukasiewicz K, Salisbury JL (2005) Deregulation of the centrosome cycle and the origin of chromosomal instability in cancer. Adv Exp Med Biol 570:393–421. https://doi.org/10.1007/1-4020-3764-3_14

    Article  CAS  PubMed  Google Scholar 

  33. Bennett DC, Cazet A, Charest J, Contessa JN (2018) MPDU1 regulates CEACAM1 and cell adhesion in vitro and in vivo. Glycoconj J 35:265–274. https://doi.org/10.1007/s10719-018-9819-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Campos A, Salomon C, Bustos R, Diaz J, Martinez S, Silva V et al (2018) Caveolin-1-containing extracellular vesicles transport adhesion proteins and promote malignancy in breast cancer cell lines. Nanomedicine (Lond) 13:2597–2609. https://doi.org/10.2217/nnm-2018-0094

    Article  CAS  Google Scholar 

  35. Galvagni F, Nardi F, Maida M, Bernardini G, Vannuccini S, Petraglia F, Santucci A, Orlandini M (2016) CD93 and dystroglycan cooperation in human endothelial cell adhesion and migration adhesion and migration. Oncotarget 7:10090–10103. https://doi.org/10.18632/oncotarget.7136

    Article  PubMed  PubMed Central  Google Scholar 

  36. Daigo K, Takano A, Thang PM, Yoshitake Y, Shinohara M, Tohnai I, Murakami Y, Maegawa J, Daigo Y (2018) Characterization of KIF11 as a novel prognostic biomarker and therapeutic target for oral cancer. Int J Oncol 52:155–165. https://doi.org/10.3892/ijo.2017.4181

    Article  CAS  PubMed  Google Scholar 

  37. Pérez-Fidalgo JA, Gambardella V, Pineda B, Burgues O, Piñero O, Cervantes A (2020) Aurora kinases in ovarian cancer. ESMO Open 5:e000718. https://doi.org/10.1136/esmoopen-2020-000718

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chang WH, Forde D, Lai AG (2019) Dual prognostic role of 2-oxoglutarate-dependent oxygenases in ten cancer types: implications for cell cycle regulation and cell adhesion maintenance. Cancer Commun (Lond) 39:23. https://doi.org/10.1186/s40880-019-0369-5

    Article  Google Scholar 

  39. Capasso A, Pitts TM, Klauck PJ, Bagby SM, Westbrook L, Kaplan J et al (2018) Dual compartmental targeting of cell cycle and angiogenic kinases in colorectal cancer models. Anticancer Drugs 29:827–838. https://doi.org/10.1097/CAD.0000000000000673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mladenov E, Magin S, Soni A, Iliakis G (2016) DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: cell cycle and proliferation-dependent regulation. Semin Cancer Biol 37–38:51–64. https://doi.org/10.1016/j.semcancer.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  41. Icard P, Fournel L, Wu Z, Alifano M, Lincet H (2019) Interconnection between metabolism and cell cycle in cancer. Trends Biochem Sci 44:490–501. https://doi.org/10.1016/j.tibs.2018.12.007

    Article  CAS  PubMed  Google Scholar 

  42. Grunewald T, Ledermann JA (2017) Targeted therapies for ovarian cancer. Best Pract Res Clin Obstet Gynaecol 41:139–152. https://doi.org/10.1016/j.bpobgyn.2016.12.001

    Article  PubMed  Google Scholar 

  43. Stadler M, Scherzer M, Walter S, Holzner S, Pudelko K, Riedl A et al (2018) Exclusion from spheroid formation identifies loss of essential cell-cell adhesion molecules in colon cancer cells. Sci Rep 8:1151. https://doi.org/10.1038/s41598-018-19384-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Labernadie A, Kato T, Brugues A, Serra-Picamal X, Derzsi S, Arwert E et al (2017) A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat Cell Biol 19:224–237. https://doi.org/10.1038/ncb3478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Harjunpaa H, llort Asens Guenther Fagerholm MCSC (2019) Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front Immunol 10:1078. https://doi.org/10.3389/fimmu.2019.01078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo S (2020) Cancer-associated mutations in endometriosis: shedding light on the pathogenesis and pathophysiology. Hum Reprod Update 26:423–449. https://doi.org/10.1093/humupd/dmz047

    Article  CAS  PubMed  Google Scholar 

  47. Macedo GS, Vieira IA, Vianna FSL, Alemar B, Giacomazzi J, Brandalize APC et al (2018) p53 signaling pathway polymorphisms, cancer risk and tumor phenotype in TP53 R337H mutation carriers. Fam Cancer 17:269–274. https://doi.org/10.1007/s10689-017-0028-4

    Article  CAS  PubMed  Google Scholar 

  48. Liu Y, Li L, Liu Y, Geng P, Li G, Yang Y, Song H (2018) RECK inhibits cervical cancer cell migration and invasion by promoting p53 signaling pathway. J Cell Biochem 119:3058–3066. https://doi.org/10.1002/jcb.26441

    Article  CAS  PubMed  Google Scholar 

  49. Duffy MJ, Synnott NC, Crown J (2018) Mutant p53 in breast cancer: potential as a therapeutic target and biomarker. Breast Cancer Res Treat 170:213–219. https://doi.org/10.1007/s10549-018-4753-7

    Article  CAS  PubMed  Google Scholar 

  50. Yan C, Yuan J, Xu J, Zhang G, Li X, Zhang B, Hu T, Huang X, Mao Y, Song G (2019) Ubiquitin-specific peptidase 39 regulates the process of proliferation and migration of human ovarian cancer via p53/p21 pathway and EMT. Med Oncol 36:95. https://doi.org/10.1007/s12032-019-1308-7

    Article  CAS  PubMed  Google Scholar 

  51. Zheng MJ, Li X, Hu YX, Dong H, Gou R, Nie X, Liu Q, Ying-Ying H, Liu J-J, Lin B (2019) Identification of molecular marker associated with ovarian cancer prognosis using bioinformatics analysis and experiments. J Cell Physiol 234:11023–11036. https://doi.org/10.1002/jcp.27926

    Article  CAS  PubMed  Google Scholar 

  52. Tocci P, Cianfrocca R, Di Castro V, Rosano L, Sacconi A, Donzelli S et al (2019) β-arrestin1/YAP/mutant p53 complexes orchestrate the endothelin A receptor signaling in high-grade serous ovarian cancer. Nat Commun 10:3196. https://doi.org/10.1038/s41467-019-11045-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang YB, Jiang Y, Wang J, Ma J, Han S (2019) Evaluation of core serous epithelial ovarian cancer genes as potential prognostic markers and indicators of the underlying molecular mechanisms using an integrated bioinformatics analysis. Oncol Lett 18:5508–5522. https://doi.org/10.3892/ol.2019.10884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee J, Minasian L, Kohn EC (2019) New strategies in ovarian cancer treatment 125(Suppl 24):4623–4629. https://doi.org/10.1002/cncr.32544

    Article  CAS  Google Scholar 

  55. Feng H, Gu ZY, Li Q, Liu QH, Yang XY, Zhang JJ (2019) Identification of significant genes with poor prognosis in ovarian cancer via bioinformatical analysis. J Ovarian Res 12:35. https://doi.org/10.1186/s13048-019-0508-2

    Article  PubMed  PubMed Central  Google Scholar 

  56. Legal T, Hayward D, Gluszek-Kustusz A, Blackburn EA, Spanos C, Rappsilber J, Gruneberg U, Welburn JPI (2020) The C-terminal helix of BubR1 is essential for CENP-E-dependent chromosome alignment. J Cell Sci 133:jcs246025. https://doi.org/10.1242/jcs.246025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Simmons AJ, Park R, Sterling NA, Jang MH, van Deursen JMA, Yen TJ, Cho SH, Kim S (2019) Nearly complete deletion of BubR1 causes microcephaly through shortened mitosis and massive cell death. Hum Mol Genet 28:1822–1836. https://doi.org/10.1093/hmg/ddz022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang L, Sun L, Zhang B, Chen L (2019) Identification of differentially expressed genes (DEGs) relevant to prognosis of ovarian cancer by use of integrated bioinformatics analysis and validation by immunohistochemistry assay. Med Sci Monit 25:9902–9912. https://doi.org/10.12659/msm.921661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sun Q, Zhao H, Zhang C, Hu T, Wu J, Lin X, Luo D, Wang C, Meng L, Xi L, Li K, Hu J, Ma D, Zhu T (2017) Gene co-expression network reveals shared modules predictive of stage and grade in serous ovarian cancers. Oncotarget 8:42983–42996. https://doi.org/10.18632/oncotarget.17785

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yang D, He Y, Wu B, Deng Y, Wang N, Li M, Liu Y (2020) Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer. J Ovarian Res 13:10. https://doi.org/10.1186/s13048-020-0613-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao Y, Pi J, Liu L, Yan W, Ma S, Hong L (2021) Identification of the hub genes associated with the prognosis of ovarian cancer patients via integrated bioinformatics analysis and experimental validation. Cancer Manag Res 13:707–721. https://doi.org/10.2147/cmar.s282529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee D, Hokinson D, Park S, Elvira R, Kusuma F, Lee JM, Yun M, Lee SG, Han J (2019) ER stress induces cell cycle arrest at the G2/M phase through eIF2alpha phosphorylation and GADD45alpha. Int J Mol Sci 20:6309. https://doi.org/10.3390/ijms20246309

    Article  CAS  PubMed Central  Google Scholar 

  63. Batool A, Liu H, Liu Y, Chen S (2020) CD83, a novel MAPK signaling pathway interactor, determines ovarian cancer cell fate. Cancers (Basel) 128:2269. https://doi.org/10.3390/cancers12082269

    Article  CAS  Google Scholar 

  64. Wang L, Chen T, Li X, Yan W, Lou Y, Liu Z, Chen H, Cui Z (2019) USP39 promotes ovarian cancer malignant phenotypes and carboplatin chemoresistance. Int J Oncol 55:277–288. https://doi.org/10.3892/ijo.2019.4818

    Article  CAS  PubMed  Google Scholar 

  65. Yu C, Chen F, Jiang J, Zhang H, Zhou M (2019) Screening key genes and signaling pathways in colorectal cancer by integrated bioinformatics analysis. Mol Med Rep 20:1259–1269. https://doi.org/10.3892/mmr.2019.10336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Deng JL, Xu YH, Wang G (2019) Identification of potential crucial genes and key pathways in breast cancer using bioinformatic analysis. Front Genet 10:695. https://doi.org/10.3389/fgene.2019.00695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu X, Peng L, Zhang Y, Chen S, Lei Q, Li G, Zhang C (2019) Identification of key genes and pathways in cervical cancer by bioinformatics analysis. Int J Med Sci 16:800–812. https://doi.org/10.7150/ijms.34172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. You F, Gao C (2019) Topoisomerase inhibitors and targeted delivery in cancer therapy. Curr Top Med Chem 19:713–729. https://doi.org/10.2174/1568026619666190401112948

    Article  CAS  PubMed  Google Scholar 

  69. Gao Y, Zhao H, Ren M, Chen Q, Li J, Li Z, Yin C, Yue W (2020) TOP2A promotes tumorigenesis of high-grade serous ovarian cancer by regulating the TGF-β/Smad pathway. J Cancer 11:4181–4192. https://doi.org/10.7150/jca.42736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ghisoni E, Maggiorotto F, Borella F et al (2019) TOP2A as marker of response to pegylated lyposomal doxorubicin (PLD) in epithelial ovarian cancers. J Ovarian Res 12:17. https://doi.org/10.1186/s13048-019-0492-6

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

LN: project development, data collection, data analysis, manuscript writing, writing—original draft preparation, and writing—review and editing. CC, YC and JY: manuscript editing, formal analysis, and investigation.

Corresponding author

Correspondence to Cong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, L., Chen, Y., Yang, J. et al. Bioinformatic analysis of key pathways and genes shared between endometriosis and ovarian cancer. Arch Gynecol Obstet 305, 1329–1342 (2022). https://doi.org/10.1007/s00404-021-06285-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-021-06285-3

Keywords

Navigation