Skip to main content
Log in

Chondrogenesis and Integration of Mesenchymal Stem Cells Within an In Vitro Cartilage Defect Repair Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Integration of repair tissue is a key indicator of the long-term success of cell-based therapies for cartilage repair. The objective of this study was to compare the in vitro chondrogenic differentiation and integration of agarose hydrogels seeded with either chondrocytes or bone marrow-derived mesenchymal stem cells (MSCs) in defects created in cartilage explants. Chondrocytes and MSCs were isolated from porcine donors, suspended in 2% agarose and then injected into cylindrical defects within the explants. These constructs were maintained in a chemically defined medium supplemented with 10 ng/mL of TGF-β3. Cartilage integration was assessed by histology and mechanical push-out tests. After 6 weeks in culture, chondrocyte-seeded constructs demonstrated a higher integration strength (64.4 ± 8.3 kPa) compared to MSC-seeded constructs (22.7 ± 5.9 kPa). Glycosaminoglycan (GAG) (1.27 ± 0.3 vs. 0.19 ± 0.03 kPa) and collagen (0.31 ± 0.08 vs. 0.09 ± 0.01 kPa) accumulation in chondrocyte-seeded constructs was greater than that measured in the MSC-seeded group. The GAG, collagen, and DNA content of both chondrocyte- and MSC-seeded hydrogels cultured in cartilage explants was significantly lower than control constructs cultured in free swelling conditions. The results of this study suggest that the explant model may constitute a more rigorous in vitro test to assess MSC therapies for cartilage defect repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ahsan, T., and R. L. Sah. Biomechanics of integrative cartilage repair. Osteoarthr. Cartil. 7(1):29–40, 1999.

    Article  CAS  PubMed  Google Scholar 

  2. Ait Si Selmi, T., P. Neyret, P. C. M. Verdonk, and L. Barnouin. Autologous chondrocyte transplantation in combination with an alginate-agarose based hydrogel (Cartipatch). Tech. Knee Surg. 6(4):253–258, 2007.

    Article  Google Scholar 

  3. Albro, M. B., N. O. Chahine, R. Li, K. Yeager, C. T. Hung, and G. A. Ateshian. Dynamic loading of deformable porous media can induce active solute transport. J. Biomech. 41(15):3152–3157, 2008.

    Article  PubMed  Google Scholar 

  4. Awad, H. A., M. Q. Wickham, H. A. Leddy, J. M. Gimble, and F. Guilak. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25(16):3211–3222, 2004.

    Article  CAS  PubMed  Google Scholar 

  5. Barry, F., R. E. Boynton, B. Liu, and J. M. Murphy. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp. Cell Res. 268(2):189–200, 2001.

    Article  CAS  PubMed  Google Scholar 

  6. Boon, C. H., T. Cao, and H. L. Eng. Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem Cells 22(7):1152–1167, 2004.

    Article  Google Scholar 

  7. Bos, P. K., J. DeGroot, M. Budde, J. A. Verhaar, and G. J. van Osch. Specific enzymatic treatment of bovine and human articular cartilage: implications for integrative cartilage repair. Arthritis Rheum. 46(4):976–985, 2002.

    Article  CAS  PubMed  Google Scholar 

  8. Brittberg, M., A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331(14):889–895, 1994.

    Article  CAS  PubMed  Google Scholar 

  9. Bruder, S. P., N. Jaiswal, and S. E. Haynesworth. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J. Cell. Biochem. 64(2):278–294, 1997.

    Article  CAS  PubMed  Google Scholar 

  10. Campbell, J. J., D. A. Lee, and D. L. Bader. Dynamic compressive strain influences chondrogenic gene expression in human mesenchymal stem cells. Biorheology 43(3–4):455–470, 2006.

    PubMed  Google Scholar 

  11. Caplan, A. I. Mesenchymal stem cells. J. Orthop. Res. 9(5):641–650, 1991.

    Article  CAS  PubMed  Google Scholar 

  12. Dhert, W. J., C. C. Verheyen, L. H. Braak, J. R. de Wijn, C. P. Klein, K. de Groot, and P. M. Rozing. A finite element analysis of the push-out test: influence of test conditions. J. Biomed. Mater. Res. 26(1):119–130, 1992.

    Article  CAS  PubMed  Google Scholar 

  13. Elder, B. D., and K. A. Athanasiou. Effects of confinement on the mechanical properties of self-assembled articular cartilage constructs in the direction orthogonal to the confinement surface. J. Orthop. Res. 26(2):238–246, 2008.

    Article  PubMed  Google Scholar 

  14. Erickson, I. E., A. H. Huang, C. Chung, R. T. Li, J. A. Burdick, and R. L. Mauck. Differential maturation and structure-function relationships in mesenchymal stem cell- and chondrocyte-seeded hydrogels. Tissue Eng. Part A 15(5):1041–1052, 2009.

    Article  CAS  PubMed  Google Scholar 

  15. Gratz, K. R., V. W. Wong, A. C. Chen, L. A. Fortier, A. J. Nixon, and R. L. Sah. Biomechanical assessment of tissue retrieved after in vivo cartilage defect repair: tensile modulus of repair tissue and integration with host cartilage. J. Biomech. 39(1):138–146, 2006.

    Article  PubMed  Google Scholar 

  16. Horas, U., D. Pelinkovic, G. Herr, T. Aigner, and R. Schnettler. Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial. J. Bone Joint Surg. Am. 85(2):185–192, 2003.

    PubMed  Google Scholar 

  17. Huang, C. Y. C., K. L. Hagar, L. E. Frost, Y. Sun, and H. S. Cheung. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22(3):313–323, 2004.

    Article  CAS  PubMed  Google Scholar 

  18. Huang, C. Y. C., P. M. Reuben, G. D’Ppolito, P. C. Schiller, and H. S. Cheung. Chondrogenesis of human bone marrow-derived mesenchymal stem cells in agarose culture. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 278(1):428–436, 2004.

    Article  PubMed  Google Scholar 

  19. Hunter, C. J., and M. E. Levenston. The influence of repair tissue maturation on the response to oscillatory compression in a cartilage defect repair model. Biorheology 39(1–2):79–88, 2002.

    PubMed  Google Scholar 

  20. Hunter, C. J., and M. E. Levenston. Maturation and integration of tissue-engineered cartilages within an in vitro defect repair model. Tissue Eng. 10(5–6):736–746, 2004.

    Article  CAS  PubMed  Google Scholar 

  21. Ignat’eva, N. Y., N. A. Danilov, S. V. Averkiev, M. V. Obrezkova, V. V. Lunin, and E. N. Sobol. Determination of hydroxyproline in tissues and the evaluation of the collagen content of the tissues. J. Anal. Chem. 62(1):51–57, 2007.

    Article  Google Scholar 

  22. Johnson, T. S., J. W. Xu, V. V. Zaporojan, J. M. Mesa, C. Weinand, M. A. Randolph, L. J. Bonassar, J. M. Winograd, and M. J. Yaremchuk. Integrative repair of cartilage with articular and nonarticular chondrocytes. Tissue Eng. 10(9–10):1308–1315, 2004.

    CAS  PubMed  Google Scholar 

  23. Johnstone, B., T. M. Hering, A. I. Caplan, V. M. Goldberg, and J. U. Yoo. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238(1):265–272, 1998.

    Article  CAS  PubMed  Google Scholar 

  24. Kadiyala, S., R. G. Young, M. A. Thiede, and S. P. Bruder. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant. 6(2):125–134, 1997.

    Article  CAS  PubMed  Google Scholar 

  25. Kafienah, W., and T. J. Sims. Biochemical methods for the analysis of tissue-engineered cartilage. Methods Mol. Biol. 238:217–230, 2004.

    CAS  PubMed  Google Scholar 

  26. Kim, Y. J., R. L. Sah, J. Y. Doong, and A. J. Grodzinsky. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 174(1):168–176, 1988.

    Article  CAS  PubMed  Google Scholar 

  27. Kuroda, R., K. Ishida, T. Matsumoto, T. Akisue, H. Fujioka, K. Mizuno, H. Ohgushi, S. Wakitani, and M. Kurosaka. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthr. Cartil. 15(2):226–231, 2007.

    Article  CAS  PubMed  Google Scholar 

  28. Leddy, H. A., and F. Guilak. Site-specific molecular diffusion in articular cartilage measured using fluorescence recovery after photobleaching. Ann. Biomed. Eng. 31(7):753–760, 2003.

    Article  PubMed  Google Scholar 

  29. Lennon, D. P., and A. I. Caplan. Isolation of human marrow-derived mesenchymal stem cells. Exp. Hematol. 34(11):1604–1605, 2006.

    Article  CAS  PubMed  Google Scholar 

  30. Li, W. J., R. Tuli, C. Okafor, A. Derfoul, K. G. Danielson, D. J. Hall, and R. S. Tuan. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26(6):599–609, 2005.

    Article  CAS  PubMed  Google Scholar 

  31. Lu, Z. F., B. Zandieh Doulabi, P. I. Wuisman, R. A. Bank, and M. N. Helder. Differentiation of adipose stem cells by nucleus pulposus cells: Configuration effect. Biochem. Biophys. Res. Commun. 359(4):991–996, 2007.

    Article  CAS  PubMed  Google Scholar 

  32. Maniatopoulos, C., J. Sodek, and A. H. Melcher. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res. 254(2):317–330, 1988.

    Article  CAS  PubMed  Google Scholar 

  33. Marcacci, M., E. Kon, S. Zaffagnini, G. Filardo, M. Delcogliano, M. P. Neri, F. Iacono, and A. P. Hollander. Arthroscopic second generation autologous chondrocyte implantation. Knee Surg. Sports Traumatol. Arthrosc. 15(5):610–619, 2007.

    Article  PubMed  Google Scholar 

  34. Maroudas, A. Distribution and diffusion of solutes in articular cartilage. Biophys. J. 10(5):365–379, 1970.

    Article  CAS  PubMed  Google Scholar 

  35. Mauck, R. L., C. T. Hung, and G. A. Ateshian. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering. J. Biomech. Eng. 125(5):602–614, 2003.

    Article  PubMed  Google Scholar 

  36. Mauck, R. L., X. Yuan, and R. S. Tuan. Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthr. Cartil. 14(2):179–189, 2006.

    Article  CAS  PubMed  Google Scholar 

  37. Moretti, M., D. Wendt, D. Schaefer, M. Jakob, E. B. Hunziker, M. Heberer, and I. Martin. Structural characterization and reliable biomechanical assessment of integrative cartilage repair. J. Biomech. 38(9):1846–1854, 2005.

    Article  CAS  PubMed  Google Scholar 

  38. Mouw, J. K., J. T. Connelly, C. G. Wilson, K. E. Michael, and M. E. Levenston. Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells. Stem Cells 25(3):655–663, 2007.

    Article  CAS  PubMed  Google Scholar 

  39. Ni, Y. F., X. F. Li, Y. Liu, Z. J. Lei, and Q. Lu. In vivo chondrogenesis by co-culture of rabbit bone marrow-derived mesenchymal stem cells and chondrocytes. J. Clin. Rehabil. Tissue Eng. Res. 12(16):3185–3188, 2008.

    CAS  Google Scholar 

  40. Obradovic, B., I. Martin, R. F. Padera, S. Treppo, L. E. Freed, and G. Vunjak-Novakovic. Integration of engineered cartilage. J. Orthop. Res. 19(6):1089–1097, 2001.

    Article  CAS  PubMed  Google Scholar 

  41. Pedrozo, H. A., Z. Schwartz, R. Gomez, A. Ornoy, W. Xin-Sheng, S. L. Dallas, L. F. Bonewald, D. D. Dean, and B. D. Boyan. Growth plate chondrocytes store latent transforming growth factor (TGF)-β1 in their matrix through latent TGF-β1 binding protein-1. J. Cell. Physiol. 177(2):343–354, 1998.

    Article  CAS  PubMed  Google Scholar 

  42. Pelttari, K., E. Steck, and W. Richter. The use of mesenchymal stem cells for chondrogenesis. Injury 39(Suppl. 1):S58–65, 2008.

    Article  PubMed  Google Scholar 

  43. Peretti, G. M., L. J. Bonassar, E. M. Caruso, M. A. Randolph, C. A. Trahan, and D. J. Zaleske. Biomechanical analysis of a chondrocyte-based repair model of articular cartilage. Tissue Eng. 5(4):317–326, 1999.

    Article  CAS  PubMed  Google Scholar 

  44. Peterson, L., T. Minas, M. Brittberg, A. Nilsson, E. Sjögren-Jansson, and A. Lindahl. Two-to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin. Orthop. Relat. Res. 374:212–234, 2000.

    Article  PubMed  Google Scholar 

  45. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147, 1999.

    Article  CAS  PubMed  Google Scholar 

  46. Richardson, S. M., R. V. Walker, S. Parker, N. P. Rhodes, J. A. Hunt, A. J. Freemont, and J. A. Hoyland. Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem Cells 24(3):707–716, 2006.

    Article  CAS  PubMed  Google Scholar 

  47. Ruoslahti, E., and Y. Yamaguchi. Proteoglycans as modulators of growth factor activities. Cell 64(5):867–869, 1991.

    Article  CAS  PubMed  Google Scholar 

  48. Schneiderman, R., E. Snir, O. Popper, J. Hiss, H. Stein, and A. Maroudas. Insulin-like growth factor-I and its complexes in normal human articular cartilage: studies of partition and diffusion. Arch. Biochem. Biophys. 324(1):159–172, 1995.

    Article  CAS  PubMed  Google Scholar 

  49. Selmi, T. A. S., P. Verdonk, P. Chambat, F. Dubrana, J. F. Potel, L. Barnouin, and P. Neyret. Autologous chondrocyte implantation in a novel alginate-agarose hydrogel: outcome at two years. J. Bone Joint Surg. Br. 90(5):597–604, 2008.

    Article  CAS  PubMed  Google Scholar 

  50. Silverman, R. P., L. Bonasser, D. Passaretti, M. A. Randolph, and M. J. Yaremchuk. Adhesion of tissue-engineered cartilage to native cartilage. Plast. Reconstr. Surg. 105(4):1393–1398, 2000.

    Article  CAS  PubMed  Google Scholar 

  51. Tam, H. K., A. Srivastava, C. W. Colwell, Jr., and D. D. D’Lima. In vitro model of full-thickness cartilage defect healing. J. Orthop. Res. 25(9):1136–1144, 2007.

    Article  PubMed  Google Scholar 

  52. Thorpe, S. D., C. T. Buckley, T. Vinardell, F. J. O’Brien, V. A. Campbell, and D. J. Kelly. Dynamic compression can inhibit chondrogenesis of mesenchymal stem cells. Biochem. Biophys. Res. Commun. 377(2):458–462, 2008.

    Article  CAS  PubMed  Google Scholar 

  53. Tognana, E., F. Chen, R. F. Padera, H. A. Leddy, S. E. Christensen, F. Guilak, G. Vunjak-Novakovic, and L. E. Freed. Adjacent tissues (cartilage, bone) affect the functional integration of engineered calf cartilage in vitro. Osteoarthr. Cartil. 13(2):129–138, 2005.

    Article  CAS  PubMed  Google Scholar 

  54. Torzilli, P. A., T. C. Adams, and R. J. Mis. Transient solute diffusion in articular cartilage. J. Biomech. 20(2):203–214, 1987.

    Article  CAS  PubMed  Google Scholar 

  55. Torzilli, P. A., J. M. Arduino, J. D. Gregory, and M. Bansal. Effect of proteoglycan removal on solute mobility in articular cartilage. J. Biomech. 30(9):895–902, 1997.

    Article  CAS  PubMed  Google Scholar 

  56. Tsuchiya, K., G. Chen, T. Ushida, T. Matsuno, and T. Tateishi. The effect of coculture of chondrocytes with mesenchymal stem cells on their cartilaginous phenotype in vitro. Mater. Sci. Eng. C 24(3):391–396, 2004.

    Article  Google Scholar 

  57. Wakitani, S., M. Nawata, K. Tensho, T. Okabe, H. Machida, and H. Ohgushi. Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J. Tissue Eng. Regen. Med. 1(1):74–79, 2007.

    Article  PubMed  Google Scholar 

  58. Williams, C. G., T. K. Kim, A. Taboas, A. Malik, P. Manson, and J. Elisseeff. In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng. 9(4):679–688, 2003.

    Article  CAS  PubMed  Google Scholar 

  59. Worster, A. A., B. D. Brower-Toland, L. A. Fortier, S. J. Bent, J. Williams, and A. J. Nixon. Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-β1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix. J. Orthop. Res. 19(4):738–749, 2001.

    Article  CAS  PubMed  Google Scholar 

  60. Yamaguchi, Y., D. M. Mann, and E. Ruoslahti. Negative regulation of transforming growth factor-β by the proteoglycan decorin. Nature 346(6281):281–284, 1990.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Funding was provided by Science Foundation Ireland (President of Ireland Young Researcher Award—08/YI5/B1336).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Kelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinardell, T., Thorpe, S.D., Buckley, C.T. et al. Chondrogenesis and Integration of Mesenchymal Stem Cells Within an In Vitro Cartilage Defect Repair Model. Ann Biomed Eng 37, 2556–2565 (2009). https://doi.org/10.1007/s10439-009-9791-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9791-1

Keywords

Navigation