Skip to main content

Advertisement

Log in

Articular cartilage regeneration and tissue engineering models: a systematic review

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Cartilage regeneration and restoration is a major topic in orthopedic research as cartilaginous degeneration and damage is associated with osteoarthritis and joint destruction. This systematic review aims to summarize current research strategies in cartilage regeneration research.

Materials and methods

A Pubmed search for models investigating single-site cartilage defects as well as chondrogenesis was conducted and articles were evaluated for content by title and abstract. Finally, only manuscripts were included, which report new models or approaches of cartilage regeneration.

Results

The search resulted in 2217 studies, 200 of which were eligible for inclusion in this review. The identified manuscripts consisted of a large spectrum of research approaches spanning from cell culture to tissue engineering and transplantation as well as sophisticated computational modeling.

Conclusions

In the past three decades, knowledge about articular cartilage and its defects has multiplied in clinical and experimental settings and the respective body of research literature has grown significantly. However, current strategies for articular cartilage repair have not yet succeeded to replicate the structure and function of innate articular cartilage, which makes it even more important to understand the current strategies and their impact. Therefore, the purpose of this review was to globally summarize experimental strategies investigating cartilage regeneration in vitro as well as in vivo. This will allow for better referencing when designing new models or strategies and potentially improve research translation from bench to bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Felson DT, Lawrence RC, Dieppe PA et al (2000) Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 133:635–646

    Article  CAS  PubMed  Google Scholar 

  2. Furukawa T, Eyre DR, Koide S, Glimcher MJ (1980) Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Jt Surg Am Vol 62:79–89

    Article  CAS  Google Scholar 

  3. Hurtig MB, Fretz PB, Doige CE, Schnurr DL (1988) Effects of lesion size and location on equine articular cartilage repair. Can J Vet Res 52:137–146

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mankin HJ (1982) The response of articular cartilage to mechanical injury. J Bone Jt Surg Am Vol 64:460–466

    Article  CAS  Google Scholar 

  5. O’Driscoll SW, Salter RB (1986) The repair of major osteochondral defects in joint surfaces by neochondrogenesis with autogenous osteoperiosteal grafts stimulated by continuous passive motion. An experimental investigation in the rabbit. Clin Orthop Relat Res 208:131–140

    Google Scholar 

  6. Lawrence RC, Felson DT, Helmick CG et al (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 58:26–35

    Article  PubMed  PubMed Central  Google Scholar 

  7. Martel-Pelletier J, Barr AJ, Cicuttini FM et al (2016) Osteoarthritis. Nat Rev Dis Prim 2:16072

    Article  PubMed  Google Scholar 

  8. Mollon B, Kandel R, Chahal J, Theodoropoulos J (2013) The clinical status of cartilage tissue regeneration in humans. Osteoarthr Cartil OARS Osteoarthr Res Soc 21:1824–1833

    Article  CAS  Google Scholar 

  9. Nelson AE (2018) Osteoarthritis year in review 2017: clinical. Osteoarthr Cartil OARS Osteoarthr Res Soc 26(3):319–325

    Article  CAS  Google Scholar 

  10. Karmarkar TD, Maurer A, Parks ML et al (2017) A fresh perspective on a familiar problem: examining disparities in knee osteoarthritis using a Markov model. Med Care 55:993–1000

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schrock JB, Kraeutler MJ, Houck DA, McQueen MB, McCarty EC (2017) A cost-effectiveness analysis of surgical treatment modalities for chondral lesions of the knee: microfracture, osteochondral autograft transplantation, and autologous chondrocyte implantation. Orthop J Sports Med 5:2325967117704634

    PubMed  PubMed Central  Google Scholar 

  12. Caminal M, Fonseca C, Peris D et al (2014) Use of a chronic model of articular cartilage and meniscal injury for the assessment of long-term effects after autologous mesenchymal stromal cell treatment in sheep. N Biotechnol 31:492–498

    Article  CAS  PubMed  Google Scholar 

  13. Matsuoka M, Onodera T, Sasazawa F et al (2015) An articular cartilage repair model in common C57Bl/6 mice. Tissue Eng Part C Methods 21:767–772

    Article  PubMed  PubMed Central  Google Scholar 

  14. Intema F, DeGroot J, Elshof B et al (2008) The canine bilateral groove model of osteoarthritis. J Orthop Res Off Publ Orthop Res Soc 26:1471–1477

    Article  Google Scholar 

  15. To N, Curtiss S, Neu CP, Salgado CJ, Jamali AA (2011) Rabbit trochlear model of osteochondral allograft transplantation. Comp Med 61:427–435

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gotterbarm T, Breusch SJ, Schneider U, Jung M (2008) The minipig model for experimental chondral and osteochondral defect repair in tissue engineering: retrospective analysis of 180 defects. Lab Anim 42:71–82

    Article  CAS  PubMed  Google Scholar 

  17. Christensen BB, Foldager CB, Olesen ML et al (2015) Experimental articular cartilage repair in the Gottingen minipig: the influence of multiple defects per knee. J Exp Orthop 2:13

    Article  PubMed  PubMed Central  Google Scholar 

  18. Flanigan DC, Harris JD, Brockmeier PM, Lathrop RL, Siston RA (2014) The effects of defect size, orientation, and location on subchondral bone contact in oval-shaped experimental articular cartilage defects in a bovine knee model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22:174–180

    Article  Google Scholar 

  19. Alves AC, Albertini R, dos Santos SA et al (2014) Effect of low-level laser therapy on metalloproteinase MMP-2 and MMP-9 production and percentage of collagen types I and III in a papain cartilage injury model. Lasers Med Sci 29:911–919

    Article  PubMed  Google Scholar 

  20. Houston DA, Staines KA, MacRae VE, Farquharson C (2016) Culture of murine embryonic metatarsals: a physiological model of endochondral ossification. J Vis Exp. https://doi.org/10.3791/54978

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fujimoto M, Ohte S, Shin M et al (2014) Establishment of a novel model of chondrogenesis using murine embryonic stem cells carrying fibrodysplasia ossificans progressiva-associated mutant ALK2. Biochem Biophys Res Commun 455:347–352

    Article  CAS  PubMed  Google Scholar 

  22. Bragdon B, Lam S, Aly S et al (2017) Earliest phases of chondrogenesis are dependent upon angiogenesis during ectopic bone formation in mice. Bone 101:49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schuller GC, Tichy B, Majdisova Z et al (2008) An in vivo mouse model for human cartilage regeneration. J Tissue Eng Regen Med 2:202–209

    Article  CAS  PubMed  Google Scholar 

  24. Mueller-Rath R, Gavenis K, Gravius S, Andereya S, Mumme T, Schneider U (2007) In vivo cultivation of human articular chondrocytes in a nude mouse-based contained defect organ culture model. Biomed Mater Eng 17:357–366

    CAS  PubMed  Google Scholar 

  25. Bartz C, Meixner M, Giesemann P, Roel G, Bulwin GC, Smink JJ (2016) An ex vivo human cartilage repair model to evaluate the potency of a cartilage cell transplant. J Transl Med 14:317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. de Vries-van Melle ML, Mandl EW, Kops N, Koevoet WJ, Verhaar JA, van Osch GJ (2012) An osteochondral culture model to study mechanisms involved in articular cartilage repair. Tissue Eng Part C Methods 18:45–53

    Article  CAS  PubMed  Google Scholar 

  27. Tam HK, Srivastava A, Colwell CW Jr, D’Lima DD (2007) In vitro model of full-thickness cartilage defect healing. J Orthop Res Off Publ Orthop Res Soc 25:1136–1144

    Article  Google Scholar 

  28. Glenn RE Jr, McCarty EC, Potter HG, Juliao SF, Gordon JD, Spindler KP (2006) Comparison of fresh osteochondral autografts and allografts: a canine model. Am J Sports Med 34:1084–1093

    Article  PubMed  Google Scholar 

  29. Jackson DW, Halbrecht J, Proctor C, Van Sickle D, Simon TM (1996) Assessment of donor cell and matrix survival in fresh articular cartilage allografts in a goat model. J Orthop Res Off Publ Orthop Res Soc 14:255–264

    Article  CAS  Google Scholar 

  30. Namba RS, Meuli M, Sullivan KM, Le AX, Adzick NS (1998) Spontaneous repair of superficial defects in articular cartilage in a fetal lamb model. J Bone Jt Surg Am Vol 80:4–10

    Article  CAS  Google Scholar 

  31. Seol D, Yu Y, Choe H et al (2014) Effect of short-term enzymatic treatment on cell migration and cartilage regeneration: in vitro organ culture of bovine articular cartilage. Tissue Eng Part A 20:1807–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meretoja VV, Dahlin RL, Kasper FK, Mikos AG (2012) Enhanced chondrogenesis in co-cultures with articular chondrocytes and mesenchymal stem cells. Biomaterials 33:6362–6369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dahlin RL, Kinard LA, Lam J et al (2014) Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model. Biomaterials 35:7460–7469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cakmak S, Cakmak AS, Kaplan DL, Gumusderelioglu M (2016) A silk fibroin and peptide amphiphile-based co-culture model for osteochondral tissue engineering. Macromol Biosci 16:1212–1226

    Article  CAS  PubMed  Google Scholar 

  35. Kazemi D, Shams Asenjan K, Dehdilani N, Parsa H (2017) Canine articular cartilage regeneration using mesenchymal stem cells seeded on platelet rich fibrin: macroscopic and histological assessments. Bone Jt Res 6:98–107

    Article  CAS  Google Scholar 

  36. Betsch M, Schneppendahl J, Thuns S et al (2013) Bone marrow aspiration concentrate and platelet rich plasma for osteochondral repair in a porcine osteochondral defect model. PloS One 8:e71602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wilke MM, Nydam DV, Nixon AJ (2007) Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model. J Orthop Res Off Publ Orthop Res Soc 25:913–925

    Article  CAS  Google Scholar 

  38. Bornes TD, Adesida AB, Jomha NM (2018) Articular cartilage repair with mesenchymal stem cells after chondrogenic priming: a pilot study. Tissue Eng Part A 24(9–10):761–774

    Article  CAS  PubMed  Google Scholar 

  39. Nam HY, Karunanithi P, Loo WC et al (2013) The effects of staged intra-articular injection of cultured autologous mesenchymal stromal cells on the repair of damaged cartilage: a pilot study in caprine model. Arthritis Res Ther 15:R129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sato M, Uchida K, Nakajima H et al (2012) Direct transplantation of mesenchymal stem cells into the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis. Arthritis Res Ther 14:R31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bell AD, Hurtig MB, Quenneville E, Rivard GE, Hoemann CD (2017) Effect of a rapidly degrading presolidified 10 kDa chitosan/blood implant and subchondral marrow stimulation surgical approach on cartilage resurfacing in a sheep model. Cartilage 8:417–431

    Article  CAS  PubMed  Google Scholar 

  42. Munoz-Criado I, Meseguer-Ripolles J, Mellado-Lopez M et al (2017) Human suprapatellar fat pad-derived mesenchymal stem cells induce chondrogenesis and cartilage repair in a model of severe osteoarthritis. Stem Cells Int 2017:4758930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Park YB, Ha CW, Kim JA et al (2016) Effect of transplanting various concentrations of a composite of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel on articular cartilage repair in a rabbit model. PloS One 11:e0165446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang Y, Liu S, Guo W et al (2018) Human umbilical cord Wharton’s jelly mesenchymal stem cells combined with an acellular cartilage extracellular matrix scaffold improve cartilage repair compared with microfracture in a caprine model. Osteoarthr Cartil OARS Osteoarthr Res Soc 26(7):954–965

    Article  CAS  Google Scholar 

  45. Yan H, Yu C (2007) Repair of full-thickness cartilage defects with cells of different origin in a rabbit model. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 23:178–187

    Article  Google Scholar 

  46. Hindle P, Baily J, Khan N, Biant LC, Simpson AH, Peault B (2016) Perivascular mesenchymal stem cells in sheep: characterization and autologous transplantation in a model of articular cartilage repair. Stem Cells Dev 25:1659–1669

    Article  CAS  PubMed  Google Scholar 

  47. de Vries-van Melle ML, Narcisi R, Kops N et al (2014) Chondrogenesis of mesenchymal stem cells in an osteochondral environment is mediated by the subchondral bone. Tissue Eng Part A 20:23–33

    Article  CAS  PubMed  Google Scholar 

  48. Jiang L, Ma A, Song L et al (2014) Cartilage regeneration by selected chondrogenic clonal mesenchymal stem cells in the collagenase-induced monkey osteoarthritis model. J Tissue Eng Regen Med 8:896–905

    Article  CAS  PubMed  Google Scholar 

  49. Fu WL, Zhou CY, Yu JK (2014) A new source of mesenchymal stem cells for articular cartilage repair: MSCs derived from mobilized peripheral blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a rabbit model. Am J Sports Med 42:592–601

    Article  PubMed  Google Scholar 

  50. Yoshioka T, Mishima H, Sakai S, Uemura T (2013) Long-term results of cartilage repair after allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells for large osteochondral defects in rabbit knees. Cartilage 4:339–344

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sun Q, Zhang L, Xu T et al (2018) Combined use of adipose derived stem cells and TGF-beta3 microspheres promotes articular cartilage regeneration in vivo. Biotech Histochem 93(3):168–176

    Article  CAS  PubMed  Google Scholar 

  52. Tsuchida AI, Beekhuizen M, Rutgers M et al (2012) Interleukin-6 is elevated in synovial fluid of patients with focal cartilage defects and stimulates cartilage matrix production in an in vitro regeneration model. Arthritis Res Ther 14:R262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ossendorff R, Grad S, Stoddart MJ et al (2018) Autologous chondrocyte implantation in osteoarthritic surroundings: TNFalpha and its inhibition by adalimumab in a knee-specific bioreactor. Am J Sports Med 46:431–440

    Article  PubMed  Google Scholar 

  54. Hingert D, Barreto Henriksson H, Brisby H (2018) Human mesenchymal stem cells pretreated with interleukin-1beta and stimulated with bone morphogenetic growth factor-3 enhance chondrogenesis. Tissue Eng Part A 24(9–10):775–785

    Article  CAS  PubMed  Google Scholar 

  55. Madry H, Orth P, Kaul G et al (2010) Acceleration of articular cartilage repair by combined gene transfer of human insulin-like growth factor I and fibroblast growth factor-2 in vivo. Arch Orthop Trauma Surg 130:1311–1322

    Article  PubMed  Google Scholar 

  56. Goodrich LR, Hidaka C, Robbins PD, Evans CH, Nixon AJ (2007) Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model. J Bone Jt Surg Br Vol 89:672–685

    Article  CAS  Google Scholar 

  57. Deng MW, Wei SJ, Yew TL et al (2015) Cell therapy With G-CSF-mobilized stem cells in a rat osteoarthritis model. Cell Transplant 24:1085–1096

    Article  PubMed  Google Scholar 

  58. Zhang X, Wu S, Naccarato T et al (2017) Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells. PloS One 12:e0180138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lin S, Lee WYW, Feng Q et al (2017) Synergistic effects on mesenchymal stem cell-based cartilage regeneration by chondrogenic preconditioning and mechanical stimulation. Stem Cell Res Ther 8:221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Enders JT, Otto TJ, Peters HC et al (2010) A model for studying human articular cartilage integration in vitro. J Biomed Mater Res A 94:509–514

    PubMed  Google Scholar 

  61. Igarashi T, Iwasaki N, Kawamura D et al (2012) Repair of articular cartilage defects with a novel injectable in situ forming material in a canine model. J Biomed Mater Res A 100:180–187

    Article  CAS  PubMed  Google Scholar 

  62. Kitahara S, Nakagawa K, Sah RL et al (2008) In vivo maturation of scaffold-free engineered articular cartilage on hydroxyapatite. Tissue Eng Part A 14:1905–1913

    Article  CAS  PubMed  Google Scholar 

  63. Saw KY, Hussin P, Loke SC et al (2009) Articular cartilage regeneration with autologous marrow aspirate and hyaluronic acid: an experimental study in a goat model. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 25:1391–1400

    Article  Google Scholar 

  64. Watts AE, Ackerman-Yost JC, Nixon AJ (2013) A comparison of three-dimensional culture systems to evaluate in vitro chondrogenesis of equine bone marrow-derived mesenchymal stem cells. Tissue Eng Part A 19:2275–2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ude CC, Sulaiman SB, Min-Hwei N et al (2014) Cartilage regeneration by chondrogenic induced adult stem cells in osteoarthritic sheep model. PloS One 9:e98770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mehlhorn AT, Zwingmann J, Finkenzeller G et al (2009) Chondrogenesis of adipose-derived adult stem cells in a poly-lactide-co-glycolide scaffold. Tissue Eng Part A 15:1159–1167

    Article  CAS  PubMed  Google Scholar 

  67. Mifune Y, Matsumoto T, Murasawa S et al (2013) Therapeutic superiority for cartilage repair by CD271-positive marrow stromal cell transplantation. Cell Transplant 22:1201–1211

    Article  PubMed  Google Scholar 

  68. Matsumoto T, Cooper GM, Gharaibeh B et al (2009) Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1. Arthritis Rheum 60:1390–1405

    Article  PubMed  PubMed Central  Google Scholar 

  69. Shimomura K, Ando W, Tateishi K et al (2010) The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model. Biomaterials 31:8004–8011

    Article  CAS  PubMed  Google Scholar 

  70. Liu J, Nie H, Xu Z et al (2014) The effect of 3D nanofibrous scaffolds on the chondrogenesis of induced pluripotent stem cells and their application in restoration of cartilage defects. PloS One 9:e111566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Diekman BO, Christoforou N, Willard VP et al (2012) Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proc Natl Acad Sci USA 109:19172–19177

    Article  PubMed  PubMed Central  Google Scholar 

  72. Toh WS, Lee EH, Guo XM et al (2010) Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials 31:6968–6980

    Article  CAS  PubMed  Google Scholar 

  73. Williams R, Khan IM, Richardson K et al (2010) Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PloS One 5:e13246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sato M, Yamato M, Hamahashi K, Okano T, Mochida J (2014) Articular cartilage regeneration using cell sheet technology. Anat Rec (Hoboken) 297:36–43

    Article  CAS  Google Scholar 

  75. Ebihara G, Sato M, Yamato M et al (2012) Cartilage repair in transplanted scaffold-free chondrocyte sheets using a minipig model. Biomaterials 33:3846–3851

    Article  CAS  PubMed  Google Scholar 

  76. Kim TK, Sharma B, Williams CG et al (2003) Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthr Cartil OARS Osteoarthr Res Soc 11:653–664

    Article  Google Scholar 

  77. Breinan HA, Minas T, Hsu HP, Nehrer S, Sledge CB, Spector M (1997) Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. J Bone Jt Surg Am Vol 79:1439–1451

    Article  CAS  Google Scholar 

  78. Brehm W, Aklin B, Yamashita T et al (2006) Repair of superficial osteochondral defects with an autologous scaffold-free cartilage construct in a caprine model: implantation method and short-term results. Osteoarthr Cartil OARS Osteoarthr Res Soc 14:1214–1226

    Article  CAS  Google Scholar 

  79. Frisbie DD, Bowman SM, Colhoun HA, DiCarlo EF, Kawcak CE, McIlwraith CW (2008) Evaluation of autologous chondrocyte transplantation via a collagen membrane in equine articular defects: results at 12 and 18 months. Osteoarthr Cartil OARS Osteoarthr Res Soc 16:667–679

    Article  CAS  Google Scholar 

  80. Petersen JP, Ueblacker P, Goepfert C et al (2008) Long term results after implantation of tissue engineered cartilage for the treatment of osteochondral lesions in a minipig model. J Mater Sci Mater Med 19:2029–2038

    Article  CAS  PubMed  Google Scholar 

  81. Breinan HA, Martin SD, Hsu HP, Spector M (2000) Healing of canine articular cartilage defects treated with microfracture, a type-II collagen matrix, or cultured autologous chondrocytes. J Orthop Res Off Publ Orthop Res Soc 18:781–789

    Article  CAS  Google Scholar 

  82. Orth P, Duffner J, Zurakowski D, Cucchiarini M, Madry H (2016) Small-diameter awls improve articular cartilage repair after microfracture treatment in a translational animal model. Am J Sports Med 44:209–219

    Article  PubMed  Google Scholar 

  83. Zedde P, Cudoni S, Manunta L et al (2017) Second generation needling techniques for the treatment of chondral defects in animal model. Joints 5:27–33

    Article  PubMed  PubMed Central  Google Scholar 

  84. Christensen BB, Foldager CB, Olesen ML, Hede KC, Lind M (2016) Implantation of autologous cartilage chips improves cartilage repair tissue quality in osteochondral defects: a study in gottingen minipigs. Am J Sports Med 44:1597–1604

    Article  PubMed  Google Scholar 

  85. Baumbach K, Petersen JP, Ueblacker P et al (2008) The fate of osteochondral grafts after autologous osteochondral transplantation: a one-year follow-up study in a minipig model. Arch Orthop Trauma Surg 128:1255–1263

    Article  PubMed  Google Scholar 

  86. Kleemann RU, Schell H, Thompson M, Epari DR, Duda GN, Weiler A (2007) Mechanical behavior of articular cartilage after osteochondral autograft transfer in an ovine model. Am J Sports Med 35:555–563

    Article  PubMed  Google Scholar 

  87. Nakaji N, Fujioka H, Nagura I et al (2006) The structural properties of an osteochondral cylinder graft-recipient construct on autologous osteochondral transplantation. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 22:422–427

    Article  Google Scholar 

  88. Smyth NA, Ross KA, Haleem AM et al (2018) Platelet-rich plasma and hyaluronic acid are not synergistic when used as biological adjuncts with autologous osteochondral transplantation. Cartilage 9(3):321–328

    Article  CAS  PubMed  Google Scholar 

  89. Bonasia DE, Martin JA, Marmotti A et al (2016) The use of autologous adult, allogenic juvenile, and combined juvenile-adult cartilage fragments for the repair of chondral defects. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 24:3988–3996

    Article  Google Scholar 

  90. Gelse K, Riedel D, Pachowsky M, Hennig FF, Trattnig S, Welsch GH (2015) Limited integrative repair capacity of native cartilage autografts within cartilage defects in a sheep model. J Orthop Res Off Publ Orthop Res Soc 33:390–397

    Article  Google Scholar 

  91. Guillen-Garcia P, Rodriguez-Inigo E, Guillen-Vicente I et al (2014) Increasing the dose of autologous chondrocytes improves articular cartilage repair: histological and molecular study in the sheep animal model. Cartilage 5:114–122

    Article  PubMed  PubMed Central  Google Scholar 

  92. Nixon AJ, Begum L, Mohammed HO, Huibregtse B, O’Callaghan MM, Matthews GL (2011) Autologous chondrocyte implantation drives early chondrogenesis and organized repair in extensive full- and partial-thickness cartilage defects in an equine model. J Orthop Res Off Publ Orthop Res Soc 29:1121–1130

    Article  CAS  Google Scholar 

  93. Aroen A, Heir S, Loken S, Engebretsen L, Reinholt FP (2006) Healing of articular cartilage defects. An experimental study of vascular and minimal vascular microenvironment. J Orthop Res Off Publ Orthop Res Soc 24:1069–1077

    Article  Google Scholar 

  94. Chen H, Chevrier A, Hoemann CD, Sun J, Picard G, Buschmann MD (2013) Bone marrow stimulation of the medial femoral condyle produces inferior cartilage and bone repair compared to the trochlea in a rabbit surgical model. J Orthop Res Off Publ Orthop Res Soc 31:1757–1764

    Article  CAS  Google Scholar 

  95. Lee JM, Kim BS, Lee H, Im GI (2012) In vivo tracking of mesechymal stem cells using fluorescent nanoparticles in an osteochondral repair model. Mol Ther 20:1434–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen J, Wang F, Zhang Y et al (2012) In vivo tracking of superparamagnetic iron oxide nanoparticle labeled chondrocytes in large animal model. Ann Biomed Eng 40:2568–2578

    Article  PubMed  Google Scholar 

  97. Hori J, Deie M, Kobayashi T, Yasunaga Y, Kawamata S, Ochi M (2011) Articular cartilage repair using an intra-articular magnet and synovium-derived cells. J Orthop Res Off Publ Orthop Res Soc 29:531–538

    Article  Google Scholar 

  98. Robinson D, Guetsky M, Halperin R, Schneider D, Nevo Z (2002) Articular cartilage reconstruction using xenogeneic epiphyses slices. Cell Tissue Bank 3:269–277

    Article  PubMed  Google Scholar 

  99. Ramallal M, Maneiro E, Lopez E et al (2004) Xeno-implantation of pig chondrocytes into rabbit to treat localized articular cartilage defects: an animal model. Wound Repair Regen 12:337–345

    Article  PubMed  Google Scholar 

  100. Stone KR, Walgenbach AW, Abrams JT, Nelson J, Gillett N, Galili U (1997) Porcine and bovine cartilage transplants in cynomolgus monkey: I. A model for chronic xenograft rejection. Transplantation 63:640–645

    Article  CAS  PubMed  Google Scholar 

  101. Prado D, Fuentes-Boquete IM, Blanco FJ (2012) In vitro repair model of focal articular cartilage defects in humans. Methods Mol Biol 885:251–261

    Article  CAS  PubMed  Google Scholar 

  102. Marquina M, Collado JA, Perez-Cruz M et al (2017) Biodistribution and immunogenicity of allogeneic mesenchymal stem cells in a rat model of intraarticular chondrocyte xenotransplantation. Front Immunol 8:1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pallante AL, Gortz S, Chen AC et al (2012) Treatment of articular cartilage defects in the goat with frozen versus fresh osteochondral allografts: effects on cartilage stiffness, zonal composition, and structure at six months. J Bone Jt Surg Am Vol 94:1984–1995

    Article  Google Scholar 

  104. Shibuya N, Imai Y, Lee YS, Kochi T, Tachi M (2014) Acute rejection of knee joint articular cartilage in a rat composite tissue allotransplantation model. J Bone Jt Surg Am Vol 96:1033–1039

    Article  Google Scholar 

  105. Jing L, Zhang J, Leng H, Guo Q, Hu Y (2015) Repair of articular cartilage defects in the knee with autologous iliac crest cartilage in a rabbit model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 23:1119–1127

    Article  Google Scholar 

  106. Baragi VM, Renkiewicz RR, Qiu L et al (1997) Transplantation of adenovirally transduced allogeneic chondrocytes into articular cartilage defects in vivo. Osteoarthr Cartil OARS Osteoarthr Res Soc 5:275–282

    Article  CAS  Google Scholar 

  107. Huwe LW, Brown WE, Hu JC, Athanasiou KA (2018) Characterization of costal cartilage and its suitability as a cell source for articular cartilage tissue engineering. J Tissue Eng Regen Med 12(5):1163–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wong CC, Chen CH, Chiu LH et al (2018) Facilitating in vivo articular cartilage repair by tissue-engineered cartilage grafts produced from auricular chondrocytes. Am J Sports Med 46(3):713–727

    Article  PubMed  Google Scholar 

  109. Olofsson LB, Svensson O, Lorentzon R, Lindstrom I, Alfredson H (2007) Periosteal transplantation to the rabbit patella. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 15:560–563

    Article  Google Scholar 

  110. Turhan AU, Aynaci O, Turgutalp H, Aydin H (1999) Treatment of osteochondral defects with tendon autografts in a dog knee model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 7:64–68

    Article  CAS  Google Scholar 

  111. Pretzel D, Linss S, Ahrem H et al (2013) A novel in vitro bovine cartilage punch model for assessing the regeneration of focal cartilage defects with biocompatible bacterial nanocellulose. Arthritis Res Ther 15:R59

    Article  PubMed  PubMed Central  Google Scholar 

  112. Unterman SA, Gibson M, Lee JH et al (2012) Hyaluronic acid-binding scaffold for articular cartilage repair. Tissue Eng Part A 18:2497–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Coburn J, Gibson M, Bandalini PA et al (2011) Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering. Smart Struct Syst 7:213–222

    Article  PubMed  PubMed Central  Google Scholar 

  114. Kon E, Delcogliano M, Filardo G et al (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res Off Publ Orthop Res Soc 28:116–124

    Google Scholar 

  115. Sartori M, Pagani S, Ferrari A et al (2017) A new bi-layered scaffold for osteochondral tissue regeneration: in vitro and in vivo preclinical investigations. Mater Sci Eng C Mater Biol Appl 70:101–111

    Article  CAS  PubMed  Google Scholar 

  116. Gille J, Kunow J, Boisch L et al (2010) Cell-laden and cell-free matrix-induced chondrogenesis versus microfracture for the treatment of articular cartilage defects: a histological and biomechanical study in sheep. Cartilage 1:29–42

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kon E, Filardo G, Robinson D et al (2014) Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22:1452–1464

    Article  CAS  Google Scholar 

  118. Ronken S, Wirz D, Daniels AU, Kurokawa T, Gong JP, Arnold MP (2013) Double-network acrylamide hydrogel compositions adapted to achieve cartilage-like dynamic stiffness. Biomech Model Mechanobiol 12:243–248

    Article  CAS  PubMed  Google Scholar 

  119. Higa K, Kitamura N, Goto K et al (2017) Effects of osteochondral defect size on cartilage regeneration using a double-network hydrogel. BMC Musculoskelet Disord 18:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Miljkovic ND, Lin YC, Cherubino M, Minteer D, Marra KG (2009) A novel injectable hydrogel in combination with a surgical sealant in a rat knee osteochondral defect model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 17:1326–1331

    Article  Google Scholar 

  121. Pound JC, Green DW, Roach HI, Mann S, Oreffo RO (2007) An ex vivo model for chondrogenesis and osteogenesis. Biomaterials 28:2839–2849

    Article  CAS  PubMed  Google Scholar 

  122. Hoemann CD, Hurtig M, Rossomacha E et al (2005) Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. J Bone Jt Surg Am Vol 87:2671–2686

    Article  Google Scholar 

  123. Nagura I, Fujioka H, Kokubu T, Makino T, Sumi Y, Kurosaka M (2007) Repair of osteochondral defects with a new porous synthetic polymer scaffold. J Bone Jt Surg Br Vol 89:258–264

    Article  CAS  Google Scholar 

  124. Huang X, Yang D, Yan W et al (2007) Osteochondral repair using the combination of fibroblast growth factor and amorphous calcium phosphate/poly(L-lactic acid) hybrid materials. Biomaterials 28:3091–3100

    Article  CAS  PubMed  Google Scholar 

  125. Williams RJ, Gamradt SC (2008) Articular cartilage repair using a resorbable matrix scaffold. Instr Course Lect 57:563–571

    PubMed  Google Scholar 

  126. Woodfield TB, Van Blitterswijk CA, De Wijn J, Sims TJ, Hollander AP, Riesle J (2005) Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Tissue Eng 11:1297–1311

    Article  CAS  PubMed  Google Scholar 

  127. Holland TA, Bodde EW, Baggett LS, Tabata Y, Mikos AG, Jansen JA (2005) Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res A 75:156–167

    Article  CAS  PubMed  Google Scholar 

  128. Hunter CJ, Levenston ME (2004) Maturation and integration of tissue-engineered cartilages within an in vitro defect repair model. Tissue Eng 10:736–746

    Article  CAS  PubMed  Google Scholar 

  129. Yang Q, Peng J, Lu SB et al (2011) Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model. Chin Med J (Engl) 124:3930–3938

    CAS  Google Scholar 

  130. Erggelet C, Endres M, Neumann K et al (2009) Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. J Orthop Res Off Publ Orthop Res Soc 27:1353–1360

    Article  Google Scholar 

  131. Christensen BB, Foldager CB, Hansen OM et al (2012) A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20:1192–1204

    Article  Google Scholar 

  132. Li WJ, Chiang H, Kuo TF, Lee HS, Jiang CC, Tuan RS (2009) Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study. J Tissue Eng Regen Med 3:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Schagemann JC, Rudert N, Taylor ME et al (2016) Bilayer implants: electromechanical assessment of regenerated articular cartilage in a sheep model. Cartilage 7:346–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zylinska B, Stodolak-Zych E, Sobczynska-Rak A et al (2017) Osteochondral repair using porous three-dimensional nanocomposite scaffolds in a rabbit model. In Vivo 31:895–903

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Mrosek EH, Chung HW, Fitzsimmons JS, O’Driscoll SW, Reinholz GG, Schagemann JC (2016) Porous tantalum biocomposites for osteochondral defect repair: a follow-up study in a sheep model. Bone Jt Res 5:403–411

    Article  CAS  Google Scholar 

  136. Lin X, Chen J, Qiu P et al (2018) Biphasic hierarchical extracellular matrix scaffold for osteochondral defect regeneration. Osteoarthr Cartil OARS Osteoarthr Res Soc 26(3):433–444

    Article  CAS  Google Scholar 

  137. Dresing I, Zeiter S, Auer J, Alini M, Eglin D (2014) Evaluation of a press-fit osteochondral poly(ester-urethane) scaffold in a rabbit defect model. J MATER SCI MATER MED 25:1691–1700

    Article  CAS  PubMed  Google Scholar 

  138. Christensen BB, Foldager CB, Jensen J, Jensen NC, Lind M (2016) Poor osteochondral repair by a biomimetic collagen scaffold: 1- to 3-year clinical and radiological follow-up. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 24(7):2380–2387

    Article  Google Scholar 

  139. Brix M, Kaipel M, Kellner R et al (2016) Successful osteoconduction but limited cartilage tissue quality following osteochondral repair by a cell-free multilayered nano-composite scaffold at the knee. Int Orthop 40(3):625–632

    Article  PubMed  Google Scholar 

  140. Verhaegen J, Clockaerts S, Van Osch GJ, Somville J, Verdonk P, Mertens P (2015) TruFit plug for repair of osteochondral defects-where is the evidence? Systematic review of literature. Cartilage 6:12–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nettles DL, Kitaoka K, Hanson NA et al (2008) In situ crosslinking elastin-like polypeptide gels for application to articular cartilage repair in a goat osteochondral defect model. Tissue Eng Part A 14:1133–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Nakanishi T, Kawasaki K, Uchio Y, Kataoka H, Terashima M, Ochi M (2002) AG-041R, a cholecystokinin-B/gastrin receptor antagonist, stimulates the repair of osteochondral defect in rabbit model. Eur J Pharmacol 439:135–140

    Article  CAS  PubMed  Google Scholar 

  143. Levato R, Webb WR, Otto IA et al (2017) The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells. Acta Biomater 61:41–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Caterson EJ, Li WJ, Nesti LJ, Albert T, Danielson K, Tuan RS (2002) Polymer/alginate amalgam for cartilage-tissue engineering. Ann N Y Acad Sci 961:134–138

    Article  CAS  PubMed  Google Scholar 

  145. Chu CR, Coutts RD, Yoshioka M, Harwood FL, Monosov AZ, Amiel D (1995) Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. J Biomed Mater Res 29:1147–1154

    Article  CAS  PubMed  Google Scholar 

  146. Dounchis JS, Bae WC, Chen AC, Sah RL, Coutts RD, Amiel D (2000) Cartilage repair with autogenic perichondrium cell and polylactic acid grafts. Clin Orthop Relat Res (377):248–264

  147. Qi Y, Du Y, Li W, Dai X, Zhao T, Yan W (2014) Cartilage repair using mesenchymal stem cell (MSC) sheet and MSCs-loaded bilayer PLGA scaffold in a rabbit model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22:1424–1433

    Article  Google Scholar 

  148. Shi J, Zhang X, Zeng X et al (2012) One-step articular cartilage repair: combination of in situ bone marrow stem cells with cell-free poly(l-lactic-co-glycolic acid) scaffold in a rabbit model. Orthopedics 35:e665–e671

    Article  PubMed  Google Scholar 

  149. Guo X, Wang C, Zhang Y et al (2004) Repair of large articular cartilage defects with implants of autologous mesenchymal stem cells seeded into beta-tricalcium phosphate in a sheep model. Tissue Eng 10:1818–1829

    Article  CAS  PubMed  Google Scholar 

  150. Endres M, Neumann K, Zhou B et al (2012) An ovine in vitro model for chondrocyte-based scaffold-assisted cartilage grafts. J Orthop Surg Res 7:37

    Article  PubMed  PubMed Central  Google Scholar 

  151. Theodoropoulos JS, De Croos JN, Park SS, Pilliar R, Kandel RA (2011) Integration of tissue-engineered cartilage with host cartilage: an in vitro model. Clin Orthop Relat Res 469:2785–2795

    Article  PubMed  PubMed Central  Google Scholar 

  152. Vinardell T, Thorpe SD, Buckley CT, Kelly DJ (2009) Chondrogenesis and integration of mesenchymal stem cells within an in vitro cartilage defect repair model. Ann Biomed Eng 37:2556–2565

    Article  CAS  PubMed  Google Scholar 

  153. Russlies M, Behrens P, Wunsch L, Gille J, Ehlers EM (2002) A cell-seeded biocomposite for cartilage repair. Ann Anat 184:317–323

    Article  CAS  PubMed  Google Scholar 

  154. Ito Y, Ochi M, Adachi N et al (2005) Repair of osteochondral defect with tissue-engineered chondral plug in a rabbit model. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 21:1155–1163

    Article  Google Scholar 

  155. Schinhan M, Gruber M, Dorotka R et al (2013) Matrix-associated autologous chondrocyte transplantation in a compartmentalized early stage of osteoarthritis. Osteoarthr Cartil OARS Osteoarthr Res Soc 21:217–225

    Article  CAS  Google Scholar 

  156. Chang CH, Kuo TF, Lin CC et al (2006) Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: a porcine model assessed at 18, 24, and 36 weeks. Biomaterials 27:1876–1888

    Article  CAS  PubMed  Google Scholar 

  157. Arumugam S, Bhupesh Karthik B, Chinnuswami R et al (2017) Transplantation of autologous chondrocytes ex-vivo expanded using thermoreversible gelation polymer in a rabbit model of articular cartilage defect. J Orthop 14:223–225

    Article  PubMed  PubMed Central  Google Scholar 

  158. Nixon AJ, Sparks HD, Begum L et al (2017) Matrix-Induced autologous chondrocyte implantation (MACI) using a cell-seeded collagen membrane improves cartilage healing in the equine model. J Bone Jt Surg Am Vol 99:1987–1998

    Article  Google Scholar 

  159. Dorotka R, Windberger U, Macfelda K, Bindreiter U, Toma C, Nehrer S (2005) Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix. Biomaterials 26:3617–3629

    Article  CAS  PubMed  Google Scholar 

  160. Fortier LA, Chapman HS, Pownder SL et al (2016) BioCartilage improves cartilage repair compared with microfracture alone in an equine model of full-thickness cartilage loss. Am J Sports Med 44:2366–2374

    Article  PubMed  Google Scholar 

  161. Sarem M, Arya N, Heizmann M et al (2018) Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo. Acta Biomater 69:83–94

    Article  CAS  PubMed  Google Scholar 

  162. Schlichting K, Schell H, Kleemann RU et al (2008) Influence of scaffold stiffness on subchondral bone and subsequent cartilage regeneration in an ovine model of osteochondral defect healing. Am J Sports Med 36:2379–2391

    Article  PubMed  Google Scholar 

  163. Vikingsson L, Gallego Ferrer G, Gomez-Tejedor JA, Gomez Ribelles JL (2014) An “in vitro” experimental model to predict the mechanical behavior of macroporous scaffolds implanted in articular cartilage. J Mech Behav Biomed Mater 32:125–131

    Article  CAS  PubMed  Google Scholar 

  164. Friedman JM, Sennett ML, Bonadio MB et al (2018) Comparison of fixation techniques of 3D-woven poly(-caprolactone) scaffolds for cartilage repair in a weightbearing porcine large animal model. Cartilage 9(4):428–437

    Article  CAS  PubMed  Google Scholar 

  165. Efe T, Fuglein A, Heyse TJ et al (2012) Fibrin glue does not improve the fixation of press-fitted cell-free collagen gel plugs in an ex vivo cartilage repair model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20:210–215

    Article  Google Scholar 

  166. Chen W, Chen S, Morsi Y et al (2016) Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering. ACS Appl Mater Interfaces 8:24415–24425

    Article  CAS  PubMed  Google Scholar 

  167. Marmotti A, Bruzzone M, Bonasia DE et al (2012) One-step osteochondral repair with cartilage fragments in a composite scaffold. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20:2590–2601

    Article  CAS  Google Scholar 

  168. Desando G, Cavallo C, Tschon M et al (2012) Early-term effect of adult chondrocyte transplantation in an osteoarthritis animal model. Tissue Eng Part A 18:1617–1627

    Article  CAS  PubMed  Google Scholar 

  169. Silverman RP, Passaretti D, Huang W, Randolph MA, Yaremchuk MJ (1999) Injectable tissue-engineered cartilage using a fibrin glue polymer. Plast Reconstr Surg 103:1809–1818

    Article  CAS  PubMed  Google Scholar 

  170. Custers RJ, Dhert WJ, Saris DB et al (2010) Cartilage degeneration in the goat knee caused by treating localized cartilage defects with metal implants. Osteoarthr Cartil OARS Osteoarthr Res Soc 18:377–388

    Article  CAS  Google Scholar 

  171. Poole CA (1997) Articular cartilage chondrons: form, function and failure. J Anat 191(Pt 1):1–13

    Article  PubMed  PubMed Central  Google Scholar 

  172. Pappa AK, Soleimani S, Caballero M, Halevi AE, van Aalst JA (2017) A pilot study comparing mechanical properties of tissue-engineered cartilages and various endogenous cartilages. Clin Biomech (Bristol Avon) 50:105–109

    Article  Google Scholar 

  173. Juhasz T, Matta C, Somogyi C et al (2014) Mechanical loading stimulates chondrogenesis via the PKA/CREB-Sox9 and PP2A pathways in chicken micromass cultures. Cell Signal 26:468–482

    Article  CAS  PubMed  Google Scholar 

  174. van Haaften EE, Ito K, van Donkelaar CC (2017) The initial repair response of articular cartilage after mechanically induced damage. J Orthop Res Off Publ Orthop Res Soc 35:1265–1273

    Article  CAS  Google Scholar 

  175. Theodoropoulos JS, DeCroos AJ, Petrera M, Park S, Kandel RA (2016) Mechanical stimulation enhances integration in an in vitro model of cartilage repair. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 24:2055–2064

    Article  Google Scholar 

  176. Wang S, Bao Y, Guan Y et al (2018) Strain distribution of repaired articular cartilage defects by tissue engineering under compression loading. J Orthop Surg Res 13:19

    Article  PubMed  PubMed Central  Google Scholar 

  177. Nishino T, Ishii T, Chang F et al (2010) Effect of gradual weight-bearing on regenerated articular cartilage after joint distraction and motion in a rabbit model. J Orthop Res Off Publ Orthop Res Soc 28:600–606

    Google Scholar 

  178. Tagil M, Aspenberg P (1999) Cartilage induction by controlled mechanical stimulation in vivo. J Orthop Res Off Publ Orthop Res Soc 17:200–204

    Article  CAS  Google Scholar 

  179. Nishino T, Chang F, Ishii T, Yanai T, Mishima H, Ochiai N (2010) Joint distraction and movement for repair of articular cartilage in a rabbit model with subsequent weight-bearing. J Bone Jt Surg Br Vol 92:1033–1040

    Article  CAS  Google Scholar 

  180. Wiegant K, Intema F, van Roermund PM et al (2015) Evidence of cartilage repair by joint distraction in a canine model of osteoarthritis. Arthritis Rheumatol 67:465–474

    Article  PubMed  Google Scholar 

  181. Raimondi MT, Boschetti F, Falcone L et al (2002) Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment. Biomech Model Mechanobiol 1:69–82

    Article  CAS  PubMed  Google Scholar 

  182. Wu Y, Stoddart MJ, Wuertz-Kozak K, Grad S, Alini M, Ferguson SJ (2017) Hyaluronan supplementation as a mechanical regulator of cartilage tissue development under joint-kinematic-mimicking loading. J R Soc Interface 14(133):255–259

    Article  CAS  Google Scholar 

  183. Yamasaki T, Yasunaga Y, Oshima S, Ochi M (2016) Healing potential of the cartilage correlates with location on the femoral head: a basic research using a rabbit model. Hip Int 26:31–35

    Article  PubMed  Google Scholar 

  184. Mendelson S, Wooley P, Lucas D, Markel D (2004) The effect of hyaluronic acid on a rabbit model of full-thickness cartilage repair. Clin Orthop Relat Res (424):266–271

  185. Nazempour A, Quisenberry CR, Van Wie BJ, Abu-Lail NI (2016) Nanomechanics of engineered articular cartilage: synergistic influences of transforming growth factor-beta3 and oscillating pressure. J Nanosci Nanotechnol 16:3136–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Boopalan PR, Arumugam S, Livingston A, Mohanty M, Chittaranjan S (2011) Pulsed electromagnetic field therapy results in healing of full thickness articular cartilage defect. Int Orthop 35:143–148

    Article  CAS  PubMed  Google Scholar 

  187. Yang SW, Kuo CL, Chang SJ et al (2014) Does low-intensity pulsed ultrasound treatment repair articular cartilage injury? A rabbit model study. BMC Musculoskelet Disord 15:36

    Article  PubMed  PubMed Central  Google Scholar 

  188. Raimondi MT, Bonacina E, Candiani G et al (2011) Comparative chondrogenesis of human cells in a 3D integrated experimental-computational mechanobiology model. Biomech Model Mechanobiol 10:259–268

    Article  PubMed  Google Scholar 

  189. Kelly DJ, Prendergast PJ (2006) Prediction of the optimal mechanical properties for a scaffold used in osteochondral defect repair. Tissue Eng 12:2509–2519

    Article  CAS  PubMed  Google Scholar 

  190. Wilson W, Driessen NJ, van Donkelaar CC, Ito K (2006) Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm. Osteoarthr Cartil OARS Osteoarthr Res Soc 14:1196–1202

    Article  CAS  Google Scholar 

  191. Bandeiras C, Completo A (2017) A mathematical model of tissue-engineered cartilage development under cyclic compressive loading. Biomech Model Mechanobiol 16:651–666

    Article  PubMed  Google Scholar 

  192. O’Reilly A, Kelly DJ (2016) Unravelling the role of mechanical stimuli in regulating cell fate during osteochondral defect repair. Ann Biomed Eng 44:3446–3459

    Article  PubMed  Google Scholar 

  193. Appelman TP, Mizrahi J, Seliktar D (2011) A finite element model of cell-matrix interactions to study the differential effect of scaffold composition on chondrogenic response to mechanical stimulation. J Biomech Eng 133:041010

    Article  PubMed  Google Scholar 

  194. O’Reilly A, Kelly DJ (2016) Role of oxygen as a regulator of stem cell fate during the spontaneous repair of osteochondral defects. J Orthop Res Off Publ Orthop Res Soc 34:1026–1036

    Article  CAS  Google Scholar 

  195. Catt CJ, Schuurman W, Sengers BG et al (2011) Mathematical modelling of tissue formation in chondrocyte filter cultures. Eur Cells Mater 22:377–392

    Article  CAS  Google Scholar 

  196. Trewenack AJ, Please CP, Landman KA (2009) A continuum model for the development of tissue-engineered cartilage around a chondrocyte. Math Med Biol 26:241–262

    Article  PubMed  Google Scholar 

  197. Pisu M, Lai N, Concas A, Cao G (2006) A novel simulation model for engineered cartilage growth in static systems. Tissue Eng 12:2311–2320

    Article  CAS  PubMed  Google Scholar 

  198. Stender ME, Carpenter RD, Regueiro RA, Ferguson VL (2016) An evolutionary model of osteoarthritis including articular cartilage damage, and bone remodeling in a computational study. J Biomech 49:3502–3508

    Article  PubMed  Google Scholar 

  199. Lutianov M, Naire S, Roberts S, Kuiper JH (2011) A mathematical model of cartilage regeneration after cell therapy. J Theor Biol 289:136–150

    Article  PubMed  Google Scholar 

  200. Nakagawa T, Lee SY, Reddi AH (2009) Induction of chondrogenesis from human embryonic stem cells without embryoid body formation by bone morphogenetic protein 7 and transforming growth factor beta1. Arthritis Rheum 60:3686–3692

    Article  CAS  PubMed  Google Scholar 

  201. Chen MJ, Whiteley JP, Please CP et al (2018) Inducing chondrogenesis in MSC/chondrocyte co-cultures using exogenous TGF-beta: a mathematical model. J Theor Biol 439:1–13

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design and drafting of the article, critically reviewed the article for important intellectual content, collected and assembled the data from the available literature, and gave final approval of the article.

Corresponding author

Correspondence to Frank A. Schildberg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walter, S.G., Ossendorff, R. & Schildberg, F.A. Articular cartilage regeneration and tissue engineering models: a systematic review. Arch Orthop Trauma Surg 139, 305–316 (2019). https://doi.org/10.1007/s00402-018-3057-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-018-3057-z

Keywords

Navigation